

STUDIA MATHEMATICA, T. XLV. (1973)

Function algebras on the interval and circle

by

DAVID M. WELLS (Pittsburgh, Penn.)

Abstract. A function algebra whose maximal ideal space is the interval I is local. A function algebra whose maximal ideal space is the circle T is either local or antisymmetric. A strongly regular function algebra on T must be C(T).

Throughout this paper A will denote a function algebra on a compact Hausdorff space X, with maximal ideal space M_A and Shilov boundary S_A . If K is a closed subset of X, the algebra of restrictions to K of functions in A will be denoted by $A|_K$, and its uniform closure in C(K) will be denoted by A_K . The unit interval and unit circle will be denoted by I and I respectively. We will need the definitions listed below. For additional background, see [1] or [3].

Say that a function f in C(X) belongs locally to A if there are open sets U_1, \ldots, U_n covering X and functions g_1, \ldots, g_n in A such that the restriction of f to U_i agrees with g_i for each i. A is said to be a local algebra if it contains every function belonging locally to A. A is called approximately normal if for any two disjoint closed subsets K and L of X and any r > 0, there is a function h in A with |h| < r on K and |h-1| < r on L.

At present, there are no known examples of function algebras other than C(I) or C(T) with $M_A=I$ or T. In [4] it is shown that any such algebra must be approximately normal. Our main result concerns functions belonging locally to such algebras. We will make use of the following fact from [4]: if A is approximately normal on X, $f \in C(X)$ and there are open sets U_1 , U_2 covering X and functions g_1 , g_2 in A with $f|_{U_4}=g_4|_{U_4}$ then $f \in A$.

THEOREM. If A is a function algebra whose maximal ideal space is I, then A is a local algebra.

Let $g \in C(I)$ and suppose there is an open covering of I by sets U_1, \ldots, U_n , such that $g|_{U_i} = g_i|_{U_i}$ for some $g_i \in A$, $i = 1, \ldots, n$. We may assume each U_i is a subinterval of I, $U_i \cup U_{i+1} \neq \emptyset$ for $i = 1, \ldots, n-1$, and $\{U_1, \ldots, U_n\}$ has no proper subcover. Since A is approximately normal on I, we can find a function $f_1 \in A$ agreeing with g_1 on U_1 and

^{6 -} Studia Mathematica XLV.3

with g_2 on $U_2 \cup \ldots \cup U_n$. Then f_1 agrees with g on $U_1 \cup U_2$. Continuing inductively, we can find functions $f_i \in A$ agreeing with f_{i-1} on $U_1 \cup \ldots \cup U_i$, and with g_{i+1} on $U_{i+1} \cup \ldots \cup U_n$, for $i=2,\ldots,n-1$. Since f_i agrees with g on $U_1 \cup \ldots \cup U_{i+1}$, $f_{n-1}=g$.

COROLLARY. If A is a function algebra whose maximal ideal space is T, then A is either antisymmetric or local.

Suppose $g \in C(T)$ is locally in A. Let K be an arbitrary maximal set of antisymmetry for A. If K = T, then A is antisymmetric. Otherwise we need to show $g \in A$, and by a result in [2] it is enough to show $g|_K \in A_K$. Since $K \neq T$ we can find an arc J containing K. It is shown in [4] that J must be A-convex, so A_J is a function algebra whose maximal ideal space is the interval J. Now $g|_J$ is locally in A_J , and A_J is a local algebra. Hence $g|_J \in A_J$, and in particular, $g|_K \in A_K$.

A function algebra A on X is said to be analytic if any function in A vanishing on a non-empty open set in X must vanish identically on X. It is known that an analytic function algebra on X must be an integral domain, and that a function algebra on X which is an integral domain must be antisymmetric on X. It is easy to see that an analytic function algebra is local whenever X is connected. We will be able to show that if $M_A = T$, A is local as long as it is an integral domain.

