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STUDIA MATHEMATICA, T. XLV. (1973)

Joint spectra

by
A. T. DASH* (Guelph and Toronto)

Abstract. Tn this paper we discuss classification of joint spectra of commuting
n-tuples of operators on a complex Hilbert space analogous to the single operator
case. Further, if ¢ is an element of H* (Hardy space of the unit cirele), it is well-known.
that the spectrum of the analytic Toeplitz operator T’y is the closure of the image

of the open unit dise 4 under the mapping ¢; that is, o(Ty) = ¢(4). Heve p is the
analytic extension of ¢ to the interior of the open unit dise. We generalize this assertion
to n-tuples of analytic Toeplitz operators.

1. Introduction. There is a successful extension of the notion of
spectrum, valid in any commutative algebra % with identity. If -4, A,,
-++s A, are elements of %, the joint spectrum o(Ay, 4y, ..., 4,) of {4} cicn
relative to A is the set of all points (2;, 2j, ..., #,) of C* (the n-dimensional
complex space) such that 4,—z,, 4,~2,,..., 4, —#, belong to the same
proper maximal ideal in %; or

0(dy, Ay ..y 4y) = {(‘P(Al)y‘?’(-Az)a () ‘P(An)): pe M}7

where M is the maximal ideal space of 9 [1]. This definition of joint
spectrum has the disadvantage that the greater the ambient algebra,
the smaller the joint spectrum. Our interest here is in n-tuples of operators
on complex Hilbert space; in this context it seems preferable to avoid
such ambiguities.

For example: Let U be a bilateral shift. If 9 is taken as the algebra
generated by U and 1, one can easily show that the spectrum o(U) of U
relative to % is the closed unit disc. This is quite unnatural from our point
of view.

On the other hand, if % is the double commutant of U, then o(U)
relative to A iy the umit circle. This latter approach is applicable, and
seems natural in our general situation too (cf. Definition 2.1).

In §2, we prove certain property of the joint spectrum analogous
to that known in the single operator case, such as Proposition 2.3. §3
pertaing to the classification of joint spectra of commuting sets of oper-
ators analogous to the single operator case. §5 is devoted to the well
known representation of the joint spectrum of a commuting set of normal

* This regearch was partially supported by NRC Grant A07545.
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operators in terms of joint essential range (Definition 5.1) and (Theorem 5.2).
An analogous representation of the joint spectrum of a set of analytic
Toeplitz operators is also given in §6 (cf. Theorem 6.2).

2. Joint spectra. The notion of joint spectrum of a family of elements
in a commutative Banach algebra was first introduced. and studied by
Areng and Calderén [1]. Our interest here is to give a suitable definition
of the joint spectra of commuting families of operators on a Hilbers space.
This is not immediately provided by the above reference [ef. §1].

Here and in what follows we shall need the following notations
and terminologies unless otherwise mentioned. Let C* be the n-dimensional
complex space and 4 = (4,, 4,,...,4,) be the n-tuple of commuting
operators on a complex Hilbert space H. Then the double commutant U
of the set 8 = {4, 4,,...,4,} is a weakly cloged abelian algebra con-
taining the set § and the identity [7].

Dermvrrron 2.1. Let 4 = (4,, 4,,...,4,) be an n-tuple of com-
muting operators on H. Then the point z = (2, Zgy .09 2,) of C" ig in
the joint specirum o(A) of A relative to % if and only if for all By, By, ..., B,
in U

D Bi(d;—z) #1.

=1
Bquivalently, # is in o(4) if and only if the ideal in % generated by
{4;—2}1<i<n 18 DProper.

It is well known, in fact, it can be easily shown that o(4) is nonempty
and compact. Here it would be appropriate to remark that the possi-
bility that it would be better to replace U by some different algebra has
been discussed by Taylor [11]. If 7' is an operator on H, then it is well
known that o(T%) = ¢(7T)*, where asterik on the right represents complex
conjugates. The analogous assertion for commuting n-tuple of operators
can be readily verified. We state it without proof.

PrROPOSITION 2.2. Let 4 = (Ay, ..y 4,) be an n-tuple of commuting
operators in H. Then o(A*) = o(A)*, where 4* = (4%, ey AD).

