

STUDIA MATHEMATICA, T. XLV, (1973)

Nonsymmetric group algebras

ъ

J. W. JENKINS* (Albany, N.Y.)

Abstract. The principle result of this paper states that the \mathcal{L}^1 -algebra of a connected reductive Lie group with parabolic rank > 1 is not symmetric. Also, using a relationship that is derived for the transfinite diameter of the spectrum of any element in a Banach *-algebra, it is shown that the group algebra of $\operatorname{PGL}(2,Q_p)$ is not symmetric.

A complex Banach *-algebra $\mathscr U$ is said to be *symmetric* (or by some authors, *completely symmetric*) if xx^* is quasi-regular for each x in $\mathscr U$. The problem of determining which locally compact groups, G, have symmetric group algebras, $\mathscr L^1(G)$, has received the attention of several authors (cf. [1]-[4], [11]-[16]). The present work continues this investigation.

Section one is devoted to arbitrary Banach *-algebras and of particular importance is the relationship between the transfinite diameter of the spectrum of x and the norm of certain polynomials in x. In section two, this relationship is interpreted in the group algebra and applied for the group PGL $(2, Q_x)$.

The extent to which the occurrence of free nonabelian subsemigroups of G effect symmetry of $\mathcal{L}^1(G)$ is discussed in section three.

In section four it is shown that connected, noncompact semisimple Lie groups have nonsymmetric group algebras.

§1. Given a Banach *-algebra \mathscr{U} , \mathscr{U}_c will denote either \mathscr{U} , if \mathscr{U} has an identity, or the algebra obtained by adjoining an identity to \mathscr{U} . $P(\mathscr{U}_c)$ will denote the set of all linear functionals f defined on \mathscr{U}_c such that f(c) = 1 and $f(xx^*) \geq 0$ for each x in \mathscr{U}_c . For each x in \mathscr{U} , v(x) and $\sigma(x)$ equal, respectively, the spectral radius and the spectrum of x.

DEFINITION 1.1. Given a Banach *-algebra \mathcal{U} , $\mathcal{S}(\mathcal{U})$ is defined to be the set of all x in \mathcal{U} such that

$$\sigma(x) \subset \{f(x)|f \in P(\mathcal{U}_e)\}.$$

^{*} This research was partially financed by National Science Foundation grants GP-28925 and GP-7952X3.

Proposition 1.2. A Banach *-algebra $\mathscr U$ is symmetric if and only if $\mathscr S(\mathscr U)=\mathscr U.$

Proof. Assume that \mathscr{U} is symmetric. It is well known that is equivalent to assuming that \mathscr{U}_e is symmetric. We will show that under this assumption, $\sigma(x) \subset \{f(x) | f \in P(\mathscr{U}_e)\}$ for each x in \mathscr{U}_e .

Let x be in \mathscr{U}_e and let \mathscr{M} be a maximal commuting *-subalgebra of \mathscr{U}_e , containing xx^* . Since \mathscr{M} is a closed *-subalgebra of \mathscr{U}_e , \mathscr{M} is also symmetric. If xx^* is singular there is a nonzero, continuous, multiplicative, linear functional f_0 on \mathscr{M} such that $f_0(xx^*)=0$. Since \mathscr{M} is symmetric, $f_0(y^*)=\overline{f_0(y)}$ for each y in \mathscr{M} . Hence, since f_0 is multiplicative, $f_0(yy^*)\geqslant 0$ for each y in \mathscr{M} , and thus $f_0\in P(\mathscr{M})$. Because \mathscr{U}_e is symmetric, each f in $P(\mathscr{M})$ can be extended to an element \overline{f} of $P(\mathscr{U}_e)$ (cf. Naimark [18]). Therefore, if xx^* is singular, there is an $f(=\overline{f_0})$ in $P(\mathscr{U}_e)$ such that $f(xx^*)=0$. A similar statement holds if x^*x is singular.

Now, if $x \in \mathcal{U}_e$ and x has no right inverse, xx^* is singular; otherwise, if $(xx^*)y = e$, x^*y would be a right inverse for x. Hence, there is an f in $P(\mathcal{U}_e)$ such that $f(xx^*) = 0$. But then $|f(x)|^2 \leq f(xx^*) = 0$. Therefore, f(x) = 0.

A similar argument shows that if x has no left inverse, then for some f in $P(\mathcal{U}_e)$, f(x)=0. Therefore, if $\alpha \in \sigma(x)$, there is an element f of $P(\mathcal{U}_e)$ such that $f(x-\alpha e)=f(x)-\alpha=0$. Consequently, $\sigma(x)\subset\{f(x)|f\in P(\mathcal{U}_e)\}$ for each x in \mathcal{U}_e .

The converse is immediate from the definition of symmetry.

For each compact subset \mathcal{A} of the complex plane, and for each continuous complex valued function f defined on \mathcal{A} , we set

$$||f||_{\mathcal{A}} = \sup\{|f(t)|| \ t \in A\}.$$

For each positive integer n, there exist a unique monic polynomial of degree n, denoted p_n , such that $\|p_n\|_{\mathcal{A}} \leqslant \|q_n\|_{\mathcal{A}}$ for each monic polynomial q_n of degree n. p_n is called the n-th Tchebycheff polynomial. A fundamental theorem for Tchebycheff polynomials states that

$$\lim_n \|p_n\|_A^{1/n}$$

exist. This limit, which we denote by $\tau(A)$, is called the *transfinite diameter* of A. We will use the fact that if A is the closed interval [s,t], then $\tau(A) = (t-s)/4$. (A discussion of Tchebycheff polynomials can be found in [5].)

