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Nonsymmetric group algebras

by
J. W. JENKINS* (Albany, N.Y.)

B

Abstract. The principle result of this paper states that the Z1.algebra of a con-
nected reductive Lie group with parabolic rank > 1 is not symmetric. Also, using
a relationship that is derived for the transfinite diameter of the spectrum of any
element in a Banach *-algebra, it is shown that the group algebra of PGL(2, Qp)
is not symmetrie.

A complex Banach *-algebra % is said to be symmetric (or by some
authors, completely symmetric) if wx* is quasi-regular for each z in #.
The problem of determining which locally compact groups, @, have sym-
metrie group algebras, #*(G), has received the attention of several authors
(ef. [1]-{4], [11]-[16]). The present work continues this investigation.

Section one is devoted to arbitrary Banach *-algebras and of partic-
ular importance is the relationship between the transfinite diameter of

the spectrum of # and the norm of certain polynomials in @. In section

two, this relationship i interpreted in the group algebra and applied for
the group PGL (2, Q,).
The extent to which the occurrence of free nonabelian subsemi-
groups of G effect symmetry of #*(@) is discussed in section three.
In section four it is shown that connected, noncompact semisimple
Lie groups have nonsymmetric group algebras. ' ‘

§1. Given a Banach *-algebra %, %, will denote either %, if % has
an identity, or the algebra obtained by adjoining an identity to #. P(%,)
will denote the set of all linear functionals f defined on %, such that
J(e) =1 and f(owx) = 0 for cach @ in %,. For each @ in %, »(2) and o(x)
equal, respectively, the spectral radius and the spectrum of .

DyviNrrron 1.1, Given a Banach *-algebra %, & (%) is defined to
be the set of all » in % such that

o(®) = {f(@)|fe P(%,)}
* This rescarch was partially financed by National Science Foundation grants
GP-28925 and GP-7952X3.
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ProPOSITION 1.2. A Banach *-algebra % is symmetric if and only if
(%) =

Proof. Assume that # is symmetric. It is well known that is equiv-
alent to assuming that %, is symmetric. We will show that under this
assumption, o(z) = {f(z)|fe P(%,)} for each z in %,.

Let  be in %, and let 4 be a maximal commuting *-subalgebra
of %, containing az*. Since 4 is a closed *-subalgebra of %,, 4 is also
symmetric. If ao* is singular there is a nonzero, continuous, multiplicative,
linear functional f, on 4 such that f,(@x*) = 0. Since 4 is symmetric,
foly*) = m for each y in . Hence, since f, is multiplieative, f,(yy*) = ¢
for each y in 4, and thus fye P(.#). Because %, is symmetric, each f in
P(4#) can be extended to an element f of P(%,) (cf. Naimark [187). There-
fore, if #o* is singular, there is an f(= f,) in P(%,) such that f(aw*) == 0,
A similar statement holds if x*#z is singular.

Now, if @e %, and ¢ has no right inverse, sa* is singular; otherwise,
if (42*)y = e, »*y would be a right inverse for 2. Hence, there is an f in

P(#%,) such that f(zs*) = 0. But then |f(z)®< f(s*) = 0. Therefore,
fle) =0.

A similm- argument shows that if # has no left inverse, then for some f
in P(%,), f(w) = 0. Therefore, if ae o(x), there is an element f of P(%,)
such. that f(@—ae) = f(#)—a = 0. Consequently, o(x) = {f(»)|feP(%,)}
for each @ in %,.

The converse is immediate from the definition of symmetry.

For each compact subset :A of the complex plane, and for each con-
tinuous complex valued function f defined on 4, we set

ifla = sup{|f(8)]| ted}.

For each positive integer m, there exist a unique monic polynomial of
degree n, denoted p,,, such that |p,|.; < llg,ll4 for each monic polynomial g,
of degree n. p, is called the n-th Tchebycheff polynomial. A fundamental
theorem for Tchebycheff polynomials states that

lim [p, "
n

exigt. This limit, which we denote by v(4), is called the transfinite diameter

of 4. We will use the fact that if A is the closed interval [s,¢], then

v(4) = (t—s)/4. (A discussion of Tchebychett polynomials can be found

in [5].)

