

STUDIA MATHEMATICA, T. XLV. (1973)

On power series in the differentiation operator

THOMAS K. BOEHME (Santa Barbara, Calif.)

Abstract. Let s be the differentiation operator in the Mikusiński operational calculus and let $(a_n|a=0,1,2,...)$ be a sequence of complex numbers an infinite number of which are non-zero. It is shown that the infinite series $S = \sum_{n=1}^{\infty} a_n s^n$ is convergent in the field of operators if and only if the Denjoy-Carleman class $C_I\{1/|a_n|\}$ is not quasi-analytic. In particular if M_0 , = 1, $M_n > 0$, and M_n is a log convex sequence $(M_n^2 < M_{n-1} \ M_{n+1} \ \text{for each } n=1,2,3,\ldots), \text{ then } S = \sum\limits_{n=0}^{\infty} \frac{s^n}{M_n} \text{ is convergent in the field of operators if and only if } \sum\limits_{n=0}^{\infty} M_n/M_{n+1} < \infty.$ Using a reasonable notion of support it is shown that if $S = \sum\limits_{n=0}^{\infty} a_n s^n$ is con-

vergent in the field of operators then S has support equal to $\{0\}$.

1. Introduction. We shall give necessary and sufficient conditions for convergence in the field of Mikusiński operators of power series in the differentiation operator s,

$$S = \sum_{n=0}^{\infty} a_n s^n$$
 a_n is a complex number for $n = 0, 1, 2, ...$

Our terminology and notation for Mikusiński operators shall be as in Mikusiński's book [4].

In §2 the classes $C_I\{M_n\}$ of Carleman and Mandelbrojt are discussed. We state the important theorems (Theorems 2.4 and 2.6) of Carleman [2] and Mandelbroit [3] who characterized in different manners the quasi--analytic classes $C_1\{M_n\}$ in terms of the sequences (M_n) . We show some of the properties of these classes in § 2. A rather special property is proved in Corollary 2.8 which is needed in the proof of the important Corollary 3.6.

In §3 it is shown (our principal theorem) that S is convergent in the field of operators if and only if the class $C_r\{1/|\alpha_n|\}$ is not quasi-analytic. Application of the theorems of Carleman and Mandelbrojt then yield criteria in terms of the coefficients a_n which are necessary and sufficient for S to be convergent (Corollaries 3.3, 3.4). It is shown that if S is a convergent series then (using the terminology of [1]) the support of S is the single point zero.

§ 4 proves a uniqueness theorem. Namely, if $S = \sum_{n\geqslant 0}^{\infty} a_n s^n$ is convergent in the field of operators then S = 0 implies $a_n = 0$ for every n.

2. Quasi-analytic classes. Let $(M_n|n=0,1,2,\ldots)$ be a sequence of positive real numbers. By $C_I\{M_n\}$ we mean the class of all infinitely differentiable functions φ such that there are constants $\beta_{\varphi}>0$ and B_{φ} depending on φ and

(1)
$$\max_{x \in I} |\varphi^{(n)}(x)| \leqslant \beta_{\varphi} B_{\varphi}^{n} M_{n} \quad \text{each } n = 0, 1, 2, \dots$$

We shall allow \mathcal{M}_n to be infinite so long as infinitely many \mathcal{M}_n are finite. We always suppose

(2)
$$M_0 = 1$$
, $0 < M_{n-1} \le \infty$ for each $n = 0, 1, 2, ..., M_n < \infty$ for infinitely many n .

DEFINITION 2.1. A sequence (M_n) is said to be logarithmically convex if

$$M_n^2 \leq M_{n-1} M_{n+1}$$
 for each $n = 0, 1, 2, ...$

LEMMA 2.2. $C_I\{M_n\}$ is a vector space under pointwise addition of functions. Let J be an interval, a and b real numbers, such that $x \in J$ implies $ax + b \in I$. Then for φ in $C_I\{M_n\}$ we have $\psi(x) = \varphi(ax + b) \in C_J\{M_n\}$. If (M_n) is a logarithmic convex sequence then $C_I\{M_n\}$ is an algebra under pointwise multiplication of functions.

