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Maps which preserve equality of distance

by
ANDREW VOGT (Corvallis, Oreg.)

Absteact. If f: X — ¥ is a continuous surjection, f(0) = 0, and ||fz — fy|| depends
functionally on |z —yl, then f is linear.

A theorem due to Mazur and Ulam ([2]; p. 166 and [4]) states that
every isometry of a normed real vector space onto a normed real vector
space is linear up to translation. Charzyrniski [3] and Rolewicz [6] have
shown, respectively, that surjective isometries of finite-dimensional
F-spaces and of locally bounded spaces with concave norm are
also linear.

The present paper extends the result of Mazur and Ulam in a differ-
ent direction. The spaces remain normed real vector spaces, but we
replace isometries by the more general notion of equality of digtance
preserving maps, maps with the property that the distance between image
points depends functionally on the distance between domain points.

‘We prove in Section 1 that every continuous equality of distance
preserving map from a normed real vector space onto a normed real
vector space is affine-linear. This result generalizes the Mazur—Ulam
theorem and yields a characterization of the similarity group of a space
which does not presuppose linearity. In Section 2 the continuity hy-
pothesis of Section 1 is shown to be a consequence of surjectivity when
the domain has dimension =2,

Schoenberg [7] and von Neumann and Schoenberg [5] investigated and
clagsified all continuous equality of distance preserving maps from one
geparable or finite-dimensional ¥ilbert space into another. Corollary 2.3
in Section. 2 shows that their continuity assumption is also redundant
when the domain has dimension > 2.

L. Let R denote the set of non-negative real numbers. Let X and ¥
be normed real vector spaces of dimension > 1, the norms in each space
being denoted by the symbol || .

DeriNirroN L1. A map f: X — Y preserves equality of distance itf
there exists a function p: R — By such that for each 2 and y in X
llfe—Ffyll = p(le—yl). The function p is called the gauge function for f.
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A map f which preserves equality of distance may be characterized
equivalently by the requirement that whenever »,y, 2 and w are in X
and [ —y| = [e—wl, then [fz—fyl = fz—fwl.

Mazur and Ulam proved that all surjective isometries — that Js,
all surjective equality of distance preserving maps with gauge function
the identity function — are affine-linear. The proof of the result here
depends on. the Mazur-Ulam technique. That technique is implicit in
the following theorem in metric space theory, similar to one stated by
Aronszajn [1).

TurorEM 1.2. Let (M, d) be a bounded meiric space. Suppose there
emist an element m in M, a surjective isometry g: M — M and o constant
K > 1 such that for all  in M d(gz, x) = Kd(m, z). Then M;m"y surjoctive
isometry h: M — M fives m.

Proof. Since metric space isometries are injective, A" and g7 exist

and h, g, h~* and g~* are bijective isometries of M together with arbi-
trary (finite) compositions of them. )
Define a sequence of isometries g,: M — M and elements m,, in M
indexed by the integers = > 1. :
Let

g1 =19,
gy = hgh™},

Int1 = gﬂ—lgn<gn—l)~17

My = M,
my, = hm,

M1 = Gn—1Mn, nz=2.

Bach g, is a bijective, invertible isometry of M and a straight-for-
ward induction yields: ) ’

(1.21) a9z, 2) = Kd(m,,x) weM,n>=1

If welet & = m,,in1.21, we obtain @ (M5, Myy1) = @9y Mypyy My
= Ka(Myy Myyy) = Kd{my,,, Mmy,), and by another induction d(my,..5, My..1)
= K"d(my, m,) for all n = 1.

Since M is a bounded metric space, there exists a positive number
N = d(Myyq, Mpy,) for all n. Then N/E" = d(m,, my) for all » and since
K > 1, d(my, my) = 0. Therefore, hm = m2 =My = m, and h fixes m.m

TramorEM 1.3. Let f: X — ¥ with f(0) = 0 be a continuous smmme
map which preserves equality of distance. .Thm

(i) f s Uinear
and .

(ii) f = AT where 1 is a non-zero real number and T is an isomeiry
of X onto Y.

Proof. Fix any # in X.
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Let M ={y:y is in ¥ and |y|l'= [2f(2) -yl < 2|fall}, let m = fw
and define g: M - M by gy = 2f(#)—y. Then M, m and g have the
following properties:’

(1.31) M is a bounded metric space with
(1.32) m = fw is in M.

(1.33) g is an isometry from M onto M.
‘ g(M) = M since g is its own inverse.

(Y15 ¥2) = Y1 —Yal.

(1.34) d{gy,y) = Kd(m, y) for all y in M with K = 2
This follows from d(gy,y) = gy —yl = (2 (a) =yl =2|f(z) —yl
= 2d(m, y).

By Theorem 1.2 and Properties 1.31 thru 1.34, we conclude that

" every surjective isometry of M fixes m. We therefore define an appro-

priate isometry.