LEMMA. Let A be approximately normal on X. Suppose A is an integral domain. If Z is the zero-set of any function $f \in A$, then $X - Z^0$ is connected.

If $X-Z^0$ is not connected, it is the union of two disjoint non-empty compact sets K and L. It is easy to show that K and L have non-empty interiors in X, so that $f|_K$ and $f|_L$ are not identically zero. Using approximate normality, we can obtain functions g and h in A such that $g|_{X-K} = 0 = h|_{X-L}$, g agrees with f on K and h agrees with f on L. But then gh = 0, a contradiction since A is an integral domain.

THEOREM. Let A be approximately normal on T. If A is an integral domain, then A is local.

Suppose $f \in C(T)$ is locally in A but not in A. Choose a cover $\mathscr U = \{U_1, \dots, U_n\}$ of T and functions $g_1, \dots, g_n \in A$ such that $f|_{U_i} = g_i$. Assume each U_i is an arc, U has no proper subcover and $f|_{U_i \cup U_j} \notin A|_{U_i \cup U_j}$ if $U_i \cap U_j \neq \emptyset$. Let $W_i = U_i$ together with the interiors of the zero-sets of $g_i - g_{i-1}$ and $g_i - g_{i+1}$, $i = 1, \dots, n$, where we understand n+1 = 1. By the above lemma, each W_i is an arc, so if $\mathscr V = \{V_1, \dots, V_m\}$ is a minimal subcover of $\{W_1, \dots, W_n\}$, then $\mathscr V$ has all the properties attributed above to $\mathscr U$. We may assume m = n and f agrees with g_i on V_i , so the interior of the zero-set of $g_i - g_{i+1}$ is exactly $V_i \cap V_{i+1}$. Let $f_i = (g_i - g_{i+1})(g_i - g_{i+1})$. If Z_i is the zero-set of f_i , then Z_i^0 contains $(V_i \cap V_{i-1}) \cup (V_i \cap V_{i+1})$ but $Z_i^0 \subseteq V_i$ by the construction of $\mathscr V$. Hence $Z_i^0 = V_i$, but then $f_1 f_2 \dots f_n = 0$, a contradiction.

A function algebra A on X is called *strongly regular* if any function in A vanishing at a point $x \in X$ can be uniformly approximated in A by functions vanishing in a neighborhood of x, the neighborhood depending on the function. In [5] it is shown that any strongly regular function algebra is normal, and that a strongly regular function algebra on I must be C(I). We can prove the corresponding result for T.

THEOREM. If A is a strongly regular function algebra on T, then A = C(T).

It is enough to show that for any r>0 and any two disjoint closed arcs K and L of T, there is a function $g \in A$ with |g| < r on K, |g-1| < r on L and ||g|| bounded by some constant independent of r. The Shilov boundary of A must be T, so we may assume the endpoints of K are peak points for A, say x and y. Choose a neighborhood U of $\{x,y\}$ with $\overline{U} \cap L = \emptyset$. We can find a function $f \in A$ such that ||f|| < 2, f(x) = f(y) = 0 and |f-1| < r outside U. Choose functions h, $k \in A$ such that ||h-f|| < r, ||k-f|| < r and h and k vanish in neighborhoods U and W of x and y respectively. Now hk vanishes on $V \cup W$, is close to 1 on L, and ||hk|| < 5 for sufficiently small values of r. Using normality, we can now obtain a function $g \in A$ vanishing on K and agreeing with hk on T-K.

References

- [1] A. Browder, Introduction of Function Algebras, 1969.
- [2] I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), pp. 414-435.
- [3] G. Leibowitz, Lectures on Complex Function Algebras, 1970.
- [4] D. Wilken, Approximate normality and function algebras on the interval and circle, pp. 98-111, Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965-1966.
- [5] A Note on Strongly Regular Function Algebras, Can. J. Math. 21 (1969).

UNIVERSITY OF PITTSBURGH

Received December 10, 1971

(451)