Given a Banach algebra $\mathscr U$ and an x in $\mathscr U$, let C[x] be the algebra of polynomials in x (with identity), and let $C_n[x]$ denote the set of all such monic polynomials of degree n. We set

$$\tau_{x} = \liminf_{n} \left(\inf \left\{ \|p(x)\|^{1/n} |p(x)| \in C_{n}[x] \right\} \right).$$

PROPOSITION 1.3. (1) Let $\mathscr U$ be a Banach algebra. For each x in $\mathscr U$, $\tau_x = \tau(\sigma(x))$.

Proof. We first show that $\tau_x \leqslant \tau \sigma(x)$. Let p_n be the *n*th Tchebycheff polynomial for $\sigma(x)$. Then

$$\lim_{n} \|p_n\|_{\sigma(x)}^{1/n} = \tau(\sigma(x)).$$

We also have

$$||p_n||_{\sigma(x)} = \sup_{t \in \sigma(x)} |p_n(t)| = \nu (p_n(x)).$$

But

$$\nu(p_n(x)) = \lim_{m \to \infty} ||p_n(x)^m||^{1/m}.$$

Hence, for each fixed $n \ge 1$,

$$\lim_{m} \|p_n(x)^m\|^{1/nm} = \nu (p_n(x))^{1/n},$$

and so

$$\lim_{n \to \infty} \lim_{m} \|p_n(x)^m\|^{1/nm} = \tau(\sigma(x)).$$

Therefore, there is a sequence (n_k, m_k) of $Z \times Z$ such that

$$\lim_{k} \|p_{n_k}(x)^{m_k}\|^{1/n_k m_k} = \tau(\sigma(x)).$$

Since $p_{n_k}(t)^{m_k}$ is a monic polynomial of degree $n_k m_k$, $\tau_x \leq \tau\left(\sigma(x)\right)$. Suppose now that $q_{n_k}(x) \in C_{n_k}[x]$ for $k=1,2,\ldots$, and that

$$\tau_x = \lim_k \|q_{n_k}(x)\|^{1/n_k}.$$

Let $0 \neq \alpha \in \sigma(x)$. Then, since $\sigma_{C[x]}(x) \cup \{0\} \supset \sigma(x)$, there is a continuous homomorphism ξ_a defined on C[x] such that $\xi_a(x) = a$. Thus

$$|q_{n_k}(a)| = |\xi_a(q_{n_k}(x))| \le ||\xi_a|| \ ||q_{n_k}(x)||.$$

Hence, if we set $q'_{n_k+1}(t) = tq'_{n_k}(t)$, $||q'_{n_k+1}||_{\sigma(x)} \le ||\xi_a|| ||x|| ||q_{n_k}(x)||$.

Now, if p_n is the *n*th Tchebycheff polynomial for $\sigma(x)$,

$$||p_{n_k+1}||_{\sigma(x)} \leq ||q'_{n_k+1}||_{\sigma(x)}$$

for each k = 1, 2, ... Therefore

$$\tau \big(\sigma(x)\big) \, = \, \lim_n \|p_n\|_{\sigma(x)}^{1/n} \leqslant \lim_k \|q_{n_k+1}'\|_{\sigma(x)}^{1/n_k+1} \leqslant \lim_k (\|\xi_a\| \ \|q_{n_k}(x)\|)^{1/n_k+1} \, = \, \tau_x.$$

COROLLARY 1.4. Let $\mathscr U$ be a Banach *-algebra and let $x=x^*$ be in $\mathscr S(\mathscr U)$. There exist a sequence of monic polynomials q_n' of degree n such that

$$\liminf ||q'_n(x)||^{1/n} \leqslant \nu(x)/2$$
.

⁽¹⁾ It was recently learned that this proposition was also proved by P. Halmos, Capacity in Banach algebras, Indiana Math. J. 20 (1971), p. 855.

Proof. Since $x=x^*$, f(x) is real for each f in $P(\mathscr{U}_e)$. Hence, since $x \in \mathscr{S}(\mathscr{U})$, $\sigma(x) \subset [-\nu(x), \nu(x)]$, and thus, $\tau(\sigma(x)) \leqslant \nu(x)/2$. Since $\tau_x = \tau(\sigma(x))$ the desired sequence exist.

The following proposition has a proof very similar in spirit to that of Proposition 1.3.

PROPOSITION 1.5. Let $\mathscr U$ be a Banach *-algebra, $x=x^*$ be an element of $\mathscr U$, and C[x] be the ring of polynomials in x (with identity). If there is a $\delta > 0$ such that

$$\left\|\sum a_n x^n\right\| \geqslant \delta \sum |a_n|$$

for each $\sum a_n x^n$ in C[x], then $x \notin \mathcal{S}(\mathcal{U})$.

