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STUDIA MATHEMATICA, T. XLV. (1973)

Holomorphy types for open subsets
of a Banach space

/ 'by
RICHARD M. ARON (Lexington, Ky.)

Abstract. In an earlier article in this journal, 8. Dineen considered the space
of complex-valued entive functions on a complex Banach space B which were of
a-holomorphy type. In this note, we extend this study to spaces of holomorphic
functions of a-holomorphy type defined on an arbitrary open subset of E.

§ L. Introduction. In [2] and [3], Dineen defined and studied the
space of entire functions of a-holomorphy type 6 from one complex Banach
space I into another complex Banach space F. We extended these results
in [1] to the study of holomorphic functions of a-holomorphy type 6
defined on. balanced open subsets of B. In this note, we extend the results
of Dineen in a somewhat different way to the space of holomorphic func-
tions of a-holomorphy type 0 from an arbitrary open subset of # into F.

As is the case with Dineen’s work, our definition of holomorphic
functions of a-holomorphy type 6 gives rise to a smaller, more manage-
able class of functions than that considered in [5]. In faet, it is unknown
if there is an open subset of a Banach space for which our class is strictly
smaller.

In [8], [4], [6], and [7], problems involving partial differential and
convolution equations for entire functions on a Banach space were con-
gidered. Just ag in the finite dimensional case, the analogous questions
for holomorphie functions on open subsets of a Banach space are much
hawder, and will be discussed in a future note.

§ 2. Notation and terminology. Our notation will follow that of [3]
and [0]. For convenience we give the following main definitions which
will bo required later. '

Let U be an open subset of the complex Banach space &, and. let 77
be a complex Banach space. A functio;u f: U — F is holomorphic on U

af(g)

if for each &e U, there is a sequence {”7»7—} of continnous #-homo-
. neN
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. & d"f(£) . ;
geneous polynomials such that f(x) = 3 n (#—§) uniformly in
n=0 M

some neighborhood of £ 2 (U;F) denotes the space of holomorphic
functions from U to F. The vector space of continuous n-homogeneous
polynomials from F into ¥ is denoted 2 ("E; I'), and becomes a Banach
space with the norm Pe2("E; I) — ||P| = sup||P ()].

llzli<1

) DeriNiTion 2.1. (see [6], p. 34). A holomorphy type 6 from 7 to F
18 a sequence of Banach spaces (Z,("E; F), | |y), for neXN, such that
the following hold:

i) Each #,("B; F) is a vector subspace of 2("H; I).

i.i) Z,("E; F) coincides with #(°E; F), the vector space of comnstant
mappings from F to F as a normed vector space.

iii) .There is a real number ¢ = ;> 1 for which the following is
true: Given any m and ne N, m < n, < B, and Pe Z,("H; I'), we have

d™P(a)e 2, ("B; F)
and

1 . .
o 18P @)l < " [P o]~

) This y_ields the following natural definition of the space of holomor-
phic functions from U into F of holomorphy type 6.
. DEEII\I.ITION 2.2. Let fes#(U; F). f is of holomorphy type 6 at ¢ U
if there fax1st real numbers ¢ > 0 and ¢ > 0 such that the following hold:
i) d™f(&)e 2y (™B; F), for all me N.
anf(£)
m!

1)

< 0c¢™, for all me N.
0

He(U; F) i 1:]~1e set of functions fe (U ; F) which are of holomorphy
type 6 at each point of U. The current holomorphy type 0 is the holo-

morp}}y type for which (Z,(™&; 7), | ||,) = (Z(™8; 1), | |) for all me N.
In this case o, (U; F) = #(U; F).

It is easy to see that the topology 7, of uniform sonvergence on,
compact. se.‘os is .11013 ‘ghe largest natural locally convex topology on. o, (U5 I,
Wht.an.l? is infinite dimensional and I s« 0. Definition 2.2 leads to a natural
definition of a much larger topology.