) Given a Banach algebra % and an @ in %, let C[x] be the algebra
of polynomials in @ (with identity), and let C,[#] denote the set of all

such monic polynomials of degree n. We seb

%, = limint (inf {jp (@) " | (o) Cy [01)).

ocm

Nonsymmetric group algebras 297

PropogItIoN 1.3. (1) Let % be a Banach algebra. For each x in %, <,

= z(o(#)).

Proof. We first show that 7, < vo(
polynomial for (). Then

(#)). Let p, be the.nth Tehebychetf

‘ Hm p, ) = 7(o(2)).
We also have :
”ﬁnna(:ﬂ) = 8Up [Py (t)] = w(pn(m)).
leo(w)
But
'”(pn(m)) =
Ience, for each fixed = 3= 1,

llm ()™ ™ = »(py ()7,

Lim {ip,, (&)™,

and so
Bmlim p, (@)™ = (o (2)).
n m

Thercfore, there is a sequence (ny, m;) of Z X Z such that
Lina iy, (@)™ = (o ().
I ’

Since p.,,
Su’ppor,o now that g, (

()™ is a monic polynomial of degree n;my, rmgx(a(w)).
)e €y, [@] for k =1,2,..., and that

T, = 11m 1, (/7.

Let 0 # ae o(z). Then, sihce ogp(@) v {0} > o(), there is a continuous
homomorphism +£, defined on C[x] such that &,(x) = a. Thus

(g, ()] = 1£4 (@, (#))] < NEall 11y (2)1]-
I’I@IIOQ, if we set Q’:Lh—!d (i) = t{b‘%( )7 ”(Ink—H“a (@) ~= ”E ” ”m“ ||an(m)u
Now, if p, is the mth Tchebycheff polynomial for o (),

“pnk+l ”u(m) < ||Q1’lk»]~l”d(m)

for each % == 1, 2,... Therefore

7(o(®@)) = Tim Py < Mo [lgp, ol ™ < Lm (1] ol ga, (@) )5+ = 1,
[ o 13

COROLLARY 1.4. Let % be a Banach *-algebra and let @ = z* be in
(W), There ewist a sequence of monic polynomials g, of degree n such that

limint [jg, (#)[M" < » (@) /2.

(1) It was recontly loarned that this proposition was also proved by P. Halmos,
Oapacily in Banaok algebras, Indiana Math. J. 20 (1971), p. 856.
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Proof. Since » = *, f(») is real for each f in 1’(%.0). Hence, since
ze F(U),0(®) < [—r(z),v ( )], and thus, v(o(2)) < »(2) /2. Since 7, = v(c(z))

the desired sequence exist. o N
The following proposition has a proof very similar in spirit to that

of Proposition 1.3.
ProrosTIION 1.5, Let % be o Banmach *-algebra, x = x* be an element
of %, and C[x] be the ring of polynomials in & (with identity). If there is

a 0> 0 such that
| S>3

for each Yaya™ in Clx], then w¢ & (%).

Proof. Suppose e & (%). Then o(w) is real and hence oy, (w) is also
real. It follows from. the spectral permanence theorem (cf. e.g. [10]) that
if 9 is the closure in %, of C[x], oy(®) is real. We will show that under

our assumptions on z, this is not the case. ) ) .
For each y in C with |y| <1 and each y = ag+ 3 e,a" in C[w], define

&(y) = o Zan?’n-
Clearly &, is linear on C[z], and if ¥ = ae+Ra,2" is in Cla],
16, = |at > ay®| < lal+ ) lal < lyl/o.

Therefore, £, is continuous on C[x]. We Wﬂ‘1 show that it is also a homo-

morphism.
Let Ya,o" and Yf,«™ be in C[x] and suppose

2 Apa®? = (Z anw") (2 ﬂmm”‘) .

Then

Z(Xp— 2 anﬂm) 2? = 0.

» nf-m=p
Hence

0= HZ (2 - a"ﬂ”‘) mp“ 2 621’110'— 2 C‘nﬂm‘-

ntm=p S nfm=p

CUongequently,
Ay = B
NI =)

for each p.