Proof. Suppose $x \in \mathcal{S}(\mathcal{U})$. Then $\sigma(x)$ is real and hence $\sigma_{\mathcal{U}_c}(x)$ is also real. It follows from the spectral permanence theorem (cf. e.g. [10]) that if \mathfrak{A} is the closure in \mathcal{U}_c of C[x], $\sigma_{\mathfrak{A}}(x)$ is real. We will show that under our assumptions on x, this is not the case.

For each γ in C with $|\gamma| \leq 1$ and each $y = \alpha e + \sum a_n x^n$ in C[x], define

$$\xi_{\gamma}(y) = a + \sum a_n \gamma^n$$

Clearly ξ_{r} is linear on C[x], and if $y = ae + \sum a_{n}x^{n}$ is in C[x],

$$|\xi_{\gamma}(y)| = \left|\alpha + \sum a_n \gamma^n\right| \leqslant |\alpha| + \sum |\alpha_n| \leqslant ||y||/\delta.$$

Therefore, ξ_{γ} is continuous on C[x]. We will show that it is also a homomorphism.

Let $\sum a_n x^n$ and $\sum \beta_m x^m$ be in C[x] and suppose

$$\sum \lambda_p x^p = \left(\sum a_n x^n\right) \left(\sum \beta_m x^m\right).$$

Then

$$\sum_{p} \left(\lambda_{p} - \sum_{n+m=p} \alpha_{n} \beta_{m} \right) w^{p} = 0.$$

Hence

$$0 = \left\| \sum_{n} \left(\lambda_{p} - \sum_{n \mid m = n} \alpha_{n} \beta_{m} \right) x^{p} \right\| \geqslant \delta \sum_{n} \left| \lambda_{p} - \sum_{n \mid m = n} \alpha_{n} \beta_{m} \right|.$$

Consequently,

$$\lambda_p = \sum_{n+m=n} \alpha_n \beta_m$$

for each p.

It now follows that

$$\begin{split} & \xi_{\gamma} \left[\left(\sum a_{n} x^{n} \right) \left(\sum \beta_{m} x^{m} \right) \right] = \left(\sum a_{n} \gamma^{n} \right) \left(\sum \beta_{n} \gamma^{m} \right) \\ & = \left[\xi_{\gamma} \left(\sum a_{n} x^{n} \right) \right] \left[\xi_{\gamma} \left(\sum \beta_{m} x^{m} \right) \right]. \end{split}$$

Therefore ξ_{γ} is a continuous homomorphism on C[x] for each $|\gamma| \leq 1$.

By continuously extending each ξ_{γ} to \mathfrak{A} , we can conclude that $\sigma_{\mathfrak{A}}(x) \supset \{\gamma \mid |\gamma| \leqslant 1\}$.

§2. Let G be a locally compact group with left Haar measure λ . (We will write dt for $d\lambda(t)$, etc.) $\mathcal{L}^1(G)$ (or $l^1(G)$ if G is discrete), the space of absolutely integrable complex valued functions on G, is a Banach *-algebra with multiplication and involution defined for λ — a.a. t in G by

$$x * y(t) = \int x(s)y(s^{-1}t)dt$$

and

$$x^*(t) = \overline{x(t^{-1})} \Delta(t^{-1})$$

for all x and y in $\mathcal{L}^1(G)$. ($\Delta(\cdot)$ denotes the modular function of G.) $\mathfrak{A}(G)$ will denote either $l^1(G)$ or the algebra obtained by adjoining an identity to $\mathcal{L}^1(G)$. We will apply the results of §1 to $\mathfrak{A}(G)$.

The following notation will be used: G denotes a locally compact group. For $A \subset G$, $A^{-1} = \{a^{-1} | a \in A\}$, ${}^{c}A = \{g \in G | g \notin A\}$, and if A is finite, |A| is the cardinality of A. For n a positive integer,

$$A^n = \{a_1 a_2 \dots a_n | a_i \in A, \ 1 \leqslant i \leqslant n\}$$

and for $n \ge 2$, ${}^{n}A = A^{n} \cap {}^{c} (\bigcup_{i=1}^{n-1} A^{i})$.

For x in $\mathscr{L}^1(G)$, $N(x) = \operatorname{ess\ supp}(x)$. We write $\mathscr{S}(G)$ for $\mathscr{S}(\mathscr{L}^1(G))$ and P(G) for $P(\mathfrak{A}(G))$.

One can easily verify

LEMMA 2.1. Let x and y be in $\mathcal{L}^1(G)$. Then

- (i) $N(x * y) \subset N(x) N(y)$,
- (ii) $N(x^*) = N(x)^{-1}$,
- (iii) if $N(x) \cup N(y) = \emptyset$, ||x+y|| = ||x|| + ||y||.

PROPOSITION 2.2. Let x be in $\mathscr{L}^1(G)$ and let $G_x(n) = {}^c (\bigcup_{i=1}^{n-1} N(x^i))$ for each $n \geq 2$. Then

(i)
$$\liminf_{n} \{ \int_{\mathcal{U}_x(n)} |x^n(t)| \, dt \}^{1/n} \leqslant \tau (\sigma(x)).$$

In particular, if $x = x^*$ and $x \in \mathcal{S}(G)$,

(ii)
$$\liminf_{t \in J_{x(n)}} |x^n(t)| dt$$
 $^{1/n} \leq \nu(x)/2$.