DEFINITION 2.3. A seminorm p on Hy(U; F) is said to be ported

]EZI ;LS compact set K < U if either of the following equivalent conditions

i) For any real number &> 0, there is a ¢(s) > 0 such that
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P <olo) Y enoup | T

ot veX

’
0

for every fe oy (U; I).
ii) For any real number ¢ > 0 and for any open set Vwith K « V < U,
there is a ¢(&, V) > 0 such that

3 i"f(a)
‘ »‘if« ) i1 A M
2(f) J(E:V)W%OE wer | Tmt |,

for every fe o, (U; T,

‘When 0 i the current holomorphy type, the following condition is
equivalent to the two above:

iii) For any open set V, K « V = U, there is a o(V) > 0 such that

()< ol¥) supf(@)l,
xe
for every fe st (U; F). )

The topology 7,, on #,( U; I') is the locally convex topology generated
by all geminorms ported by some compact set K < U; when 0§ is the
current holomorphy type, the topology is denoted by z,.

‘We note that there i no known example of a 7,.-continuous semi-
norm on #,(U; F) which is not dominated by one of the type
d'f(a)

FeHNT; B) > pr () = D) dsup | =1

weK

?
]

A=
where K < U is compact, and {a,} € ¢, the set of non-negative sequences of
real numbers tending to 0. The locally convex topology generated by the
family px g, With K and {a,} varying as described above, is denoted
7405 When 0 is the current holomorphy type, we denote this topology by z,.

PROPOSIIION 2.4. {#4(U; F), v,) is complete.

Proof. We will prove the proposition in the case when 6 is the current
holomorphy type, which is the only case we will use; the proof for arbitrary
holomorphy types 0 is slightly more complicated. -

Lot {fi}seq Do a Oauchy net in (o2(U; 1), 7). Since #(T; F) is closed
in the complete space O(U; ) of continuous F-valued functions on U

- (by Proposition 4, Section 6 of [5]), it follows that there is a function

fe#(U; I such that f, - f for the topology 7. By Proposition 2, Section 6
arf, (o i

of [5], we have thatM{:'( )

From this, it is immediate that f; —f in v, and the proof is complete.

The space %,("H; I) is called intrinsie if the algebraic and topolo-

gical definition of #,("H; F) depends cnly on the algebraic and topolo-

17
- —d——ﬂ'@— uniformly on compact subsets of U.
n!
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gical definition of B. If U is the unit ball for an equivalent norm on Z,

- we denote by || llp,y the norm on #,("H; F) corresponding to U. It will
be convenient for us to use various equivalent norms on F, whose unit
balls will often be expressed in terms of the unit ball B, for a fixed norm
on E. In [3], Dineen notes that every known natural example of holo-
morphy type also satisfies the following definition. ‘

DEFINITION 2.5. An o-holomorphy type is a holomorphy type 6
which satisfies the following conditions:

i) For each u, the space (Z,("E; ), || |,) is intringie, and the con-
gtant o in Definition 2.1 is independent of the choice of equivalent norm
on E.

if) If U and V are two open, bounded, convex, balanced sets, and
¢> 0 ig such that ¢U < V, then for all ne N and all P,e 2,("H; F)

Gn”Pnlla,U < “—PnHO,V'

For the remainder of this article, every holomorphy type 6 will be
assumed to be of a-holomorphy type. We will also assume that all holo-
morphic functions are complex-valued, and will denote o#,(U; C) simply
by ##,(U). There is no difficulty in generalizing all regults to arbitrary
Banach space-valued mappings. ‘

§ 3. The space (H,,(U), 7). Because of the difficulty in proving
certain basic properties of (#,(B), 7,,) and exhibiting a generating family
of gseminorms for the topology 7,,, as well as golving differential and
convolution equations in the space 5,(E), Dineen in [3] and Nachbin
and Gupta in [7] were led to consider new definitions of entire functions
of f-type and the corresponding locally convex topology. We extend
these definitions here to holomorphic functions of 0-type on arbitrary
open sets.

Let U be an open subset of B, and let § be an a-holomorphy type. ’

For a point £ U, let 2°(£, U) denote the family of all compact, convex,
&-equilibrated subsets of U.