The following theorem is an easy consequence of the properties
of the commutants and Fuglede’s Theorem [8]. We omit its proof. This
we shall need later in §5.

THEOREM 2.3. Let § = {d,,..
operators. Then:

(1) The commutant 8’ of 8 is a weally closed
of the algebra of the bounded operators & (H)

(2) The double commutant 9 = '
-adjoint algebra containing S, §* and 1;
Newmann algebra. .

o Az} be a4 commuting set of mormal

self-adjoint subalgebra
containing S, 8 and 1.

s a weakly dosed Abelian self-
and hence A is an Abelian von

e ©
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3. Classification of joint spectra. We now consider the classification

. of the joint spectrum of a set of commuting operators analogous to that

of a single operator. For clarity,
to a pair of operators.

For a single operator 4, 0co,(4) if and only if BA 1 for all B
(here arbitrary bounded operators are allowed.) .

The reagon the second condition 4B # 1 is not satisfied in the cage
where A is the backward unilateral shift is that B could be chosen to
be A* (the forward shift), when 4B — 1 although BA = 1. Note that
BA 1 for all B in Z(H) if and only if A*B =1 for all B in Z(H).
Furthermore, if there exist B, B, in Z(H) such that B,4 =1 and
ByA* =1 (or AB, =1 and A*B, =1), then A is invertible, The fol-'
lowing discussions will be an interplay of these notiong.

For a pair of operators 4, and 4,, we write 4 = (4,, Ay). B, A, +
+By 4, and A;B,+ 4,B, are abbreviated respectively as BA and AB.
Several definitions below concern parts o. (4) of the joint spectrum.
In each case, it is implied that a point 2 = (2, 2,) of €2 is in a get o. (4)
if and only if 0 = (0, 0) is in 0.(4dy—2;, A;—2,); 80 in definitions and
proofs we will often confine attention, without loss of generality, to the
question of whether 0 o.(4).

DeriNirion 8.1. 0 is in the joint approximate point spectrum o, (A)
of 4 if and only if for all B,, B, in Z(H), BA #1.

PROPOSITION 3.2. 0 is in 0,(Ad) of 4 = (Ay, 4,) if and only if there
exists a sequence {f.} of unit vectors in H such that

4 1fll =0 I42fall = 0.
Proof. If 0is in o,,(4), then B, 4,+ B, 4, + 1 for all B,, B, in £(H).
This implies that 0 is in the spectrum of A 4, + 4% 4,. Since A7 A+ A A,

is & positive bounded operator, then there exists a sequence {f,} of unit
vectors in H such that

we restrict the discussions in §3 and §4

and

(AT 4+ A7 Ao)fyll = 0.
But ’
MAafall + 1 Asful = Aoty Arfud +<Aofn, Aof,>
== <-Ar-“11fn!.fn> -+ <‘A;A—2fmfn>
= (A A+ AT A4S, FD
< AT Ay+ A5 Al
Therefore

“-Alfn” -0 and

Conversely, suppose there exists {fu} in H with ||f,|| = 1 and
Iy full 0 l4zfall 0.

[42fall — 0.

and

2 ~— Studla Mathematica XL.V.3
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We must show that 0« 0,(4). If not, then there are operators B, B, in
Z(H) such that By A;+ By, A, = 1. Thig implies that

Ifall = I(Byds+Bydo)ful = [By(A1f,) +Ba(Aafu)l
S Ball 1afal+ I1Bsll 4oLl — 0

which is absurd. Thus 0 is in o,(A4).
DerpiviTIoN 3.3. The point 0 is in the joint approwimate comprossion
spectrum o,(A) of 4 if and only if for all B, and B, in % (H), 4B 1.
PROPOSIITON 3.4. The point 0 s in o,(A) if and only if 0 is in o, (A*).
Proof. This follows immediately from Definitions 3.1 and 38.3.
DrrINITION 8.5. The point 0 is in the joint appromimate DOIE-approwi-
mate compression spectrum o,,(A) of A if and only if B, A, +By Ay 1.
for all B; and B, in a(H).
PROPOSITION 3.6. 0 is in 0,,(A) if and only if there ewists a sequence
{fu} of umit vectors in H such that ’