Proof. By Corollary 1.4 there exist a sequence of monic polynomials q_n of degree n such that $\liminf_n ||q_n(x)||^{1/n} \leq \tau(\sigma(x))$. Let $q_n(t) = t^n + tq'_n t + c_n$. Then the degree of $tq'_n(t)$ is n-1 and

$$N(xq'_n(x)) \subset \bigcup_{i=1}^{n-1} N(x)^i.$$

Hence

$$\begin{split} \|q_n(x)\| &= \|x^n + xq_n'(x)\| + |c_n| \geqslant \|x^n + xq_n'(x)\| \\ &= \int\limits_G |x^n(t) + xq_n'(x)(t)| \, dt \geqslant \int\limits_{G_x(n)} |x^n(t)| \, dt. \end{split}$$

This proves (i). The modification for (ii) merely takes into account the fact that if $x = x^* \in \mathcal{S}(G)$, then $\tau(\sigma(x)) \leq \tau(x)/2$.

In the following example we use Proposition 2.2 to obtain nonsymmetry of the group algebra of PGL $(2, Q_n)$.

Let Q_p be a p-adic completion of the rationals, $\mathscr O$ the valuation ring of Q_p , $\mathscr P$ the maximal (principle) ideal of $\mathscr O$ and τ a generator of $\mathscr P$ in $\mathscr O$. $\mathscr O$ is compact and open in Q_p and if q denotes the cardinality of $\mathscr O/\mathscr P$ then $1 < q < \infty$.

Let $\operatorname{GL}(2,Q_p)$ (resp. $\operatorname{GL}(2,\mathscr{O})$) denote the group of non-singular 2×2 matrices with coefficients in Q_p (resp. \mathscr{O}), let Z denote the center of $\operatorname{GL}(2,Q_p)$, and let G (= $\operatorname{PGL}(2,Q_p)$) = $\operatorname{GL}(2,Q_p)/Z$. $\operatorname{GL}(2,\mathscr{O})$ is a compact open subgroup of $\operatorname{GL}(2,Q_p)$, and hence, so also is its image K in G. Let g' be the matrix $\begin{pmatrix} \tau & 0 \\ 0 & 1 \end{pmatrix}$ in $\operatorname{GL}(2,Q_p)$ and g the image of g' in G. Normalize the Haar measure λ on G so that $\lambda(K)=1$. One has the following facts (cf. [17] or [19]):

(i)
$$G = \bigcup_{n=0}^{\infty} Kg^n K$$
,

(ii)
$$Kg^nK = Kg^mK$$
 if and only if $n = \pm m$,

(iii)
$$\lambda(Kg^nK) = q^{n-1}(q+1)$$
.

Let x_n denote the characteristic function of Kg^nK . If $x=\sum_{i=0}^n x(g^i)x_i$ and $y=\sum_{j=0}^m y(g^j)x_j$, one can show that $x*y=\sum_{i=0}^{n+m} x*y(g^i)x_i$. Furthermore if $x(g^n)=1=y(g^m)$, then

$$\begin{split} x * y (g^{n+m}) &= x_n * x_m (g^{n+m}) \\ &= \int x_n(t) x_m (t^{-1} g^{n+m}) dt \\ &= \lambda (K g^n K \cap g^{n+m} K g^m K) \\ &\geqslant \lambda (K) = 1. \end{split}$$

Thus, $(x_1)^n = x_n + \sum_{i=0}^{n-1} (x_1)^n (g^i) x_i$, and so $G_{x_1}(n) = N(x_1^n) \cap {}^c (\bigcup_{i=1}^{n-1} N(x_1^i)) \subset Kg^n K$. Therefore

$$\lim_n \Big\{ \int_{G_{x_1(n)}} |(x_1)^n(t)| \, dt \Big\}^{1/n} \geqslant \lim_n \Big\{ \int_{K
ho^n K} x_n(t) \, dt^{1/n} \\ = \lim_n \lambda (K g^n K)^{1/n} = q.$$

Now, since $(KgK)^{-1} = KgK$ and since G is unimodular, $x_1 = x_1^*$. Thus, if $x_1 \in \mathcal{S}(G)$, $\tau(\sigma(x_1)) \leq \tau(x_1)/2 = q + 1/2$. This contradiction of Proposition 2.2 shows that $x_1 \notin \mathcal{S}(G)$.

Recent results by Bruhat and Tits indicate that the method illustrated in this example can be successfully applied to a large class of reductive algebraic groups defined over a locally compact field with discrete valuation. The details, however, have not yet been worked out.

In [14], we proved that if each finite subset $e \in A = A^{-1}$ of G satisfies

$$\liminf_{n} |A^n \cap^c (A^{n-1})|^{1/n} \leqslant 1,$$

then $\mathscr{S}(G)$ $(=\mathscr{S}(l^1(G)))$ contains all x of $l^1(G)$ for which $|N(x)|<\infty$. The following corollary of Proposition 2.2 (ii) contains a partial converse to this theorem.