Fix a, in f~* (2f (@), Define h: M — M by hy = flze—F"(y)).

i has the following properties:
(1.35) b 48 well-defined.

If fl#y) =f(@) =9, then [f(zm—)—F(%—2)l = .’P(“(%"‘mﬂ”‘
— (@ —2,)l) = p(l2a—21]) = [}(@2) —f(@1)| = ly—yll = 0. Here p is the
gauge function for f.
(1.36) b 18 an isometry.

I f(@y) = gy and f(@s) = s, [R(y1) —h(ya)ll = [If (@ — ) —F (00— z,) |
= P (s —aall) = If (@) —fl)ll = Y2 — ¥l
(1.87) h i3 an isometry from M 'Mto M.

With  f(2,) = y1eM, [2f(2) —h(yy)l = 12f (@) —f (@ —2)l = [f (@) —
—f@—w)l| = p(ley—0) = llf (1) —F(O)l = lly2—Oll =1all = 112f () —3ll
= || f(@o) —f @)l = » (leg—2,)) = P (I(wo—21) —Ol) = |f(@—1) —F (O]

IB(y) — Ol = lk(y)l, and so h(M)< M.
1.38) I 48 a surjective isometry.

/\

h(M) = M since h is its own inverse.

By Theorem 1.2 h fixes m, and fz =m = hm = f(m,—f'(m))
= f(wo—f~*(fn)) = f(w,—w). Consequently, 0 = ||fo—f(z,—2)| = p(lo—
T(C_ﬂfo—%)ll) 2 (122 —|)) = [If(22) —f( %o I = IIf(2#) — 2f (#)l}, and we con-
clude: . .

(1.39) f(22) == 2f(@) for all x in X.

Now, for fixed y in X, define f () = flw+y)—fy for all » in X.
fyt X - Y inherits continuity and surjectivity from f and: f,;(0) = 0.
Further, f, preserves equality of distance sinee [f,(®:)—f, (@)l =
1f (@1 +9) —F @+l = pU(@1+y) — (@2 +9)]) = p(los—al). (In fact,
fy has the same gauge functlon as f) It follows that 1.39 applies
to f, as well as f. |
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Let z and y be arbitrary elements in X. Then Fle—)+9)—fy
=7, (@~y) = 2f,((@—1)/2) = 2[f(w—y)/2+y)—fy]. Equating the end
terms and simplifying, we have: fo-fy ——2f((m+y /2) =flo+y). fis
consequently additive. Since f is continuons, f must then be linear and (i)
of Theorem 1.3 is established. :

Let » be a unit vector in X. For o in R, p(a) = p(llaw—0])
= |f(aw) —F(O)] = llaf ()] = a |fu—F (0)]] = ap (|u—0ll) = ap(1). Let 1
=p(Ll). 10 since if 2 =0, p =0 and f cannot be surjective. Let
T =fA T: X>Y is surjective and [Ta—Ty| = [(fe)/d—(fy)/2l

= (UA)fe—fyll = (LAp(Jo—yl) = A/Dllz—ylp1) = lo—yl for al o
and y in X. This establishes (i) of Theorem 1.3. m

Remark 1.4. Curiously, the additivity of f in Theorem 1.3 depends
neither on the continuity of f nor on the norm in the domain space X.
If f: X - ¥ with f(0) = 0, if f(X) is an additive subgroup of ¥, and if
there exists a function P: X — Rf such that |fo—fy| =P(z—y) for
all  and y in X, then f is additive. The argument in Theorem 1.3 apphes
to this case with minor changes. ‘

2. We now attempt to eliminate the continuity hypothesis in. The-
orem 1.3. : :

LeMMA 2.1. Given ¢ > 0 and a normed real vector space X w'lth d/bmaw
sion X > 2, then for each x in X with |x| < 2¢ there ewist m, and x, in. X
such that |jz,| = [©]] = & and & = 2, +@,. :

Proof. If o = 0, choose % in X with |ju| = 1. Lettmg Oy = ol = -—’1'2,
we have our conclusion. Assume then that @ # 0. ‘

Consider 8, = {y: yis in X and |ly|| = ¢}. If v and w are 1ndepend.ent
vectors in §,, then ‘

€ [(cost)v -+ (sint)w]
il(cost) v -+ (sint)w”

av,w(t) =

is a path in 8, from v to w. If v and w are dependent‘vectors in 8,, then
w = . Using dimension X > 2, choose # in S8, such that # is indepen-
dent of v (and hence of w also). Then

«t 1< /2
Boult) = (1), < w2,
=

ayplt—(n/2)), t=m2
is'a path in 8, from » to w. We conclude that §, is path-connected.