A fall 0

Proof. The conclusion follows immediately from the relation

Opo( Ay Ag) = 0. (4, A;‘)
and from Proposition 3.2. Thig line of argument was suggested by the
referee. '

DErINITION 3.7. The point 0 is in the Joint approximate compression-
-approximate point spectrum o,,(A) of A if and only if B, AY-+-B,d, 1
for all B, B, in a(H). )

ProPOSIITON 3.8. 0 is in o,,(4) if amd only if there emists {f,} in H
with [[f,l =1 such that

43 fall 0 14, — 0.

Proof. This follows by imitating the proof of Proposition 3.6.

PROPOSITION 3.9. The point 0 s in o,,(A) if and only if 04 in 0, (A%).

Proof. follows immediately from Proposition 3.6 and 3.8 and the
corresponding definitions.

These definitions and propositions above could very well be chogen
a8 the basis of the definition of the joint spectrum. of a non-commuting
set of operators. If so, it is natural to agk whether the joint spectrum. of
& non-commuting set of operators is non-vacuous. The following example
shows that this is not generally true. Let ‘

1 0 0
-A]_ == and _A.2 = 1 .
0 -1 10

and | 431, - 0.

and
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Then o(4,) = o(dy) = {1, =1} and o(4,) x o(4,) = {1, 1), (=1, —1),
(—1,1), (1, —1)}. Clearly, none of the points of ¢(4,)x o(4,) are in
0(4y, 4,). Thus o(4,, 4,) is empty. However, we shall show later that
there are a large class of non-commuting operators known as Toeplitz
operators for which the joint approximate point spectrum of any finite
number of them is non-vacuous (cf. Theorem 6.1).

Next we exhibit the existence of different kinds of spectrum by
means of the following example.

Let H = H,@H,® ..., where each co-ordinate space is H2
space of the unit circle (cf. §6)). Further, let

1o...

( Har‘dy

0 vVoo...
001... ovVo...
4, = 000... and A, — OOV...,

where V is the simple unilateral shift, regarded as multiplication by
on H2. Alternatively, we could regard A, as V*@®1 and A, a8 1®V. Obvi-
ously 4, and 4, commute.

THEoREM 3.10. The joint spectrum of Ay and A, is the cartesian product
of the dlosed unit disc with itself.

Proof. This result is proved in [4]. Consult also [5].

Thus we have seen that a point (21 2,) of €2 is in the joint spectrum
of {4, 4} if le;] <1 and |e,| < 1. Now one would be interested to know
the type of the spectrum each point (21, %) belongs to. '

(I) If [21] <1 and |z,| < 1, then (Ay—2)f = 0, where

1
N !
f a
Similarly,
1
*
(V=g =0 it g=|%
72
Choose
[ 1 1
X
i TR N 2,

2 =1 2
g 2 %

Then (4;—2)h =0 and (4} —25)h = 0. Thus (2, 2,) is in O (A).
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In terms of the new definitions which will be introduced in a moment
we can even make the somewhat sharper assertion that
Opr(Ayy Ay) = A x 4;

that is, the interior of the bicylinder. Here 4 is the open unit dise.

DrrrNirioN 3.10.1. 0 is in the joint point spectrum o,(A) if and only
if there exists f in H such that

Alf=0'"‘:-<‘12f-

DEFINITION 3.10.2. 0 is in the joint residual spectrum o,(4) if and
only if there exists f in H such that

Alf =0 = A3f.

DurFINITION 3.10.3. 0 is in the joint point-residual spectrum Oy (A)
if and only if there exists f in H such that
Af =0 = 4;f.

DEFINITION 3.10.4. 0 is in the joint residual-point spestrum oy (4) if
and only if there exists f in H such that

A =0 = 4,f.

It is clear that o,(4) = 0,(4), o0,(4) = o, (4), Om(d) © 0,(4) and
Opp(A) © 0,,(4). :
PROPOSITION 3.10.5. 0 45 in 0,,(4) if and only if 0 is in o,,(A*).
Proof. This follows immediately from the regpective definitions.

