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The class of all possible limit distributions of sequences ¢, [8,], where
¢, >0and S, =X, +X,+...+X,'(n =1, 2,...) X being independent
random r-vectors with spherical symmetric distribution coincides with
the class of all probability distributions P on [0, co) whose integral trans-
form (26) is of the form

Pp(t) = i
= () expff % du log(1-+a%)’

where m is a finite Borel measure on [0, o),
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On generalized variations (IX)
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Abstract, A g@-function is a non-decreasing function, continuous for = > 0,
@(w) = 0 only for u = 0 and limf(u) = oo when % — oo, For a function » with domain
[a, D] put

Volw) = sup Y @it —zE-1)),

r=1

gupremum is taken over all partitions of [@, b], #*? denotes the class of all functions »
defined on [a, b] for which @(a) = 0 and Vy(Aw) < co for certain 1> 0, and €V*?
denotes the class of all functions continuous on [a, b belonging to ¥ *o_ Among all
@-funetions the log-convex g-functions are distinguished i.e. ones satisfying the con-
dition
) < ap(u)+ fp(v)  for w,v>0, @, f>0,a+f=1.

There are progented two proofs of L. C. Young’s Theorem that if ¢ and ¢~ are log-
convex -functions satisfying the following L. C. Young’s condition

(%) N o1 (Ap)pza(ljy) < oo
pe=1

whoré @_, and @2, are the inverse functions to ¢ and ¢~ respectively then the integral
13

[ @ (t)dy(t) for functions x € ¥ *p and ye ¥~ exists in the sense of Riemann—Stieltjes.
a :
Estimations of this integral with the use of geries in (*) are given. On the same assump-

tions is proved the theorem on passing to the limit under the sign of RS-integral, in
particular — the analoguo of Helly's theorem. It ig shown also that if ¢ and ¢~ are
convex g-funetions satisfying the corbain conditions for which L. C. Young’s condi-
tion (%) does not hold then thore are functions e @¥™*? and ye<®¥™*?~ such that
their RY-integral does not exist. These results proved for scalar functions arc genera-
lized for fmnctions with values in Banach spaces. ‘

0. Introduction. The present paper can be regarded as a second
part of paper [9] which, under the same title, appeared in Studia Math.
in 1959 (results of [9] were earlier announced in [8]). In the present paper
the notations essentially differ from those employed in [9] ie. in all
places where in [9] and other papers dealing with the theory of Orlicz
spaces symbols M, NV etc. were uged we now write ¢, v, ... The purpose
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of this paper is to give existence proofs of Riemann-Stieltjes integrals
fb ady where both 2 and y are functions of finite generalized variations.
]?‘undamenml papers in this field are due to L. C. Your:g who obtained
sufficient conditions for the existence of the infegral { azdy in form of

convergence of a. certain series, which is in our paper called the I. C.
Young’s series. This series plays also an important role in our investiga-
tions; in general, our paper develops and explains the ideas presented
in L. C. Young’s papers {11] and. [12]. The last section of the paper briefly
outlines the problem of the existence of the Riemann-Sticltjes integral
when one of the functions is a scalar function and the other iy a vector
function with values in a Banach space.

1. g-functions and L. C. Young’s series. We call a o-function every

real, nondeecreasing and continuous for u > 0 function equal 0 only at
* the point w = 0 and tending to co when u —» co. Among all p-functions
certain classes of functions are of a special importance: the so called log-
convex p-functions, i.e. those which satisfy the inequality

@ (u'0") < ap(u) -+ fp(v)
and econvex p-functions i.e. those for which the inequality
plan+po) < ap(u) + B (v)

holds. Clearly, a p-function ¢ is log-convex if and only if it can be repre-
sented in the form ¢(u) = & (Ilgw) for u > 0, where @ is a convex function
on the whole real axis. From this we easily. deduce that a log-convex
¢-function is strietly increasing for « > 0. Xog-convex p-functions were
considered in [4], where they were used in generalizations of Hardy spaces
H? p > 0. Convex g-functions are a particular case of log-convex @-func-
tions and their applications are well known. in the literature; they were
extensively dealt with in the monograph [3]. The following conditions
imposed on convex .g-functions are essential for those applications:

for w,v> 0 and o, 20, atf =1,

for w,v>0 and o, =0, a--f =1

(0y) lim u™p(u) =0  and (o) lim u~tp(u) = oo,
U0+ ’ U0

Under conditions (0,) and, (o) we.can define by the formula
9" (v) = supfuv—p(u): w =0} (03 0)