Proof. That $C_I\{M_n\}$ is a vector space and has the stated property under affine transformations follows from (1). If moreover (M_n) is logarithmically convex and $M_0=1$ then

$$M_k M_{n-k} \leqslant M_0 M_n = M_n \quad 0 \leqslant k \leqslant n$$
.

Thus if φ and ψ are in $C_I\{M_n\}$ then

$$(3) \qquad |D^n\varphi(x)\psi(x)|\leqslant \beta_{\varphi}\beta_{\psi}\sum_{k=0}^n\binom{n}{k}B_{\varphi}^{\ k}B_{\psi}^{\ k-k}M_kM_{n-k}\leqslant \beta_{\varphi}\beta_{\psi}(B_{\varphi}+B_{\psi})^nM_n$$

for each n = 0, 1, 2, ..., and the lemma follows from (3).

DEFINITION 2.3. $C_I\{M_n\}$ is said to be quasi-analytic if $\varphi \in C_I\{M_n\}$, $x_0 \in I$, and

$$\varphi^{(n)}(x_0) = 0$$
 for each $n = 0, 1, 2, ...$

implies $\varphi(x) \equiv 0$ on I.

We are particularly interested in those $C_I\{M_n\}$ which are not quasi-analytic.

If (M_n) is logarithmically convex there is a simple characterization due to Mandelbrojt of the quasi-analytic classes in terms of the sequence (M_n) . In the general case, where the M_n are not necessarily logarithmically convex, necessary and sufficient conditions in order that $C_I\{M_n\}$ be quasi-analytic were first given by Carleman [2].

THEOREM 2.4 (CARLEMAN). Let

$$\mu_n = (M_n)^{1/n}$$
 for each $n = 0, 1, 2, ...$

and

$$\mu_n^* = \min_{k \ge 0} \mu_{n+k} \quad \text{for each } n = 0, 1, 2, \dots.$$

Then $C_I\{M_n\}$ is not quasi-analytic if and only if

$$\sum_{n=0}^{\infty} \frac{1}{\mu_n^*} < \infty.$$

When the sequence (M_n) is not log convex it is still possible to associate with (M_n) a log convex sequence (M_n^c) . This process is described in detail by Mandelbrojt [3]. He calls the sequence (M_n^c) the convex regularized sequence of (M_n) regularized by means of logarithms.

DEFINITION 2.5. Let $(M_n|n=0,1,2,\ldots)$ satisfy (2) and suppose that

$$\lim_{n\to\infty}\frac{\log M_n}{n}=\infty.$$

Let U be the convex hull in \mathbb{R}^2 of the set $\{(n, \log M_n): n = 0, 1, 2, \ldots\}$.

Fig. 1

The boundary of U consists of the union of $\{(0, x_2): x_2 > 0\}$ with a convex polygonal curve I. The sequence $(M_n^c | n = 0, 1, 2, ...)$ is uniquely defined by the condition

$$(n, \log M_n^c) \in I^r$$
 for each $n = 0, 1, 2, ...$

Some of the most important properties of the sequence (M_n^c) are P₁: $(M_n^c|_n = 0, 1, 2, ...)$ is a log convex sequence.

P₂: If M_n is log convex to begin with, then $M_n^c = M_n$ for each $n = 0, 1, 2, \dots$

P₃: If (M_n) and (\overline{M}_n) are two sequences such that $M_n \leqslant \overline{M}_n$ for such $n = 0, 1, 2, \ldots$ then $M_n^c \leqslant \overline{M}_n^c$ for each n.

 P_4 : $M_n^c \leq M_n$ for each n = 0, 1, 2, ...

In Theorem XII of ([3], p. 78) Mandelbrojt proves the following:

Theorem 2.6 (Mandelbrout). Suppose I is a compact interval and that (M_n) satisfies (2). In order that $C_I\{M_n\}$ not be quasi-analytic it is necessary that (4) holds. If (4) holds then $C_I\{M_n\}$ is not quasi-analytic if and only if

$$\sum_{n=0}^{\infty} \frac{M_n^c}{M_{n+1}^c} < \infty.$$

In particular we get the following corollaries.