DrprverioN 3.1 (2). The space Hy(U) of complex-valued holomorphic

functions of a-holomorphy type 6 in U is the set of functions f mapping U

into € which satisfy the following conditions:
i) fea(T).
ii) For all &e U, and for all ne N, d"f(£)c 2,("H).
iif) For all £« U and for all Ke # (&, U), thereis an &> 0 such that

o0

2

n=0

dnf(g)
n!

0, K—¢4-¢B;
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(b) The topology =, on H,(U) is the locally convex topology generated
by all seminorms p on H,(U) which satisty the following condition for
some e U and Ke A (& U):

For all ¢> 0, there is ¢(¢) > 0 such that

|
<o )| SE
froar * (e E—ttem

for all fe H,(U).
We shall sometimes say that p is 6 —£— K ported if p depends on &
and K in the above sense.

"We remark that when ¢ is the current holomorphy type, Hy(U)
= o (U). Indeed, it is clear from Definition 3.1 that H,(U) < #(U).
To show the converse inclusion, we let fe #(U) be arbitrary, and let £ U
and Ke 2§, U). Let 7 > 1 be any number such that for all Ae C, 1] < 7y
E+ME—§) s U. Since &+7(K—¢) is compact, there is some &> 0
such that f is bounded on &7 (K —¢&)+¢B,, say by M > 0. By Propo-
sition 2, Section 6 of [5], for all ne N,

drf(& 1 !
i(l L Kt LBy Sup ot j—@%li)dl’
' r weK—bg: By A=
1 1
<.__

s, HON <
Applying Definition 3.1, we see that Hy(U) = X (U).

The following proposition shows that, in fact, Definition 3.1 yields
exactly the same space as in [3] when U = ¥ and 6 is an arbitrary a-holo-
morphy type.

ProposiTIioN 8.2 a) A function fe Ho(E) if and only if for all ne N,
;i”f(O)e.%(”E), and for all Keo (0, H), there is a number e > 0 such that

w s
o d?’l. 0
21 ————fs ) < 00
Fyor S AR | LY S

b) The topology ©, on Hy(H) is generaied by all seminorms p on H,(H)
which are 0 —~0—K ported, for some K et (0, H).

Proof. The conditions in a) and b) are clearly necessary. Conversely,
let £ patisfy the condition given in a). Then by Lemma 6 of [3], fe o ().
Let &< B be arbitrary, and let K be any set in o (£, B). By Proposition 12

- of [3], &"f(f)e%(“l«?) for each ne N. Let L be any set in £ (0, H) such

that £eL and K — &< L. By hypothesis, there is some number &> 0
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guch that
® Am
Z avf(o) < oo.
=0 m! 0,20L+20 ey
By Corollary 2, Section 10, of [5],
* 5 y dm
D e S e
= gl 0,K~4+eBy  go=y m! OzaL 42068,

since [€ll40m, < 1. This proves that fe H,(H), completing the proof of a).
Now, let p be any 7,-continuous seminorm on H,(H). Suppose that p
is §— £ — K ported. Let I be chosen ag above and let & > 0 be arbitrary.

Fhen, ag above, there i§ a numbera(f;)} 0 such that for all fe H,(H),

ARSI EAG
p(f)go(?lo')jzo’ gt |eE-t+ 5y
<a( ) P Rl q
2¢ ﬁ m! 0,20 L88

Hence, every 7,—seminorm p on H,(H) is 6—0—2aL ported, for some
compact, convex, equilibrated set I, proving b).

The following Theorem motivates our characterization of the topol-
ogy .

TEBOREM 3.3. Let fe o (U) and suppose that for all &< U and for all
ne N, d*f(£)e 2y("B). Then, the following conditions are equivalemt:

i) fe Hy(U).

it) For all &< U, for all Ke A (&, U), and for all {ay)}pene 67,
#IG)

n!

e 0, R §-+a,By

iii) For all €< U, for all K<t (£,
‘ df(€)

U), and for all {a,}now €07,

1/n
limsu
7 P n!