& complementary function for ¢ which is also a convex e-function, satigfios
conditions (0,) and (co;) and moreover (¢*)* = ¢. The functions ¢ and ¢*
satisfy the ineguality : ' ‘

o U<t (0) <2 for 030 (see [3]),
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where ¢_, and ¢, are the inverse functions %o @, resp. ¢*. Indeed, the
definition of ¢* implies the Young inequality uwo << p(u) +¢"(v) for u, v > 0
whence we get ¢_;(v)-g_, (0)* <v+v = 20 for v 22 0. The other part of
the above inequality is obvious for » = 0. Excluding this case we observe

. %
that for 0 < ¢ < % it holds —t—qz(t) < ¢(w) and 8o we have for ¢t > 0

1] [
o (f/li)) = §up {Tfp(f/) —pu): 0 U< i} < sup {j::-qa(t): t<u<g t} = g(t);

now, putting = ¢_,(v), we get v < p_, (v)¢*,(v) for v > 0.
Generally, for a p-function ¢ we define the indices:

lgl )
8, = lim lel(a) and ¢, =lim M,
A-r00 ga 0300 ga
where
1, (a) = imint 2% ang I,(a) = limsup 2% (151, 163, [71)
(o) == lir g = .
- watg P (2) ’ ot p(u)’ T

These indices are closely connected with widely used conditions (Ay),
(Vo) and (V,). Namely ¢ satisfies condition (Ay): ¢(2u) < op(u) for 0 < u

< Uy with some constants ¢ > 1 and wu, > 0 if and only if ¢, < oo, ¢ satis-

fies condition (Vy): 2¢(u) < p(du) for 0 <w << 4, with some constants
d>1, uy > 0 if and only if s, > 0, and finally ¢ satisties condition ( Va):
20(u) < d7 g (du) for 0 << << u, with some constants d> 1 and Uy > 0
(@(u)/u satisties (V,)) it and only if s, > 1.

If ¢ is a convex g-function then 1< s, < oo, and if it besides satis-
fies (0,) and (ooy), then

1 1
S =1 and e =1
Sp  Oge Oy Sp

(5D

1.1. Let (]’.1,l|]1('l ¢~ be strictly increasing p-functions. The series
oA 1\ ~ /1
(%) . Pt |7 | Pt| =)

where ¢_, and ¢z, are the inverse functions respectively to ¢ and ¢~, we
shall from now on call the L. 0. Young's series for functions ¢ and ¢~.
This is due to the fact that this series was first used in L. C. Young’s
paper [12].
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Tn this section we shall give some lemmas concerning L. C. Young’s
series.

1.11. If the L. C. Young’s series for strictly increasing p-functions ¢
and @~ is convergent, then for arbitrary numbers A, B 2= 0 also the series
S oy (Ap)ezi(Bfr) is convergent ([12]).
v=0

Proof. Let m be a positive integer such that 4 < m and B < m.

m 1 B 1
Then for Tm < v < (k+1)m we have ~—<~Eh— = and TS
Hence we get
R B ST EAVNE!
Z(P 1(““)‘7’ 1( ) Z‘P 1 P\ “["m'%‘l’—l n ‘/’«1("7’; < o0,

1.12. The L.C. Young's series for strictly increasing p-functions g
(md @~ is convergent if and only if for any positive integer m 2= 2 the series

qua 1(L/m
AB

)
m—1
Mm
M Ld
Je=0

"y, (LjmF) is convergent. Moreover, for arbitrary numbers

> 0 the following inequality holds:

i3 z¢-(::~>~<f‘>
S )

Fe=0

1 1 1
Proof. Since for m* < » < m*" we have —p < - < hence
“mFT m

m—1 <1 A B
o D)o )

k=0

A B
< ¢ (A)pzi(B) A Z mir — ) (W-IT) (/’11(;'/7;“[1)
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L.13. If the L.C. Young’s series for striotly increasing p-funciions g
and p~ s convergent, then there exists a conves p-function 3 satisfying condi-
tion (04), such that the L. C. Young's series for p-functions o~ and ¢, where
pr g ))) wlp(w) and o~ (u) = ylp ~(w)) for 4= 0, is convergent (see [12],
(,).x

1’roo£ From the hypothesis it follows, in view of 1.11, that

24?’ 1{3/»