Corollary 2.7. If (M_n) is a logarithmically convex sequence then $C_I\{M_n\}$ is not quasi-analytic if and only if

$$(6) \qquad \sum_{n=0}^{\infty} \frac{M_n}{M_{n+1}} < \infty.$$

Proof. If (M_n) is logarithmically convex and (6) holds then (4) necessarily holds. Thus for a logarithmically convex sequence (5) alone (and thus (6) alone) is necessary and sufficient in order that $C_I\{M_n\}$ not be quasi-analytic.

COROLLARY 2.8. Suppose $C_I\{M_n\}$ is not quasi-analytic. Then there exists a logarithmically convex sequence $\overline{M}_n{}^c$ such $C_I\{\overline{M}_n{}^c\} \subset C_I\{M_n\}, C_I\{\overline{M}_n{}^c\}$ is not quasi-analytic, and for every B>0

(7)
$$\sum_{n=0}^{\infty} \frac{B^n \overline{M}_n^{\ c}}{M_n} < \infty.$$

Proof. Let $\varrho_n=M_n^{\ c}/M_{n+1}^c$ for each $n=1,2,\ldots$ Since $C_I\{M_n\}$ is not quasi-analytic $\sum\limits_{n=0}^\infty \varrho_n<\infty$ and since $(M_n^{\ c})$ is logarithmically

convex, $\varrho_n \downarrow 0$. Pick two sequences of integers (n_i) and (m_i) such that

$$n_i < m_i \le n_{i+1}$$
 for each $i = 0, 1, 2, ...,$

$$\sum_{n \geqslant n_i} \varrho_n < 10^{-i} \quad \text{for each } i = 0, 1, 2, \dots$$

and

$$\varrho_{m_i} \leqslant \varrho_{n_i}/2$$
 for each $i = 0, 1, 2, ...$

We will define a new sequence $(\overline{\varrho}_n)$ by

$$\overline{\varrho}_n = 2^i \varrho_n$$
 when $m_i \leqslant n < n_{i+1}$

and

$$\overline{\varrho}_n = 2^i \varrho_{m_i}$$
 when $n_i \leqslant n < m_i$.

Then

$$(8) \overline{\varrho}_n \downarrow 0$$

and

(9)
$$\sum_{n=0}^{\infty} \bar{\varrho}_n \leqslant \sum_{n < n_0} \bar{\varrho}_n + \sum_{i \geqslant 0} \left(\sum_{n \geqslant n_i} \bar{\varrho}_n \right) \leqslant \sum_{n < n_0} \bar{\varrho}_n + \sum_{i \geqslant 0} \left(\frac{2}{10} \right)^i < \infty.$$

Let (\overline{M}_n^c) be given by

$${\overline{M}_n}^c = \left[\prod_{j=0}^n {\overline{\varrho}_j}\right]^{-1}.$$

Since

$$rac{\overline{M}_n^c}{\overline{M}_{n+1}^c} = \overline{\varrho}_{n+1} \quad ext{for } n=0,1,2,\dots$$

 (\overline{M}_n°) is logarithmically convex in view of (8), and $O_I\{\overline{M}_n^{\circ}\}$ is not quasi-analytic in view of (9).

Moreover, for each i let $O_i = \prod_{n < n_i} (\bar{\varrho}_n/\varrho_n)$ and $\bar{O}_i = O_i 2^{in_i}$. Then

$$\frac{\overline{M}_n^o}{\overline{M}_n^o} = C_i \prod_{j \geqslant n_i}^n (\varrho_j/\overline{\varrho}_j) < C_i (2^{-i})^{n-n_i} < \overline{C}_i 2^{-in} \quad \text{for } n > n_i.$$

Since $M_n^c \leq M_n$ we have

$$\frac{\overline{M}_n^c}{M_n} \leqslant \frac{\overline{M}_n^c}{M_n^c} \leqslant \overline{C}_i (2^{-i})^n \quad \text{when } n > n_i$$

which proves (7).

COROLLARY 2.9. Suppose $C_I\{M_n\}$ is not quasi-analytic. If $I' \subset I = [a, b]$ there is a nontrivial, nonnegative function $\varphi \in C_I\{M_n\}$ with support in I'.