0, K—§+a,By

' . Proof. The proof of i) —ii) is immediate.
Agsume that ii) is true, and let £ K, and {a,} be ag in iii). There is
a number 7>1 such that »(E—§) < U & Let L =¢(K—§)-¢&
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Le ' (&, U). By ii),
o A
Z a"f(é)
—— 0.
Py Wi |, Lmgtra, By
Therefore
F 1n
lim sup f('g) <lir<1.
n % 0, K—&+a, By

Hence, iii) holds.
Finally, if i) is false, then there is a £¢ U and a set Ke o (&, U) such
that for all » =1, 2, ...,

|| dnFe) || _
2 m )0,K~E+~1-Bl = e
me=0 "

Hence we can choose an increasing sequence of integers {m,} such that
for each ke N,

arf(g) [P
Myl |[pE-et 5B T =5
Letting {a,}eof be defined by
1 if m<my,
O =1 1. .
T if my_, < m << my,
we get
"Z\m P 1/m
limsup ‘_i(fl =1,
m m! 0, K—&+4-a,y By

contradicting iii). Hence, the theorem is proved.

The following two lemmas will be used to produce the promised
characterization of the topology =, on H,(U). The proofs for both are
straightforward and are omitited.

Lmmma 3.4. Let fe Hy(U), where 0¢ U. Lot Ke A (0, U). Let g be any
o —oontinuous seminorm on H,y(U) which is 6 —0—K ported. Then the

m
Taylor series of f at 0 comwerges to f with respect to q; thai is, q( f ——72;%—0—))
—0as m -» oo.

Limvma 8.5, Let £e U. Let V = U—§&. Then the mappilng T_gt
Hy(U) - Hy(V) defined by v_, f(2) = f(w+ &), for fe Hy(U) and z¢V,
is a topological isomorphism of (Hy(U), 7o) onto (Hg(V), 7). :
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THEOREM 3.6. The topology v, on H(U) is generated by all seminorms p
on Hy(U), of the form

2(f) =§:

m=0
where te U, Ke ' (& U), and {a,}pen € ¢q -

Proof. By Theorem 3.3, p is a seminorm on H,(U). The fact that
every such seminorm p is 7,-continuous follows from the definition of
a-holomorphy type.

Conversely, let p;, be a 7,-continuous seminorm on H,(U), which ig
6 —¢—K ported. Set V = U—&, Define the seminorm ¢ on Hy(V) by
q(9) = p.(f), for all ge Hy(V), where fe H,(U) is the unique function
such that ©_¢f =g, by Lemma 3.5. Further, Lemma 3.5 implies that ¢
is 7,-continuous on H,(V), since it iy 6— 0—(E— £) ported.

It follows that for each ¢ > 0, there is ¢(¢) > 0 such that for all ne N
and P, e 2y ("B), q(Py) < ¢(&) [Pylls, g—s+5,- As in [3], for each n = 0,1, ...,
and &> 0, define K,(e) to be the smallest number such that

4(Pr) < Ep (&) 1 Pplly, 0,
Let now r> 1 be such that »(K—¢) = V. Since lim BllpK (&)™ < 1 for

anf(g)

m!

?
0, K& ay, By

each s> 0, we can choose an increasing sequence of 1ntegers {m;} such
that K,L(; " <7, if B> n, for each ke N.
Define {a,}<cf by ‘

1 if n< oy,

a, =

1 .
- Hwm<n<n,, forkz=l.

k
Therefore for some € =0, K,(a,) <
for all fe Hy(U), .

) = q(g><j‘q(ﬁ”i”_.<_"_>.) |

n!
Ne=l

<OZM‘7'"

PO

-0

()

Or", for all ne N. By Lemma 3.4

0, K~ 0y B3y

d"f (E

b
0, L—~§-+roy, By

where I = 7(K -~ £)-+Eeot (£, U). This completes the proof of the Theorem.
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We consider now the relationship between the space (#,(T), Tug)
defined in Section 2 and (H,(U), 7).

ProrosirioN 3.7. Let U < F be open. Then Hy(U) « #,(U).

Proof. Let fe H,(U) 'md let £ U. Let K = {£}e " (£, U). Then for
gome number &> 0,
-3
0,813

Z N0

Tos )

d"f () d“f (E

6,8

from which the result follows.