It now follows that

l(Tes) (Do) = (S (Tor)
=[5 (S e (3 )

Therefore &, is a continuous homomorphism on C[z] for each [|y| <1
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]'Sy continuously extending each £, to A, we can conclude that
ox(®) 2 {»| ly| <1}.
§2. Let G be a locally compact group with left Flaar measure A.
(We will write dt for di(#), etc.) £(@) (or I(@) if & is discrete), the space
of absolutely integrable complex valued functions on @, is a Banach
#-algebra, with multiplication and involution defined for 1 — a.a. ¢ in @
by
wry(l) = [w(s)y(s)ds
and
o) = o) A0
for all @ and y in Z'(@). (4(-) denotes the modular function of G.) A(G)
will denote either I'(G) or the algebra obtained by adjoining an identity
to £*(G). We will apply the results of §1 to U(G).
The following motation will be used: ¢ denotes a locally compact
group. For A c@, A7 ={a7'acd}, ‘A ={geG|g¢A}, and if A is
finite, |4 |is the cardinality of 4. For % a positive integer,

A" = {aqa,... 0,064, 1<i<’n}

and for m 3> 2, "4 = A"n "(UA‘)

i net

For o in £ (G), N(x) = ess supp(x). We write (&) for &(21(@)
and P(G) for P(U(G)).

One can easily verify

LmmmaA 2.1. Let © and y be in £ Q). Then

(i) N(@*y) = N(2)N(y),

(i) N{a*) = N(w)™",

(iii) if N(@)VN(y) =@, lw-+yl = =]+ lyl. .

PrOPOSITION 2.2. Let & b in £*(G) and let Gy(n) = °(J N (%) for
each n 3z 2. Then =1

(i) lim M“’{(-;:,;(fm [ (8)| A} < v (o ().
In partiocular, if © = o* ond ve (G,
(if) lunmin{ f e (6) | @} < v () [2.
Proof. By (101 ollwrv 1.4 there exist a sequence of monie polynomlals gn
of degree n such that lnn m[ﬂq,,( D)< v(o(@). Let g,) = "+ ig0) +
-+ ¢, Then the degree of tqp( ) is n—1 and
71

U N

A

N (g, (@)) =
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Hence ‘
llga (@)1 = 18" + @ (@)l + log] > " +2, (2)]
= [l @) +agy@) @it > [ ")
G Gyl
Thig proves (i). The modification for (ii) merely takes into account the
fact that if @ = a*¢ S(G), then (o (®)) < »(x)/2.

In the following example we use Proposition 2.2 to obtain nonsym-
metry of the group algebra of PGL (2, @,).

Let @, be a p-adic completion of the rationals, ¢ the valuation
ring of §,, & the maximal (principle) ideal of ¢ and v a generator of
# in 0. 0 is compact and open in @, and if ¢ denotes the cardinality
of 0/# then 1 < q< oo.

Let GL(2,Q,) (resp. GL(2, 0)) denote the group of non-singular
2 X 2 matrices with coefficients in @, (resp. 0), let Z denote the center
of GL(2,Q,), and let G (= PGL(2,Q,)) = GL(2, Q,)/Z. GL(2, 0) is a
compact open subgroup of GL(2,@,), and hence, so also is its image K
in . Tet ¢’ be the matrix (; ‘1)) in GL(2, Q,) and ¢ the image of ¢’ in @.

. Normalize the Haar measure 1 on G so that A(K) = 1. One has the fol-
lowing facts (cf. [17] or [19]):
i ¢ = U KK,
(ii) Eg"K = K¢"K if and only if n = Lm,
(ili) A(Eg"K) = ¢"*(g+1). .
Let &, denote the characteristic function of Kg"K. If © = 3 o (g")w;

m n-Fm 1=l
and ¥ = Yy(g))z;, one can show that a*xy = 3 z*y(g")2; . Furthermore
i=0

if 2(g") =1 =y(¢g™), then -
n+m) = wn*wm(gn+m)

= [0, (8) @ (71 g™ ™) 8
= MKy K ng"" Ky K)
> AK) =1.