Proof. By Corollary 2.8 $C_I\{M_n\} \supset C_I\{\overline{M}_n^c\}$ where (\overline{M}_n^c) is logarithmically convex and $C_I\{\overline{M}_n^c\}$ is also not quasi-analytic. Let ψ be a nontrivial function in $C_I\{\overline{M}_n^c\}$ such that $\psi^{(n)}(x_0)=0$ for all $n=0,1,2,\ldots$ Now ψ does not vanish identically on at least one of the two intervals $[a,x_0], [x_0,b]$. Suppose ψ is nontrivial on $[x_0,b]$ and that x_1 is the largest value of x such that y vanishes identically on $[x_0,x]$. Let $\psi^*(x)=\psi(x)$ for $x\in [x_1,b]$ and $\psi^*(x)\equiv 0$ on $[a,x_1]$. If $b-x_1>\varepsilon>0$ then

$$\theta(x) = \psi^*(x)\psi(-(x-x_1)+x_1+\varepsilon)$$

has support on $[x_1, x_1 + \varepsilon]$, is nontrivial, and since (\overline{M}_n^c) is logarithmically convex (3) shows that $\theta \in C_T\{\overline{M}_n^c\}$. Taking ε sufficiently small and letting φ be a translate of θ yields a function which satisfies the requirements of the corollary.

3. The convergence of power series in s. Because of the property of $C_I\{M_n\}$ under affine transformations (Lemma 2.2) if I is a compact interval and $C_I\{M_n\}$ is not quasi-analytic then $C_{I'}\{M_n\}$ is not quasi-analytic for any compact interval I'. Thus all compact intervals are equivalent with regard to whether a sequence (M_n) defines a quasi-analytic class on I. The convergence of the power series

$$S = \sum_{n=0}^{\infty} a_n s^n, \quad n = 0, 1, \dots$$

can be characterized in terms of the quasi-analyticity of $C_I\{1/|a_n|\}$.

Theorem 3.1. S is convergent in $\mathcal M$ if and only if $C_I\{1/|\alpha_n|\}$ is not quasi-analytic.

Proof. If S is convergent there is an infinitely differentiable function φ in ${\mathscr C}$ such that

$$\sum_{n=0}^{\infty} a_n \varphi^{(n)}$$

is almost uniformly convergent. Let I be a compact interval which contains the support number of φ . Since (10) is uniformly convergent on I the terms $a_n \varphi^{(n)}$ are uniformly bounded on I and thus for some $\beta_{\varphi} > 0$

$$\max_{\tau} |\varphi^{(n)}(t)| \leqslant \beta_{\varphi}/|\alpha_n|, \quad n = 0, 1, 2, \dots$$

which proves that $C_I\{1/|\alpha_n|\}$ is not quasi-analytic.

Conversely, if $C_I\{1/|\alpha_n|\}$ is not quasi-analytic then (Corollary 2.9) there is a nontrivial function $\varphi \in C_I\{1/|\alpha_n|\}$ with support in the interior

of I. If B_{φ} is a constant such that (1) holds and $\psi(x)=\varphi(x/2B_{\varphi})$ for $x/2B_{\varphi}$ in $I,\ \psi(x)=0$ otherwise, then

$$\sup_{R}|a_n \psi^{(n)}(x)| = \sup_{I}|a_n \psi^{(n)}(x)/(2B_\varphi)^n| \leqslant \beta_\varphi/2^n$$

for each $n=0,1,2,\ldots$ Thus $\sum_{n=0}^{\infty} \alpha_n \psi^{(n)}$ is uniformly convergent on R and S is convergent in \mathcal{M} .

Corollary 3.2. Let $M_n=1/|\alpha_n|$. A necessary condition that S be convergent in $\mathcal M$ is that (4) holds. If (4) holds a necessary and sufficient condition that S be convergent is that

$$\sum_{n=0}^{\infty} \frac{M_n^c}{M_{n+1}^c} < \infty.$$

Proof. Theorem 3.1 and Theorem 2.6.

For logarithmically convex sequences this criterion of convergence is particularly simple.