In fact, there is no known example of an a-holomorphy type 6 and
an open set U for which the inclusion in Proposition 3.7 is strict. The
question of whether the inclusion in this proposition is continuous is
discussed below. We first require the following technical lemma.

Lomua 3.8. Let Uc E be open, £e U, and Ke X' (& U) such that
20(K —§&) =« U—§&, where ¢ = oy as in Definition 2.1. Let p be a 7,4-contin-
uous seminorm on #o(U) which is K-ported. Them p is continuous for
(Ho (T, o). N

Proof. Our proof is snmlar to Proposition 12 of [3]. We ghall show
that p is 6 — & — L ported on Hy(U),  Where I = 20(K — &)+ £. Let fe Ho(U)
be arbitrary, and define g = v_, fe Hy(U—¢&), by Lemma 3.5. Choose
gy > 0 80 small that K —§&--5.B; = U—&and let ¢ > 0, ¢ < g, be arbitrary.
Set r = srwg.ps lello(z gy +20;- BY Corollary 1, Section 10 of [5], for all

Tel~

xe K —&,
“ d™ g (@)

—m| #"9(0)

<
n!

m! 0,2(8~§) 4208y

— 0,20(K~§) 42088

Therefore since p is K-ported, there is ¢(¢) > 0 such that for all fe Hy(U),

f (w)
IGES a(s)m;:e BTlP .
= drg (@)
0(8);?:;( ) mzc_ m! 0, 2(K~£)+20y
d*g(0)

Nl M) ! 0,20(K~£)-+20eB;
2 || dfe)
<o) D) | =5 :
1—27 = % 8, L—&-+208B)
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It follows that p is v,-continuous on H,(U), which completes the proof.
PROPOSITION 3.9. (Hy(U), %) — (4£4(U), o) 18 cOMBINUOUS.
Proof. Let p be a 7,-continuous seminorm on ##,(U); say
a"f(a)

m!

’
0, ap By

where {a,}eof and K < U is compact. By compactness of K, we got;

a finite cover {Bci(&): g = 1, ceey 70} of K such that 20 Y}ZE) — 5[) S:"__g__:,éj
for each 4. Let K; be the convex, &-equilibrated, compact hull of & N B, L ().
For each fe Hy(U), ,

o || ) ;
P(f)Q;g‘;::% R _— =g;.pi(f)ﬂ
where
had [ém z . .
?i(f)=23up‘—~lf——)~ , fordi=1,..,%.
=0 “Ki m: 0, ap By

By Lemma 3.8, each p; is 7,continunous on H,(U), which proves the
Proposition.

Proposition 3.9 can be improved for certain important a-holomorphy
types 6, provided restrictions are made on the open set U. Two such
extensions are described below.

ProrositroN 3.10. Let U be &-equilibrated for some £e B, and let 0
be the current holomorphy type. Then the injection (H(T), v) — (H(T), To)
8 continuous. :

The proof of Proposition 3.10 is similar to the proof of Theorem 3.6,
:and is omitted.

PropostTioN 3.11. Let U < F be open, conver, and &-equilibrated for
some Ee B. Let 0 = N be the nudlear holomorphy type. (see, for example, [6]).
Then the injection mapping (Hy(U), ) = (n(T), Tun) 48 continuous.

Proof. Without loss of generality, & == 0. Lot P be a 7,-continuous
seminorm on &y (U) which we may assume to be K-ported for some
Ke'(0, U). Let e> 0 be arbitrary. Thus, for each & > 0, there is a number
6,(8) > 0 such that for all fe s, (1),

bad a @
P <o) Y o sup | L0 |
n=0 zeK e |, K-a1y

(where we are letting K + sB, be the unit ball of an equivalent norm on %).
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1
For some 7> 1, rK < U. Let ¢ > 0 he arbitrary, such that t < 1 — >
Then, for each fe 3y (),

p(f) < 01(7"'5)2#" sup __c_l__%('l)_‘

vl

prry N,rE--rBy

»n!

oc
=< 0y(71) Z " sup
P

Am.
where P,, = —flw;n[-('g)»-, by Lemma 2, Section 11 of [5],

H
— N B By

<alrt) 20" 3 Sup () 1Pl iz i,

n=0  m=nlVe

by Lemma 7 of [4],

< 0(rt) 3 IPoally, vz imis, -
M= )

This proves the proposition.