‘We close this section by completing the discussion about the above
example.

(IT) For the general point (2,,z,) With [¢,) <1 and |z < 1, there
exists {f.}, [fal =1 and {g,}, lg.]l = 1 such that

I(V* —2)full 0
Choose {h,} = {f,®g¢,}. Clearly, ||h,| = 1. Thus we have
(4 =2 hyll = [|((V*—2) @ 1) (fo@ g,
= (V" —2,)fn®gall
= (V* —e)ful >0

and  [(V*—23)gyll — 0.

and
IAZ =) Bl = [|(L & (V*—20)) (fu® 9|
= fa®(V*—2) gl
= (V" —2;)gal - 0.
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This implies that (z,, 2,) is in Op(4). Thus o(4) = =n(4). Comparing (T)
above, we see that

Ipr(4) < 0,4(4) = 0, (4).

4. Some open questions. Let 4 = (

4, 4;) be a pair of commuting
operators on H. Then it is clear that

0, (A) U 0,(4)u On(A) U 0,,(4) = o(4).

But the most formidable part seems to be the converse of this agsertion,
the answer to which is not known. ‘We conclude this section with the
following:

ProBLEM 1. Is it always true that
o{4) =0, (4)u 0p(A) U o (4) L G (A)?

PROBLEM 2. Prove that the joint approximate point spectrum is
non-empty. This is well-known in the case of g single operator. Consults
[4] and [6].

5. Joint essential range. Tt is well known that if 4 is a normal operator
on a Hilbert space H, then there is a suitable measure space (X, 4), an

identification of H with LI*(u), and a bounded measuraple function ¢
such that

Af =gf for all f in L2(g)

and
o(4) = essential range of p — o (4).

Lot 4 = (4,,4,,..., 4,) be an n-tuple of commuting normal operators
on H. Then the double commutant 9 of 4 is an abelian Von Neumann
algebra (Theorem 2.3), and every such algebra U is contained in some
maximal abelian self-adjoint algebra, say D. It is known that every maximal
abelian self-adjoint algebra is unitarily equivalent to a multiplication
algebra. That is, there exists a suitable measure space (X, u) such that D
is unitarily equivalent to L*( ), the algebra of multiplication operators
on the Hilbert space I*(u), and the algebra 9 is unitarily equivalent to
a subalgebra, say B, of I®(u). Thus there exist bounded measurable
functions ¢;, ¢ =1,2,...,n such that

Aif =@f  for all fin I*(u), L<i<n.
Drrivrrron 5.1, Let ¢ = (1, s, .-y %) be an n-tuple of functions

in I (u). Then we define the joint essential range of ¢ to be the set &(p)
consigting of all 2 = (2, #,,...,2,) of O" such that for every ¢> 0

H{"EX:‘f;Wi(t)-zil < E} > 0.

i=1
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It is clear that if ¢, @a, ..., ¢, are continuous, then the joint essential
range of g is the range of the vector-valued function ¢ = (@1, s, ..., @,);
that is,

Elp) = (X {(971 (t), pa(t), - '7‘7)n(t)): “X}'

The following theorem is well-known. However, we have been. unable
to find its reference. Since this is crucial in many respects, we give itg
proof for the continuity of the discussion and benefit of the reader.

THEOREM 5.2. The joint spectrum of a commuting n-tuples A
= (A, Agy ..., 4,) of mormal operators is the joint essemtial range of
@ = (P1s Pay -oos u)y where Af =guf for all f in L*(u) and pie L™ (n).

. Proof. It will be enough to show that the joint spectrum o(¢) of ¢
relative to B is equal to the joint essential range &(p) of p. Assume ¢
= (@1 Rgy «+.y 2,) I8 DO In & (p); it will be shown that there exist functions
Y1, Yoy ooy Yo I0 B = L7(p) such thab

Dlwile —m) =1

i=1

—2,) i8 not invertible

’ n
Suppose not. Then for all p,, va, ..., ¥, in B, 21 w(e

in L”®(p). Thus for every &> 0 the set

}

will have positive meagure; that is, ,u(E(Qp, a)} > 0 for each &> 0 and
for all n-tuples v = (1, ¥a, ..., ,) of functions in B. In particular, consider
the functions v; = (p;—#,)*, the complex conjugates of the function
@;—2;. Then we have