Now define u: 8, — Ry by u(y) = |o—y| for y in §,. Then u is
a continnous function on §,. Since - &(x/|lz])) is in §,, we have:

wle@/ o) = flo—e@/le)] = lloll—e < e < o] +e =

=le—(=e)@/leD]| = p((—e)(@/lal)).

icm

Maps which preserve equality of distance 47

By the path-connectedness of 8, there exists an element 2, in S, such
that the intermediate value e = u(x,).-

Let @, = o—a,. Then @ =,+a,, |v,]| = ¢ since x, is in §,, and
lall =l — s} = wl@;) = e ®

LDMMA 2.2. Let f+ X — Y preserve equality of da,stamwe and suppose
dimension X 2 2. If for every & > 0 there ewist z and y in X such that © + y
and ||fo—fyll < e then f is wniformly continuous.

Proof. Given s > 0, choose # and y in X such that & # y and ||fo —fy||

< g3, Let 0 =2|o—y| > 0.
I » and w are in X and |v—w|< 6, by Lemma 2.1 there
exist @, and @, in X with o] = ||jz.) = 6/2 ancl v—w = %+ T

Then [|fv—fw| = p(|lv —w|) = (H”l"( Py, “) IF (@) —F(—@)lI<UIf (@1) —
=f (O [F(0) =Ff( @)l = p (2. —0)+p(I0 ——(~wz ) =2p(5/2)
= 20(llz —yll) = 2[lfw—fyll <2(ef3) < e.

Thus if |\v~—w||< 8, llfv —fw| < & and so f is uniformly continuous. m

CororrARY 2.3. Let f: X — Y preserve equality of distance with di-
mension X =2 and Y separable. Then f is uniformly continuous.

Proof. Assume £> 0 is given such that for all # and y in X with
% # yllfe—fy|l = ¢ Let X be a countable dense subset of ¥. For each
@in X choose ¢, in X'such that ||fo~s,] < ¢/2. Thena — ¢, is an injective
map from X into the countable set ~. Consequently, X is countable or
finite. Since X is a real vector space of positive dimension, this is impossible.
Lemma 2.2 now applies to yield uniform continuity of f. m

TeEOREM 2.4. Let f: X — Y with f(0) = 0 be a surjective map which
preserves equality of distance. Then the conclusions of Theorem 1.3 hold
provided dimension X = 2.

Proof. Continuity of f is the only additional hypothesis needed for
the conclusions of Theorem 1.3 to hold. But since f is surjective, f is uni-
formly continumous by Lemma 2.2. wm

Exampre 2.5. Let {1} U {¢,;: a is in A} be a Hamel base for the
set R of real numbers relative to the field @ of rational numbers. (Here A
i some suitable index set.) Detine f: R — R by setting f(1) = 1, f(e,) = 26,
for ain 4, and by extending Q lineamly to all of R. Then:

(2.51) fis a bijection with f(0

This follows from. the h(,t tha,t f is @-linear and takes the original
Hamel base onto {1} U {26,: «is in 4}, which is also a Hamel base for R
relative to Q.

(2.52) f i3 non-linear.

Suppose f(Ax) = Afx for all # in R. Since 1 is a real number, 1 = g+
+Xq.6, for some ¢ and g8 in Q. Hence, ¢+Zg.6, =2 = Af (L) =f(4)
= f(q+2q,6,) = q--22q,6,. This implies that Zg.e. =0 and 1 =gq.
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So A is rational and f is not R-linear.
(2.53) f preserves equality of distance.

serves equality of distance. For, define p(t) = |f(¢

all

Any additive map f from R into a normed real vector space Y pre-
)|l for ¢ in Ry, Then for

@ and y in R,|fe—fyl =f(e—yl = I+f(e—yDl = If(z—yDI

= p(lz—yl).

Properties 2.51, 2.52 and 2.53 of Example 2.5 show that Theorem 2.4

faily if X is permitted to be one-dimensional.
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On the conjugates of some function spaces

by
MICHARL CWIKEL (Rehovot)

Abstract, For p< 1 and the underlying measure space non atomic, L(p, oo)*
= {0}. Results are also given in the atomic case.

I. Introduction. The function spaces L(p, q) form a two parameter
family which incorporates the familiar L” spaces (L” = L(p,p)) as well
as other important function spaces. The family L(p, q) is a convenient
setting for interpolation theorems for operators, and so is of interest for
problems in harmomc analysm

The dual spaces L(p,¢)* have been studied, and in many cases
characterised. (See [1], [2]). This note considers the previously untreated
case when 0 <p <1 and ¢ = oo. .

Throughout this note (X, X, u) is » o-finite measure space with
0< p.

DerINITION 1. For each measurable f we define
Fu(y) = ufo] If(@)] >y}

Ceonfining ourselves to those f such that fi(y) < oo for some y >0
define.
DEPINITION 2.

f16) =int{yl fuly) <t}

DErINITION 3, For 0 <p < o0, 0 < g< 0

o dat g
s =[ [ weror 7]
and for 0 < p < o0
11l 0 = SUPE? f*(2)
>0

Define also L(p, ¢) = {f| Iflipe< o} ’
A detailed discussion of L(p, ¢) spaces may be found in [2].
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