COROLLARY 2.3. For each finite subset A of G let w_A be the characteristic function of A. For each such A,

$$\tau(\sigma(x_A)) \geqslant \liminf |{}^n A|^{1/n}.$$

If $e \in A = A^{-1}$ and $x_A \in \mathcal{S}(G)$ then

$$\nu(x_A)/2 \geqslant \liminf_n |A^n \cap {}^c(A^{n-1})|^{1/n}.$$

Proof. First observe that for each t in A^n , $x_A^n(t) \ge 1$. We also have

$$N(w^n) \cap {}^{c} \left(\bigcup_{i=1}^{n-1} N(w^i) \right) = A^n \cap {}^{c} \left(\bigcup_{i=1}^{n-1} A^i \right) = {}^{n} A.$$

Applying Proposition 2.2 (i) we have

$$\begin{split} \tau \left(\sigma \left(x_{\mathcal{A}} \right) \right) & \geqslant \liminf_{n} \left[\int\limits_{\mathbf{i}} \int\limits_{G_{\mathcal{Z}}(n)} \left| x^{n}(t) \right| dt \right]^{1/n} \\ & = \liminf_{n} \left[\sum_{t \in N(x^{n}) \cap G_{\mathcal{Z}}(n)} \left| x^{n}(t) \right| \right]^{1/n} \\ & \geqslant \liminf_{n} \left[\sum_{t \in n_{\mathcal{A}}} 1 \right]^{1/n} \\ & = \liminf_{n} \left[n^{n} \mathcal{A} \right]^{1/n}. \end{split}$$

For the second statement, we note that since $e \in A = A^{-1}$, $A^n \supset A^{n-1}$ for $n \geq 2$. Hence ${}^nA = A^n \cap {}^o(A^{n-1})$. Also, since $A = A^{-1}$, $x_A = x_A^*$. Thus if $x_A \in \mathcal{S}(G)$, $\tau(\sigma(x_A)) \leq \tau(x_A)/2$.

§3. In this section we discuss the relationship between symmetry of $\mathfrak{A}(G)$ and the occurrence of free semigroups on two generators in G.

Let a and b be elements of G. We denote by [a, b] the subsemigroup of G generated by a and b, and we say [a, b] is free if $a[a, b] \cap b[a, b] = \emptyset$. In [15], we have shown that if G is discrete and contains a free semigroup

[a,b] then $\mathscr{S}(G)$ does not contain all elements of $l^1(G)$ which have finite support. In particular, $l^1(G)$ is not symmetric. In attempting to extend this result to nondiscrete groups, it is obvious that a topological requirement must be added for [a,b]. For example, $\mathrm{SO}(3)$ (= $\mathrm{SO}(3,R)$) contains a free nonabelian group but $\mathfrak{A}(\mathrm{SO}(3))$ is symmetric since $\mathrm{SO}(3)$ is compact (cf. van Dijk [3]). Here the free subgroup is not closed. If one requires that [a,b] be free and closed in G, this still is not sufficient to imply non-symmetry of $\mathfrak{A}(G)$. (In [16], we have shown that $\mathrm{SO}(3) \times Z$ contains such a subsemigroup and that $\mathfrak{A}(\mathrm{SO}(3) \times Z)$ is symmetric.)

A subsemigroup S of G is said to be uniformly discrete if G has a neighborhood of the identity, U, such that $sU \cap tU = \emptyset$ for s,t in $S,s \neq t$. (In general this is stronger than requiring that S be discrete in G.) In [16], we studied groups containing free, uniformly discrete semigroups on two generators, and conjectured that such groups have nonsymmetric group algebras. (Examples of these groups include certain solvable non-nilpotent groups such as the "ax + b" group and all almost connected nonamenable groups. This latter category includes all reductive algebraic groups with split rank $\geqslant 1$.) A proof of this conjecture has not been found. The weakest known condition on [a,b] that is sufficient to imply non-symmetry of $\mathfrak{A}(G)$ is given in

PROPOSITION 3.1. Let a and b be elements of G such that [a, b] is free. For s in [a, b] and $s = s_1 s_2 \dots s_n$, where $s_i \in \{a, b\}$ for $1 \le i \le n$, let $U^s = s_1 U s_2 U \dots s_n U$ for any $U \subset G$. If G contains a compact neighborhood of the identity, U, such that $U^s \cap U^t = \emptyset$ for s, t in [a, b], $s \ne t$ then there exist x in $\mathcal{L}^1(G)$ with N(x) compact such that $x \notin \mathcal{S}(G)$.

We begin by proving the following lemmas. For x in $\mathscr{L}^1(G)$, t in G, we denote by $_tx$ the element of $\mathscr{L}^1(G)$ defined by $_tx(s)=x(t^{-1}s)$ for λ — a.a. s in G.

LEMMA 3.2. Suppose x is a normal element of $\mathcal{L}^1(G)$ and that x, $_tx$ are in $\mathcal{L}(G)$. Then $_V(x) \leq _V(x)$.