2y (g

n—1

. Ayl
Thus, (z,)* = ant (w)"(g") s, and so0 G (n) = N (af) ﬁ“(H N (o)
: 2 -
< K¢"K. Therefore
1im{ [ |(a;1)”(t)|dt}””>lim{ [ wuan

n Gy (n) " ER

= limA(Kg"K)'"™ = q.
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Now, since (KgK)™ = KgK and since & is unimodular, @, = .
Thus, if @3¢ P (@), 7(0(@)) < v(m,)/2 = q+1/2. This contradiction of
Proposition 2.2 ghows that ¢ (@) '

Recent results by Bruhat and Tits indicate that the method illus-
trated in this example can be successtully applied to a large class of
reductive algebraic groups defined over a locally compact field with
digerete valuation. The details, however, have not yet been worked out.

In [14], we proved. that if each finite subset ged = A4-* of @ satisfies

Hmind (4" Ao (4mHn < 1,
(13

then .9"(6‘)‘ (= .7‘(11(0))) contains all @ of (@) for which |N ()] < oo.
The following corollary of Proposition 2.2 (ii) containg a partial converse
to thiz theorem.

- CoROLLARY 2.3. For each finite subset A of @ let 4 be the characteristic
Sunction of A. For each such A,

(o (2,)) > limint "4 [V,
If ecd = A" and 2,¢ 2 (G) then "
| v(@,)2 > limlinf LA® A (APt Un,
Proof. First observe that fo; each ¢ in A" a%(t) > 1. We also have
N (@) | :gzv(wt)) e m”(;g AY) =nd.
Applying Proposition 2.2 (i) we have

7(0(@4)) > limint [ [ @) dt]"”

£ Ngm(n)

=lmint[ 3 " ()]
" TN (@) NGy ()

> liming[ > 1]
" tatd

= liminf "4 V",
n

1/n

For the second statement, we note that since eed = 4~ A" o 4™!
for mi= 2, Tence ™d = A" A°(A"™Y). Also, since 4 = A7 my = .
Thus if @ e & (6), v(0(0y) < v(wa)/2.

§3. In this section we discuss the relationship hetween symmetry
of W(G) and the occurrence of free gemigroups on two generators in G.
Let o and b be elements of G. We denote by [a, b] the subsemigroup
of @ generated by « and b, and wo say [a, b] is free if a[a, b] N b[a, b] = O.
In [15], we have shown that if ¢ is discrete and contains a free semigroup
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[a, b] then & (@) does not confiain all elements of (@) which have finite
support. In particular, (@) is not symmetric. In attempling to extend
this result to nondiscrete groups, it is obvious that a topological require-
ment must be added for [a, b]. For example, SO(3) (= S0(3, R)) confaing
a free nonabelian group but QI(SO(.S)) is symmetric since SO (3) is compact
(cf. van Dijk [3]). Here the free subgroup is not closed. If one requires
that [@, b] be free and closed in @, this still is not sufficient to imply non-
gsymmetry of A(F). (In [16], we have shown that SO(3)xZ containg
such a subsemigroup and that (SO (3) X Z) is symmetric.)

A subsemigroup 8 of @ is said to be uniformly discrete if ¢ has a
neighborhood of the identity, U, such that sUntU =@ for s,¢ in S,
s # 1. (In general this iy stronger than requiring that § be discrete in G.)
In [16], we studied groups containing free, uniformly diserete semigroups
on two generators, and conjectured that such groups have nonsymmetric
group algebras. (Examples of these groups include certain solvable non-
-pilpotent groups such as the “az-b” group and all almost connected
nonamenable groups. This latter category includes all reductive algebraic
groups with split rank > 1.) A proof of this conjecture has not been found.
The weakest known condition on [a, b] that is sufficient to imply non-
symmetry of (@) is given in

PROPOSITION 3.1. Let o and b be elements of G- such that [a, b] is free.
For s im [a, b] and § = 8,85 ... 8, where s;¢{a, b} for 1< i< m, lat U*
=8Us;U...8,U for any U c G. If G contains o compact neighborhood
of the identity, U, such that U NU' = @ for s,t in [a, b], s 5%t then there
ewist o in LM (@) with N(z) compact such that z¢ S ().

We begin by proving the following lemmas. For # in £* (@), ¢ in
@, we denote by ,u the element of #*(@) defined by w(s) = x(t~'s) for
A —aa. sin G

Levwma 8.2. Suppose % is o normal element of £ (&) and that o, @ are
in F(G). Then »(w) < »().