The following result extends Proposition 13 of [3]. The proof is
similar to that given in [3] and is omitted.

PROPOSITION 3.12. Lot 0 be the current holomorphy type and let U be
am arbitrary open set in . Then the identity mapping (H(U), v,) — (H(T), 7))
8 CONLINUOUS.

COROLLARY 3.13. When 0 is the current holomorphy type and U is
&-equilibrated for some &e B, them 7, = 7,. In fact, a generating family of
seminorms for v, consists of the set

0

fe H(U) -.»,Z

Neal

arf(£) )

n!

’
Kby, By

where Ke (&, U) and {a,}ecq .

§ 4. Topological properties of (H,(U), v)-

Tumowny 4.1, (Hy(T), ro) is complete.

Proof. Let {filics be a Usuchy net in (H,(U), 7). Then, by Propo-
sition 8.9 above and Proposition 1, Section 9 of [56], {fi} is a Cauchy net
in (H(U), 7). By Proposition 2.4, f, - f in the space (H(T), r,,)“ for some
funetion fe I (U), Turther, for each ne N and é¢ U, the net {d“fl(.f).}a, 4
iy Cauchy in &,("H) and so it converges to an element P &% ("F). Since
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the inclusion mapping (Z,("H), [ ll) - (#("B), | 1) is continuous, it
follows that d"f(£) = PeZ,("E).

Now, let p be a 7,-continuous seminorm on H,(U); suppose that p
is of the form

o s
7| 4"g(&)

plg) = ( —_ )

w%f ! o, &gy B

where £e U, Ke (& U), and {a}neve 6f - Lot &> 0. For some Age 4,
we have that p(f;—f,) < e whenever 8, y > 4,. From this it follows that

* 2 (f—1) (&)

: <e it Az,
n!

—t 10, B b-ay By
and
o 1| A
arf(& a
(**) E -—f—(,—)— e+ § flo < oco.
roverd LARN T S X foyars 0, K—E-+ap, By

Using (**) and Theorem 3.3, it follows that fe H,(U). By (*), we
have that p(f—f;) < sif A2 4. Thus fi —->f1n (Hy(U), 75) and the theorem
is proved.

We now characterize the hounded subsets of (Hy (T ) 7o)y extending
Proposition 1, Section 12 of [5] when 6 is the current holomorphy type.

TemoREM 4.2. Let X be a subset of (Hy(U), v,). Then, the following
conditions are equivalent:

1) X is bounded in (H,y(U), v).

il) For each &< U, Ke (& U), and {a}pene 67, there are constanis
020,620, ¢c< 1, such that

df(s .
'Tz‘) <0,

8, K&y By

for all neN and all feX.
il) For each &e U, Ke A (£, U), there is a number t > 0, and constants

C=0,020, ¢c<1, such that

dr(e)

n!

< O¢",
0, K415,

for all neN and all feX.

-Proof. i) = ii). Let & K, and {a,} be chosen as in ii). For some r > 1,
r(K—§) c U—¢& By i), there is a number M < oo such that

d"f ( §)
wp S| L0

<M.
0, 1'(K—6)+ra"31
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Taking ¢ = M and ¢ = 1/r, ii) follows.
i) = iii). If iii) were not true, then for some & and K as in iii),

‘n
afé) }> 1,
0,K—~4+1Bj

Tl
for each ¢ > 0. It follows that for each % = 1,2, ..., there is an integer
Wy, > Mgy Such that

lim sup { sup
" TeX

1/ng 1

>1—=.
0B84 3BT %

dmf(&)

Ny !