Proof. First note that for any x in $\mathcal{L}^1(G)$ and t in G.

$$x^* * x(s) = \int x^*(r) x(r^{-1}s) dr
= \int \overline{x(r^{-1})} \, \Delta(r^{-1}) x(r^{-1}s) dr
= \int \overline{x(t^{-1}r)} x(t^{-1}rs) dr
= \int \overline{tx(r)_t} x(rs) dr
= \int \overline{tx(r^{-1})} \, \Delta(r^{-1})_t x(r^{-1}s) dr
= (_tx)^* * (_tx)(s).$$

Since $_{i}x \in \mathcal{S}(G)$, there is an f in P(G) such that $v(_{i}x) = |f(_{i}x)|$. But then

$$|f(tx)|^2 \le f((tx)^* * (tx)) = f(x^*x) \le \nu(x^*x).$$

Since a is normal,

$$\nu(x^*x) \leqslant \nu(x^*)\nu(x) = \nu(x)^2.$$

Thus,

$$\nu(tx) = |f(tx)| \leqslant \nu(x).$$

ILEMMA 3.3. Let a, b, and U be as in Proposition 3.1, and let s_1, s_2, \ldots, s_n be distinct elements of [a, b]. Suppose that for $1 \le i \le n$, $x_i \in \mathcal{L}^1(G)$ such that $x_i(t) \ge 0$ for $\lambda - a.a.$ t and that $N(x_i) \subset s_i U$. If $x = \sum_{i=1}^n a_i x_i$, $a_i \in C$, then

$$\nu(x) = ||x|| = \sum_{i=1}^{n} |\alpha_i| ||x_i||.$$

Proof. The second equality follows immediately from the fact that $s_i U \subset U^{s_i}$ and that $U^{s_i} \cap U^{s_j} = \emptyset$ for $i \neq j$.

For p a positive integer, let Ω_p be the set of all maps of $\{1, 2, \ldots, p\}$ into $\{1, 2, \ldots, n\}$. Then

$$x^p = \sum_{\omega \in \Omega_p} \alpha_{\omega(1)} \ldots \alpha_{\omega(p)} x_{\omega(1)} \ldots x_{\omega(p)}.$$

Since $x_i(t)\geqslant 0$, $\|x_{\omega(1)}\ldots x_{\omega(p)}\|=\|x_{\omega(1)}\|\ldots \|x_{\omega(p)}\|$ for each ω in Ω_p . Also, if $\omega\neq\omega'$,

$$s_{\omega(1)} U \ldots s_{\omega(p)} U \cap s_{\omega'(1)} U \ldots s_{\omega'(p)} U = \emptyset.$$

Hence

$$\|x^p\| = \sum_{\omega \in \Omega_n} \prod_{i=1}^p |\alpha_{\omega(i)}| \ \|x_{\omega(i)}\| = \Big[\sum_{i=1}^n |\alpha_i| \ \|x_i\|\Big]^p.$$

Therefore

$$\nu(x) = \lim_{p} ||x^p||^{1/p} = \sum_{i=1}^{n} |\alpha_i| ||x_i||.$$

Proof. (Proposition 3.1): Let $V=V^{-1}$ be a compact neighborhood of the identity sufficiently small so that

$$V \cup a V a^{-1} \cup a^2 V a^{-1} V a^{-1} \subset U.$$

Let w be the normalized characteristic function of aV and set $w_1 = {}_{ba^2}w$, $w_2 = {}_{ba^2}(w^*)$, $w_3 = {}_{ba^2}(w^2)$, $w_4 = {}_{ba^2}(w^*)^2$ and $w_5 = {}_{ba^2}(wx^* + x^*w)$. Finally, let $y = w_1 + w_2 + i(w_3 + w_4 + w_5)$.

Now, $N(x_i) \subset ba^{n_i}U$ for $1 \leqslant i \leqslant 5$ and $n_i \geqslant 0$. Also, $n_i \neq n_j$ if $i \neq j$. Therefore, by Lemma 3.3, $v(y) = ||y|| = \sum_{i=1}^{s} ||x_i|| = 6$.

Let $z=x+x^*+i(x+x^*)^2$. Then $y={}_{ba^2}z$. z is normal, and hence by Lemma 3.1, $v(y)\leqslant v(z)$ if $y,z\in \mathscr{S}(G)$. But if $z\in \mathscr{S}(G)$, v(z)=|f(z)| for some f in P(G). Since $x+x^*$ is hermitian, $f(x+x^*)$ and $f([x+x^*]^2)$ are real. Thus,

$$|f(z)| = |f(x+x^*) + if([x+x^*]^2)|$$

$$= [f(x+x^*)^2 + f([x+x^*]^2)^2]^{1/2}$$

$$\leq [\nu(x+x^*)^2 + \nu(x+x^*)^4]^{1/2}$$

$$= 2\sqrt{5}.$$

This contradiction shows that not both y and z are in $\mathscr{S}(G)$.

§4. We will show in this section that the algebra of spherical functions on a connected semisimple Lie group with finite center is not symmetric. From this it follows that the group algebra of a connected reductive Lie group with noncompact adjoint group is not symmetric. The proof, which parallels that originally given by Naimark [18] to show that the group algebra of $SL(2, \mathbb{C})$ is not symmetric, is basically a collection of recent results from representation theory.

Let G be a connected semisimple Lie group with finite center. G has a maximal compact subgroup K and if $\mathscr{L}^{d}(G)$ denotes the subspace of all functions in $L^{1}(G)$ which are invariant under both right and left translation by elements of K then $\mathscr{L}^{d}(G)$ is a commutative Banach *-algebra. Furthermore, the maximal ideal space of $\mathscr{L}^{d}(G)$ can be identified with the set of all bounded continuous functions \mathscr{U} defined as G such that

(4.1)
$$\int_{\mathcal{F}} \varphi(xky) \, dk = \varphi(x) \varphi(y)$$

for all x, y in G (dk denotes the normalized Haar measure on K.) (For these results see Helgason [8].)