Bly, o) = {1 | 3 v:(0) (pul) — 2

—{t: St <¢

=]

E(y, e)

and u(B(y, &) > 0 for each &> 0. But 2 is not in &(p). Therefore, for
n .
some &' > 0, (B (e')) = 0, where B(s') = {t: Y |pi(t) —2,| < ¢'}. Further-
]

more, it is clear that

n n

2 o)==l < fn 3 1ou(t) — 2}

i=1 (=54

We now let &' = Vne, then we obtain B (w, &) « B(¢'). This implies that
#{B(y, &) = 0. This contradiction proves that there are functions Vi,
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n
Yoy -+oy Y inBsuch that 3 v, (p;—4). = 1. Thus zis notin o (). Therefore,
=

olp) = €(p).
Oonversely, i zis in & (p), then we must show that for no Vis Yoy oevy Y

in B is 2 v, —2;) = 1. As‘;ume the contrary; that is, there exist Y1y
Yoy ooy Py in B such that 2 i (ps—2;) ~—1 Let M = max {|ly,, hw.l,

oy lpgl}. Since 2 is in &(qv) then uit 2 (1) — 2] < e} > 0. It we let

on He),

n n
| D wilpi—2) <M Y lgi—ai < Moo =
[ £ f=1

which is a contradiction. Hence 2 is in o(g). This implies that &(p) is
a subset of o(p). Thus the theorem is proved.

THEOREM b5.3. Let A = (4,, 4,,..., 4,) be an ntuple of commuting
normal operators. Then o(4) = o, (A); that 8 0 = (0,0,...,0) is in o(4)
if and only if there ewists a sequemce of wnit vectors {f,} in H such that

lAifell >0 "as kB — oo for each i,1<i< n.

Proof. 0 is in ¢(4) if and only if Zn B; A, is not invertible for all
B,, B,, ..., B, in 2. Since ilI is a se]fa,djigilnt algebra (Theorem 2.4), this
means in particular that 2 A*A is not invertible. Thus, if 0 is in o(4),
then 0 is in the spectrunTIOf Z‘ A A;. Thus 1t follows that there exists
a sequence {f,} of unit vectors i i H sueh that || ( 2 AT A

As in the proof of Proposition 3.2, Z LA fxl? »+0 a8 k — co. Therefore,

-fk|[—>0ask—> oo, -

l4:fil -0 as & — co for each i, 1< <<
COROLLARY 5.4. Under the hypotheses of Theorem 5. 3 o(4) = o,(A4).
Proof. We have shown that o(4*) = o(4)* (Proposition 2.3).
Further, A* = (4}, 45, ..., 4}) is also an n-tuple of commuting normal
opelf»toxs Thus, Theorem 5.3 gives o(4*) = 0,(4%). But 0,(4*) = o, (4)*
(Proposition 3.4). Therefore
o(4) = o(A*) = 0, (4*)* = a,(4).

6. Toeplitz operators. As before, let 4 be the open unit dise in the
complex plane C, and. let » be the normalized Lebesgue measure on the
Borel subsets of the unit circle 1. We denote by P (I") the sup norm algebra
of all functions on I" that can be uniformly approximated by polynomials.
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Let I? be the usual Hilbert space of y-square-integrable functions on I
Further, lot H* be the closure of P(I") in L? and H* the weak-gtar closure
of P(I") in L™ (the space of essentially-bounded »-measurable functions
in I?). Equivalently, H® = H*n L. If ¢ is an L*, we define a bounded
operator L, on I* by

Lf =of
Let P be the orthogonal projection of L* onto H?. Then for each ¢ in L
we define the Toeplitz operators T, on H* by

T,f =PL,f for all f in H™ [2]
If ¢ is in H™, then T, is called analytic Toeplitz operator.

for all f in L2

It is known that o(L,) = o,(T;) for all g in I [10]. In the following

section we generalize these ideas to an arbitrary finite collection. of Toeplitz
operators

THEOREM. (BROWN AND HALMmos). If ¢ is in L™, then

W T, PWE > I,
in the strong operator topology, where W is the bilateral shift and P is the
orthogonal projection of L* onto H*. :

Proof. ([2], Theorem 5). ’

Proceeding further we introduce the following notations. If ¢
= (@1, P2y - -5 Pu) 18 an n-tuple of functions in L® or H™, then we shall
denote the n-tuple (Lg, Ly, ..., L, ) of operators by L, and (T, T,
-y Tp,) by T, whenever there is no confusion.