JeX
Define {a,}nve 6 by
1 if 'n < g,
" '1'1/10 I oy <0< My
Then, ii) fails since

&nf(g) 1/n

}> 1.
! o, x-t40,B,
Hence, ii) implies iii).

iif) = i), Let p be a v-continuous seminorm on H,(U). Suppose that
p is 6—§&— K ported. By iii), there are numbers ¢ > ¢, 0 > 0, and ¢ > 0,
¢ <1, such that

lim.sup {sup
n 1eX

af(&)

i < Oo",

0, E—~E-+LB)

for all ne N and fe X. Alyo, there is a constant ¢(f) = 0 such that

o || dnf (&)
JOREPH e I
fryery '

for all fe Hy(U). Hence, for all feX,

c- 1
<olt) ) 06" = o) 05,

M)

which shows that i) is trme. This completes the proof of the theorenix.
Remark. When U = F, it ig easy to gee that the constant ¢ in ii)

and iii) of Theorem 4.2 can he made arbitrarily sx.nffmll. .
By Propositions 3.9 and 3.12, and by Proposition 1, Section 14 of

[6], the following is clear,
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CorOLLARY 4.3. Let O be the current holomorphy type. A subsol of
H(U) is v,-bounded if and only if one of the conditions im Theorem 4.9
holds. ‘

The following result is the analogue of Proposition 2, Section 12

. of [5]. We recall that the 7,,-topology on o#,(U) is the locally convex
topology generated by the family of seminorms {px,,.: K < U is compact
and me N}, where pg,,(f) = su;glld"”f(m)lla.-

el

COROLLARY 4.4. Let X be a bounded subset of (IIU(U), %), Then =,
and 7o induce the same uniform structure amd the same topology on %.

Proof. Without loss of generality, 0< X. By Proposition 3.9, 7 = 1yy.
Conversely. let p be a 7,-continuous seminorm on Hy(U); suppose that p
is 6—&— K ported. By iii) of Theorem 4.2, there is a number ¢ > 0, and
constants ¢ =0, ¢> 0, ¢ <1, such that

d*f(€)

3
o < O¢",

0, K~ 5418y

for all fe X. Since p is 6 —£—K ported, there is a constant d(¢) > 0 such
that v

ph<ap Y| THEL 0
o=y N , K—§++tB)

for all fe Hy (U). Choose fye N such that d(t)C S’ " <% and define

the seminorm ¢ on 4#,(0) by e
ny—1 At
dn

o) = aw Y || L0 .

= i lo, k-gim,

¢ is clearly 7_,-continuous. Further, if fe X and ¢(f) < %, then p(f) <1,
Wwhich proves the corollary.

In fact, Corollary 3.13 and the proof of Corollary 4.4 show that the
following is true. .

. COROLLARY 4.5. Let 0 be the ourrent holomorphy type and U a E-oqui-
librated open set for some Ee< . If X 48 o bounded subsel of (H (T, Tu)s
then the topology on % induced by ©, is metrizable.

From Corollary 4.4, one can also obtain a characterization of relatively
compact subsets of (H,(U), 7g), similar to that given in [5]. We recall
P'hat & subset X of H,(U) is said to be relatively compact at a point £¢ U
if for each me N, the set {d"f(£): fe X} is relatively compact in 2,(™H).

]?RQPOSITION 4.6. A set X 'in H,(U) 4s relatively compact for v, if and
only if X 43 vo-bounded and relatively compact at each point & U. If Uis

icm

©
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ponmected, X s relatively compact for vy if X is vo-bounded and relatively
compact at some point fe U.

The proof of Proposition 4.6 follows from Corollary 4.4 and Propo-
gitions 1 and 2, Section 13 of [5].

‘We consider now the question of the convergence of Taylor series
in {Hy(U), 7). We ghow below that for all a-holomorphy types 6 satis-
fying a very natural condition, the Taylor series at & of every function
fe Hy(U) converges to f in 7, where U is an open, convex, &-equilibrated
subset of B for some &< B, We let 7, ¢ Hy(U) be the kth partial sum

I e f°
of the Taylor series of f at &; that is, v y4(0) = 3 j—m%i (@ — ).
Me={) 4

The condition necessary for convergence is the following:

(*) For each fe H,(U), for any equivalent norm on B with unit ball 7,

o 1/n

n L1 :
A < d; then there are D > 0 and
T’ .

and for any &e U, if limsup '
00 Nl

o,
¢ > 0 such that
n
o) | pe
nl - o,w
In fact, Condition (%) rvequires little more than that for a given
fe Hy(U), the function assigning to each £¢ U the radius of normal con~
vergence of the Taylor series of f at £, relative to holomorphy type 6,
is upper-semicontinuous, Using Cauchy’s Inequality, it is not difficult
to show that the current and compact holomorphy types satisfy Condition
(*) (et [3]).
LmvmA 4.7. The nuclear holomorphy type saiisfies Condition (*).
Proof. Let fe Hy(U) and let V, & and d be as in Condition (*);

drf(g) [
Vd

for all we B,(&).