Let $G={\rm KAN}$ be the Iwasawa decomposition of G. Let ${\mathfrak A}$ be the Lie algebra of A, ${\mathfrak A}^*$ the dual space of ${\mathfrak A}$ and ${\mathfrak A}^*_c$ the complexification of ${\mathfrak A}^*$. For a fixed Weyl chamber in ${\mathfrak A}$ let ${\Delta}_+$ denote the corresponding set of positive roots and let

$$\varrho = 1/2 \sum_{\alpha \in \Delta_+} m_\alpha \alpha$$

where m_a is the dimension of the root space of a. Define $H: G \to \mathfrak{A}$ by requiring that $x \in K \exp H(x) N$ for each x in G.

Harish-Chandra [7] has shown that if φ is continuous, $\varphi\not\equiv 0$, and if for all x,y in G.

$$\int\limits_{\mathcal{K}} \varphi(xky) \, dk = \varphi(x) \varphi(y),$$

then there is a λ in \mathfrak{A}^* such that

$$\varphi(x) = \varphi_{\lambda}(x) = \int\limits_{K} e^{(i\lambda - \varrho)H(xk)} dk$$

for all x in G.

Let $g \to Ad_G(\cdot)$ denote the adjoint representation of G and let W (the Weyl group) denote group of linear transformations in $Ad_G(K)$ that leave $\mathfrak A$ invariant. For each s in W, also denote by s the linear map of $\mathfrak A_c^*$ defined by $s\lambda(H) = \lambda(s^{-1}H)$ for each $\lambda \in \mathfrak A^*$, $H \in \mathfrak A$. Denote by C_q the convex hull of $\{sq \mid s \in W\}$. Helgason and Johnson [9] have shown that for $\lambda = \xi + i\eta$, ξ , $\eta \in \mathfrak A^*$, q_{λ} is bounded if and only if $\eta \in C_q$. Combining these results we have

LEMMA 4.2. The maximal ideal space of $\mathscr{L}^{4}(G)$ can be identified with $\{\varphi_{1} | \lambda \in \mathfrak{A} + iC_{0}\}.$

For each f in $\mathcal{L}^1(G)$ let

$$f_K(x) = \int\limits_K \int\limits_K f(k_1 x k_2) dk_1 dk_2.$$

Clearly $f_K \in \mathcal{L}^{\Delta}(G)$ for each f in $\mathcal{L}^1(G)$. If $\lambda \in \mathfrak{A} + iC_o$, $\varphi_{\lambda} \in \mathcal{L}^{\infty}(G)$ and

$$\begin{split} \langle \varphi_{\lambda}, f_{K} \rangle &= \int_{G} f_{K}(x) \varphi_{\lambda}(x) \, dx \\ &= \int_{G} \int_{K} \int_{K} f(k_{1}xk_{2}) \varphi_{\lambda}(x) \, dk_{1} \, dk_{2} \, dx \\ &= \int_{G} \int_{K} \int_{K} f(x) \varphi_{\lambda}(k_{1}^{-1}xk_{2}^{-1}) \, dk_{1} \, dk_{2} \, dx_{2} \\ &= \int_{G} f(x) \varphi_{\lambda}(x) \, dx \\ &= \langle \varphi_{\lambda}, f \rangle. \end{split}$$

(Here we have made use of the fact that G is unimodular, being that it is semisimple, and that φ_1 satisfies 4.1.)

Recall the Iwasawa decomposition G=KAN. Define $\mathfrak{k}\colon G\to K$ by requiring that $w\in\mathfrak{k}(x)AN$ for each x in G. It is known (cf. Harish-Chandra [6]) that for any continuous function φ defined on K, and any x in G

$$\int\limits_{K}\varphi\left(k\right)dk=\int\limits_{K}\varphi\left(\mathbf{f}\left(xk\right)\right)e^{-2p\left(H\left(xk\right)\right)}dk.$$

Using this, and the fact that $H(x^{-1}f(xk)) = -H(xk)$, we have

$$\begin{split} \varphi_{\lambda}(w^{-1}) &= \int\limits_K e^{(i\lambda - \varrho)H(w^{-1}k)} dk \\ &= \int\limits_K e^{(i\lambda - \varrho)H(w^{-1}\mathfrak{f}(xk))} e^{-2\varrho H(xk)} dk \end{split}$$

 $= \int\limits_{\mathbb{T}} e^{(-i\lambda - \varrho)H(xk)} \, dk$ $= \varphi_{-1}(x)$.