THEOREM 6.1. Let ¢ = (@1, 2y -+ -, ®,) be an n-tuple of functions in L.
Then the joint spectrum of L, is a subset of the joint approvimate point
spectrum of T,. In other words

o(L,) = 0,(T,).

%)

Proof. It is enough to show that if 0 is in the joint spectrum o(L,)
of IL,, then 0 is in the joint approximate point spectram 0a(T,) of T,.
‘We now let 0 be in ¢(ZL,). Then from Theorem 5.3 we have for every & > 0
there exists a unit vector f, in H such that ||L,,,¢f,|| < gforall 4, 1 < i< n
Furthermore, from the previous theorem we have W*’”PW’“J’,, - f, and
W T, PW*f, > L,f, for all i, 1< ¢ < n. This implies that |PW*f,| -1
and ]|T¢¢PW’°f,|[ -0 for each 4. Thus 0 is in o,(T,).

The following notions and notations are needed for further discussions.
For each f in H? let f be the analytic extension of f to the interior of
the open unit dise 4 with square-summable Taylor series. Denote this
class of functions by H? Of course there is a natural isometry of H* onto

B2 A* is defined gimilarly. For each ¢ in H*, let T,,, be the replica of T,
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in H2 Tt is clear that T,f = ¢f for all fin A and for all § in H*. It 1
Py o Pn are in H¥, then we abbreviate ¢ = (¢, ooy @p) and @(d)
= {(¢(2), P2 (2), ..., P2(2)): # in A}, which is a subset of €". It is well
known that o(Z,) = 9(4) for all y in H* [9]. We generalize this to n-tuples.

TIAI‘E:OZ‘REM 6.2. If @ = (1, gy ..., ) 48 an n-tuple of functions in H*,
then the joint spectrum of T, is the closure of the image of the open unit disc A
under the mapping @; that is,

o(T,) = p(4).

Proofl. If 0 is not in ¢(4), then there is a & > 0 such that
n
RO
g=]1

for all # in 4. Thus by the solution to the Corona problem [3] there exist
functions vy, ye, ..., w, in H* such that

nw
2 i = 1.
=1

This implies that

ijiTm =1.

4=l .
Hence 0 is not in ¢(T,). Therefore o(T,) is in the closure of P(4).
Conversely, if 1 is a complex number with |1] < 1, then it is clear

that f(4) = ¢f, k> for all § in B?, where &, — ——

1—-22’
a; = ¢;(2) for each 4, 1<in,

o (T = ey = (T —a)f, i

= (i~ a)f, o)

= (fufy ba) — @ {Fy )
G —pF(R) = 0

For fixed A, let

i

for all #in H. Thus

(Tt — )k = 0
for each 4. This implies that (¢, as, ..., @,) is in the joint residual spectrum
o (Ty) of T,. Hence it follows that ¢(4) < o(T,). But the joint spectrum

of any commuting set of operators is a closed set. Therefore ¢(4) = o(T,).
This proves the theorem.
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In passing we have proved the following fact:
0,(T,) = o(T,).

There is still another way to express the result. Recall that if ®
= (@1, P2y - -+y Pn) 18 a0 n-tuple with ¢, in L, the joint spectrum of L,
is the joint essential range of ¢ (Theorem 5.2). Analogously, if each @
ig in H*, then Theorem 6.2 says that the joint spectrum. of T, is the joint
esgential range m_) of ¢. Furthermore, ¢ is continuous (since each P
is continuous and 4 is connected. This implies that @(d) is connected,

and hence @(4) is connected). Thus it follows that the joint gpectrum of
an n-tuple of analytic Toeplitz operators is connected,
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