Proof. First note that for any » in #* (@) and ¢ in G.

o* % 2(s) = [o*(r)a(r~s)dr
= [a(™H 40 o s)dr
_fw(r
= f (@ (7),2(vs) dr

_ftm ‘1

= ()* * ()(s).

vy (t~ rs)dr

o (rts)dr
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Since e & (@), there iy an f in P(G

then
1 ()12 < f ()" * (s2))

Since @ is normal,

(@) such that »(@) = |f(x)|. But

= f(6*a) < »(a").

w(@" o) < v (@) v () = »(w)
Thus,
(@) = |f ()] < »(s).
LmvmA 3.3, Let a, b, and U be as in Proposition 8.1, and let 3,, s,,
ooy 8y Do distinol eloments of [a, b]. Suppose that for 1< i< n, e 3’1(6)
suoh that wy(t) =0 for A ~— a.a. t and that N(w) < 8, U. If o = 2 a;%;,
a;e C, then ‘ =1

o) = fol = >'lal lagll.

(25}
Proof. The second equality follows immediately from the fact that
8 U c U% and that U%nU% =@ for 4 5.
For p a positive integer, let £, be the set of all maps of {1, 2, ..., p}
into {1, 2, ..., n}. Then

P = Z Op(ay »»

ma.ﬁ:ﬂ

* Co(p) a1+« » Do(p) -

Since w;(1) = 0,
Algo, if w 5 o,

“"I"w(].) “e m(]l)“ = ”mw(l)” ser ”mm(p)“ for’ each o in ‘Qp'

8oy U o 80y U N8y U vv 80y U = O
Hence
p % b
7 = 7 [ ] 10uie] lzagolt = [ 3 el lel] -
@€y, el i=1
Therefore

k3
y(@) = lim, [o? 7 = 3]l il
feal
Proof. (Proposition 3.1): Let V = V' be a compact neighborhood
of the identity sufficiently small so that
VuaVatua* Ve Vet = U.
Lot @ be the normalized characteristic function of oV and set 2, = .27,
Wy = I)n”(m*)’ Wy = I)M('I) Yy == tm”("‘v;k)2 and #; = baz(WW*"["w*m)' Tinally,
let y = @, 4wy - i (w0q -+ w4 - 25).

Now, N(x;) = ba™ U for 1<i<B zmd ng 2= 0. Also, ny 5=y if ¢ 52 4.

ZH%H=6

Therefore, by Lemma 3.3, »(y) = [yl =
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Let 2 = o+ a*+i(@+a*)?% Then y = ,z22. ¢ iy normal, and hence
by Lemma 3.1, »(y) < #(2) if ¥, 2e (G). But if 2e F (@), »(2) = |f(2)| for
some f in P(@). Since z-+o* is hermitian, f(z+2*) and f([@--2*]?) are
real. Thus,

If ()] = If{@+a*)+if ([o+ 27
= [flo+o P +f ([0 +a P 7]
< (@4 0% v (@ + @*) ]
=2V5.
This contradiction shows that not both y and 2 are in &(G).

§4. We will show in this section that the algebra of spherical functions
-on a connected semisimple Lie group with finite center is not symmetric.
From thig it follows that the group algebra of a connected reductive
Lie group with noncompact adjoint group is not symmetric. The proof,
which parallels that originally given by Naimark [18] to show that the
group algebra of SL(2, C) is not symmetric, is basically a collection of
recent results from representation theory.

Let & be a connected semisimple Lie group with finite center. @ has
a maximal compact subgroup K and if #“(¢) denotes the subgpace of
all functions in L'(@) which are invariant under both right and left trang-
lation by elements of K then %*(@) is a commutative Banach *-algebra,
Furthermore, the maximal ideal space of #4(@) can be identified with
the set of all bounded continuous functions % defined as @ such that

(41) [ o(hy)dk = ¢(2)p(y)
X

for all ,y in @ (dk denotes the normalized Haar measure on K.) (For
these results see Helgason [8].)