Also, if for $\lambda = \xi + i\eta$, ξ , $\eta \in \mathfrak{A}^*$ we write $\overline{\lambda} = \xi - i\eta$, we have

$$egin{aligned} \operatorname{conj}\left(arphi_{\lambda}(x)
ight) &= \int\limits_{K} \operatorname{conj}\left(e^{(i\lambda-arrho)H(xk)}
ight)dk \ &= \int\limits_{K} e^{(iar{\lambda}-arrho)H(xk)}dk \ &= arphi_{ar{\imath}}(x)\,. \end{aligned}$$

We can now write

$$\begin{aligned} \operatorname{conj}\langle \varphi_{\lambda}, f^{*} \rangle &= \operatorname{conj} \left(\int_{\widetilde{G}} \varphi_{\lambda}(x) \operatorname{conj} \left(f(x^{-1}) \right) dx \right) \\ &= \int_{\widetilde{G}} \operatorname{conj} \left(\varphi_{\lambda}(x^{-1}) \right) f(x) dx \\ &= \int_{\widetilde{G}} \varphi_{-\overline{\lambda}}(x) f(x) dx \\ &= \langle \varphi_{-\overline{\lambda}}, f \rangle. \end{aligned}$$

Observing that for all f in $\mathcal{L}^1(G)$.

$$\operatorname{conj}\langle \varphi_{\lambda}, (f^*)_{K} \rangle = \langle \varphi_{\lambda}, f_{K} \rangle$$

if and only if

$$\operatorname{conj}\langle\varphi_{\lambda},f^{*}\rangle=\langle\varphi_{\lambda},f\rangle$$

if and only if

$$\langle \varphi_{-\bar{\lambda}}, f \rangle = \langle \varphi_{\lambda}, f \rangle$$

we have

Lemma 4.3. φ_1 is hermitian if and only if $\varphi_1 = \varphi_2$.

In [7], it is shown that $\varphi_{\lambda} = \varphi_{\delta}$ if and only if $\delta \in \{s\lambda \mid s \in W\}$. Therefore, in particular, φ_{λ} is not hermitian if $\lambda = \eta + i\eta$ where $0 \neq \eta \in C_{\alpha}$. Hence we have proved

Proposition 4.4. If G is a connected, noncompact, semisimple Lie group with finite center then $\mathcal{L}^{4}(G)$ is not symmetric.

Proposition 4.5. If G is a connected reductive Lie group with noncompact semisimple component then $\mathfrak{A}(G)$ is not symmetric.

Proof. We first make the following observation: Let π be a continuous homomorphism of H_1 onto H_2 with kernel H_0 . Then $\mathcal{L}^1(H_2)$ can be identified with $\mathcal{L}^1(H_1/H_0)$. For proper choice of Haar measure we have that the mapping

$$f(x) \to \int_{H_0} f(xh_0) \, dh_0$$

is an isometric isomorphism of $\mathcal{L}^1(H_1)$ onto $\mathcal{L}^1(H_1/H_0)$. Therefore, $\mathcal{L}^1(H_1)$ is not symmetric if $\mathcal{L}^1(H_2)$ is not symmetric.

It only remains to observe that with our assumptions on G, $Ad_{\alpha}(G)$ is a connected, noncompact semisimple Lie group with trivial center. Hence, since $g \to Ad_{G}(g)$ is a homomorphism of G onto $Ad_{G}(G)$, we can conclude that $\mathcal{L}^1(G)$ is not symmetric.

References

- [1] D. W. Bailey, On symmetry in certain group algebra, Pacific J. Math. 24 (1968), pp. 413-419.
- R. A. Bonic, Symmetry in group algebras of discrete groups, Pacific J. Math. 11 (1961), pp. 73-94.
- [3] G. van Dijk, On symmetry of group algebras of motion groups, Math. Ann. 179 (1969), pp. 219-226.
- [4] I. M. Gelfand, u. M. A. Neumark, Unitäre Darstellungen der Klassischen Gruppen, Berlin, 1957.
- G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Math. Monographs, Amer. Math. Soc.
- [6] Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. Amer. Math. Soc. 75 (1953), pp. 185-243.
- Spherical functions on a semisimple Lie group I, II Amer. J. Math. 80 (1958), рр. 241-310.
- [8] S. Helgason, Differential Geometry and Symmetric Spaces, New York, 1962.
- [9] and K. Johnson, The bounded spherical functions on symmetric spaces, Adv. in Math. 3 (1969), pp. 586-593.
- [10] K. Hoffman, Fundamentals of Banach Algebras, Monografias Mathemáticas Da Universidade Do Paraná (1962).pp. 227-287.
- [11] A. Hulanicki, On the spectral radius of hermitian elements in group algebras, Pacific J. Math. 18 (1966), pp. 277-287.
- [12] On symmetry of group algebras of discrete nilpotent groups, Studia Math. 35 (1970), pp. 207-219.
- [13] On the spectral radius in group algebras, Studia Math. 34 (1970), pp. 209-214.
- [14] J. W. Jenkins, Symmetry and nonsymmetry in the group algebra of discrete groups, Pacific J. Math. 32 (1970), pp. 131-145.
- [15] On the spectral radius of elements in a group algebra, Ill. J. Math. 15(1971), pp. 551-554.
- [16] Free semigroups and unitary group representations, Studia Math., 43 (1972), pp. 27-39.
- [17] F. J. Mautner, Spherical functions over p-adic fields I. Amer. J. Math. 80 (1958), pp. 441-457.
- [18] M. A. Naimark, Normed Rings, Groningen 1960.
- [19] A. J. Silberger, PGL, over the p-adies, Lecture Notes in Math. (166), 1970.

STATE UNIVERSITY OF NEW YORK AT ALBANY ALBANY, N. Y.

INSTITUTE FOR ADVANCED STUDY PRINCETON, N. J.

> Received December 28, 1971 (455)