< e¢< d. It follows that for some

suppose that limsup

LFIG)

n!

L] N,V

< Od" for all ne N. Choose @ > 0 go small that B, (§)
AY

00,

e < ¢, By Lomma 7 and Proposition 6 of [4], we bave that

< U and. -
L=p0

(Tﬁwm) for all heN and we B, (&), proving the
1 go

ny  Lego

Proposumon 4.8, Lat U be an open, conven, &-equilibrated set, for some
Ec l. Lot 0 be an a-holomorphy type satisfying Condition (*). Then, for each
Je (1), the Taylor sories of f at & converges to f im the topology .

The proof of Proposition 4.8 follows from the next two lemmas.

TimwyA 4.9. Let U be an open, conves, &-equilibrated set. Let ne U and
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let Ke A (y, U). Let L be the compact, &-equilibrated set {w: & =ty -+ (L —1) £,
te C, [t| <1}. Then, for each vel, K—n+ac U.

LemwA 4.10. Let 6 be an a-holomorphy type satisfying Condition (x).
Let fe Hy(U) and let U, £, K, n, and L be as in Lemma 4.9. Then for some
e>0, >0, y<1, C=0, ¢=0, o<1, and some neighborhood V = U
of L we have

() (0)

sup i

zeV

for all m, keN. .

Proof. By Lemma 4.9, K — 7+« is a compact, convex, v-equilibrated
subset of U for each w e L. It follows from Definition 3.1 that for some
51"‘"
& >0, there are (., >0, ¢, >0, ¢, <1 such that ——# <
. Ve 0, K~y 8, B,
< Cpd7 for all meN. By Condition (*) and the compactness of L, Jlwe

get a finite open cover of L {U;:4 =1,...,n} and positive constants
{eri=1,..,m}, (Dizi =1,...,0}, and {ds:i =1, ..oy} with " each

0, K-8y

_ . d@"f(y) .

d; <1 such that if ye U;, then || —=== < D;d for each

., X m: 0, K -n-2;By

meN. Let ¢ = min ¢, D = max D;, and d = max d;, and let W be
I<ign 1<i<n l<ien

n
any open {-equilibrated subset of (J U, containing L. Then, for all yeW
el

< Dd™. Choose a number ¢ > 1, such thab

. m
and all meN, “w
. m! 6, K—n+eB)

i) od < 1.

ii) For some open subset V < W such that L < V, we have that if
te G, [l < g, and weV, then (1—1)&4tweW.
By Lemma 1, Section 6 of [5], we get

D(ed)"

1 .
— @™ (f = y,¢) (@) e
! A PSPy

m!

sup
eV

for all m, ke N. Setting ¢ =~£f,y =
9—.

1

—e—, and ¢ = od, the lemma, is proved.
Proof of Proposition 4.8, Let p be a 7,-continuous seminorm on

E,(U); suppose that p is 60—y — K ported. Thus, for each 6> 0, there

i8 ¢(d) > 0 such that

S| dm
2lo) < o(9) 3 L4 ,
— me o, g—ntem,

* ©

icm
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for all ge H,(U). Choose 6 =¢ ag in Lemma 4.10. Using Lemma 4.10,

1
wi an(f— Trs,e) (1)

P(f e < 0(e) 2

M=l

<% o(e) 2 Oo™y*,

o0Q
Since 0 < 1L, 0(6),,;}:;(. 0d™ << oo, and 80 P(f—1p,,) ~0 a8 k — oo, gince

y < L. This proves the proposition.

&, K ~n+eBy

i
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