COROLLARY 3.3. Suppose (M_n) is such that $M_n^2 \leqslant M_{n+1} M_{n-1}$ for each $n=0,1,2,\ldots$ Then

$$S = \sum_{n=0}^{\infty} \frac{s^n}{M_n}$$

is convergent in M if and only if

$$\sum_{n=0}^{\infty} \frac{M_n}{M_{n+1}} < \infty.$$

From Carleman's Theorem we have another characterization. COROLLARY 3.4. Let

$$u_n = \max_{h>0} |\alpha_{n+h}|^{\frac{1}{n+h}}.$$

Then S is convergent if and only if

$$\sum_{n=0}^{\infty} \nu_n < \infty.$$

The following definition is from [1].

DEFINITION 3.5. An operator $a \in \mathcal{M}$ has support equal to a single point $\{x_0\}$ if for each $\delta > 0$ and each $\varepsilon > 0$ there is a φ with support in $(-\varepsilon, \varepsilon)$ and a ψ with support in $(x_0 - \delta, x_0 + \delta)$, $\varphi(x) \ge 0$, $\int_{-\infty}^{\infty} \varphi dx = 1$, and $a\varphi = \psi$.

COROLLARY 3.6. If S is convergent then supp $S = \{0\}$.

Proof. If S is convergent $C_{[-1,1]}\{1/|a_n|\}$ is not quasi-analytic. Let $\overline{M}_n{}^o$ be as in Corollary 2.8. By Corollary 2.9, for any $\varepsilon > 0$, $\varepsilon_0 > 0$, $C_{[-1,1]}\{\overline{M}_n{}^o\}$ contains a nontrivial positive function with support in $(-\varepsilon_0, \varepsilon_0)$ and by (7)

$$S\varphi = \sum_{n=0}^{\infty} \alpha_n \varphi^{(n)}$$

is uniformly convergent and from (11) we see supp $S\varphi \subset [-\varepsilon_0, \varepsilon_0]$. Taking $\varepsilon_0 < \text{Min}[\varepsilon, \delta]$ completes the proof.

4. The uniqueness theorem. We shall prove the following theorem. Theorem 4.1. If

$$S = \sum_{n=0}^{\infty} a_n s^n$$

is convergent in \mathcal{M} and S=0 then $a_n=0$ for $n=0,1,2,\ldots$

Proof. Let $\varphi \in \mathscr{C}^\infty$ be a convergence factor for S. Let $\lambda_0 \in (0,\,1)$ and define $f(x,\,\lambda)$

(12)
$$f(x,\lambda) = \sum_{n=0}^{\infty} \alpha_n \lambda^n \varphi^{(n)}(x).$$

If T>0 then Dirichlet's test for uniform convergence shows that (12) is uniformly convergent on D where

$$D = \{x \colon x \leqslant T\} \times \{\lambda \colon 0 \leqslant \lambda \leqslant \lambda_0, \ 0 \leqslant \lambda_0 < 1\}.$$

In particular for each $\lambda \in [0, 1]$ the series (12) is almost uniformly convergent. Let $\varphi_{\lambda}(x) = \varphi(\lambda x)$ when $0 < \lambda \leq \lambda_0$. For each such λ

$$\sum_{n=0}^{\infty} a_n \lambda^n \varphi^{(n)}(\lambda x) = \sum_{n=0}^{\infty} a_n \varphi_{\lambda}^{(n)}(x) = \lim_{N \to \infty} \left(\sum_{n=0}^{N} a_n s^n \right) \varphi_{\lambda}$$

is almost uniformly convergent and by the uniqueness of sequential limits in \mathcal{M} the right hand side of this equation must be zero. Thus the left hand side is also zero and (12) is zero for every λ_{ϵ} (0, 1) and every x.

For each fixed $x_0, f(x_0, \lambda)$ is analytic on $|\lambda| < 1$ and since it vanishes identically we have

$$a_n \varphi^{(n)}(x_0) = 0$$

for every n=0,1,2,... and every x_0 . Since no $\varphi^{(n)}$ vanishes identically $a_n=0$ for n=0,1,2,...

References

- [1] T. K. Bochme, On the support of Mikusiński operators, Trans. Am. Math. Soc., to appear.
- [2] T. Carleman, Les fonctions quasi-analytiques, Paris 1926.
- [3] S. Mandelbrojt, Analytic functions and classes of infinitely differentiable functions, Rice Inst. Pamphlet no. XXIX, 1942, Houston Texas.
- [4] J. Mikusiński, Operational Calculus, New York 1959.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA

Received February 15, 1972

(466)