Let G = KAN be the Iwasawa decomposition of @. Let 2 be the
Lie algebra of 4, %* the dual space of 9 and U’ the complexification
of A*. For a fixed Weyl chamber in % let 4, denote the corresponding
set of positive roots and let

o =1/2 Zm,,a

aul.},
where m, is the dimension of the root space of a. Define H: & — N by
requiring that #e K expH (x)N for each « in G.

Harish-Chandra [7] has shown that if ¢ is continuous, ¢ 52 0, and
if for all z,4 in @G.

Kf plaky)dk = ¢ ()p(y),
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then there is a A in 2 such that

#(@) = pala) = [ -0 g
K

for all @ in @. )

Let g — Ady(-) denote the adjoint representation of @ and let W
(the Weyl group) denote group of linear transformations in A4dgy(K)
that leavo U invariant. For each s in W, also denote by & the linear map
of ; defined by si(I) = A(s~*IH) for cach Ae A*, He . Denote by ¢,
the convex hull of {sg|se W}. Helgason and Johnson [9] have shown
that for = &+ir, & neU*, ¢ is bounded if and only if 7e 0,. Combining
these regulis we have

Tmvwa 4.2. The mawimal ideal space of L4(G) cam be identified with
{palAe W40, }

For each fin .2*(@) let

Tre@) = [ [#(kyoky)ak,dk,.
K K
Clearly fize.2(G) for each f in £(@). If AeA+i0,, pre £°(G) and
o> = [fu(@)pr(0)do
G

= [ [ [§(esale0)ps () by @by o
@ KK

= [ [ [f@) (b aks?) @k, dk, do,
& K K

= [f(2)ps(0) da
G

= (g1, f>.

(Tlere we have made use of the fact that @ is unimodular, being that it
is semisimple, and that ¢, satisties 4.1.)

Rocall the Iwasawa decomposition G = KAN. Define f: ¢ — K by
requiring that we ¥() AN for each o in &. It is known (cf. Harish-Chandra,
[6]) that for any continuous function ¢ defined on K, and any @ in @

f(p(k)dk = f(]?(f(mk)) g R g,
K b3

Using this, and the fact that H(s'i(#k)) = — H(wk), we have

galel) = [ot-omen gy,
K

— éf a(m—a)ﬂ(m—lf(mk)) g~ 20E(2h) g7,
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— f 6(—il—a)ri(wlo) ak
K

p_i(®).

l

Algo, if for 1 = &+, & 7eA* we write 1= & —in, we have

conj (¢, (@) = f conj (6(*-OHER) g7
&
- fg(ii—g)mx/c) ik
&

= g3(®).
We can now write

conj (pa, f*> = conj ( [ ¢s(«) conj (f(a™")) da)
[e3
= [ conj(ps(@™) f(0)do
[

= [o_3(@)f(w)do
@

= o1, >
Observing that for all f in £*(@),

conj{ps, (Fxy = <o fu>
conj (g, * = <par >
oz D = Lpar D

if and only if
if and only if

we have

Timuma 4.3. @, is hermitian if and only if ¢ = p_3.

In [7], it is shown that ¢, = ¢, if and only if de {s1|s<W}. There-
fore, in particular, g, is not hermitian if 1 = y+4n where 0 % ye0,.
Hence we have proved

ProrosirioN 4.4. If G 43 a conmedted, moncompact, semisimple ILie
group with findte center then %4 (@) is not symmetric.

ProrosrrIioN 4.5. If & 4s a cownecled reductive Lie group with non-
compact semisimple components then W(Q) is not symmetric.

Proof. We first make the following observation: Let » be a contin-
uous homomorphism of H, onto H, with kernel H,. Then L (H,) can
be identified with %' (H,/H,). For proper choice of Faar measure we have
that the mapping

Fla)~ ff(”ho)dh{o
. Hy .
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is an-isometrie isomorphism of %' (H,) onto £ (H 1/H,). Therefore, &' (H,)
is not symumetric if Z*(I,) is not symmetric.

It only remains to observe that with our assumptions on @G, Ady(@)
is a connected, noncompact semisimple Lie group with trivial center.
Hence, since g -» Adg(g) i8 a homomorphism of @ onto Adg(G), we can
conclude that £ () is not symmetric.
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