)z (3/v) < oo, Hence there exists a sequence of positive integers

{7( ,,} such that for n =1,2,... we have
pgr > -~ " ~W|Mm~lcq, and erml(—i) <p:1(§—)<—l——.
= v v nd
Let us put
“ ifor <t<—1—~(n=1,2, ),
= {?(t)dt, " where p(t) = " fnt 1 P

14t for i~< t.
&y

Since the function p is positive and nondecreasing for ¢ > 0 and tends
to 0 when #--0--, so y is a convex ¢-function satisfying condi-
tion (0,). Let wus observe that for nk,<»<nk,., the following
inequalities hold.:

3n n\ » 1 n 1
pl—| = pitydtzp|—)— =——=—,
v ¥ n v
nfv
. 1 W 1
§iNEo i < e K, and £0r fhyy, < < (0F D)y
U B M
(2n+41)v
3n w1\ % 1 » 1
fE— q - RN [
w(w); ﬂ(’)dhﬁ?( " ) " ST
(Mot 1)
1 (O U () 1
BILEE o < T -
ku 41 v 77’]‘% ol
, . . 1\ _{3n
Thus, for wk, < v < (n+L)k,,, we get the inequality y_, " < - )
o 3n 3
Moreover, for n(k, ) < » < n(k,--s-+1) it is true that TLQW'
n
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TFrom these inequalities we obtain
) oo (WD —1

2?— (W~( ))4” l(y;_ (1)) zlzj le ;
SYRNC D

3n 3n
Y el K20 St
v v
=l Py,

Sl Se Sl

Nl gm0

Sl e S

n=1

Fy—1 o (ML 4~1

1.14. L. C. YO’IM’bg s series for strictly inawasinq qo -fumctions ¢ and @~

is convergent @f — 4+ ——~> 1 and is divergent ’Lf -+ T < 1. This theorem
Op P~ Sp »~
remains true when the indices are equal to O or oo if we adopt the conventions

E~=oc and —j—“—=0‘
0 )

1 1
Proof. Let - + —d——~> 1. We take o> o, and ¢~ > 0,~ such that
P L

still —1— ~l~i > 1 holds. We know that o, = limlgl, (a)/lge < o and o,.

= hm]g l,FN (a)/lga < o~ and so we deduce that there exists an integer m = 2

such  that 1gZ,(m!°)lgm'” <o and 1gl,. (m*”)/lgm’*~ < o~. Hence
we geb
I, (m") zlunsupqv( mHMe

U0

w)fp(u) < m
and

T (mM7™) = Hmsup o~ (mM° " u)fp~ (u) < m.
U+ ; :

It follows now that there exists a u, > 0 such that for 0 < w < 4, wo huve
p(mMoy) <mp(u)  and g~ (mH7"w)

From these we get for 0 < v A == inf{me(u),

< mp~ ().
e~ (1)}
poa(ofm) Sm™Wp_y(0)  and gz (ofm) < w7z, (0).

Now, the induction yields

A 1 4 1
- (W?) <—groad) amd g, (W) < g 921 (4)
for &k =0,1,...
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y , A . Ar A
We take a positive integer » such that Ar >71. Since — < — for
y mw
P < v < m*r, we finally get
o (1 1\ w4
r Ar
)< S el S el
%1 17,\% ‘Plv ;‘Plvfl’lv
e 1, o0
_ fﬂ,( ‘ mlu . _'-_L_M ’I; . A A
Y /) ” Py > (2551 mr P—1 r
Paal I
el 0
1 1 O 1
= ‘7’~1("’) -'11(";“) - mHp o mla/a~"¢—1(A)‘7’11(A) < oo
el liwa

1 1 '
Now let . e < 1 We take 0 < s < s,and 0 < 8~ < 3, such that
4 Lt i )

1

1 . .
=+ ——< 1 Sinces, =limlgl, (a)lga>sand s, = limlgl,- (a)flga>s-,

where 1,(a) = liminfe (aw)/p(u) ‘and Ton(a) = liminfp~ (om)/p~ (), simi-
U0 U0
larly as before we obtain the inequalities
A\ L A 1
Pt (7;""7;) = ;;;7;:,}."9”4(4‘1) and gz, (j;njr) > e 921 (4)

for %k =0,1,...
where m is an integer not less that 2 and 4 is a certain positive constant

. 1 1 A
not larger than 1. For m* < » < m*t! we have — > ——5 > —; hence
2 BTl xS
" v me m

we get
o N [ A 4
Se-esl) = 2geio- e e
[ Jewes ()
o
S G B 1 -
= 1}4 mk T G pi(d)pzd) =
fems

To completo the proof we need only to consider the case ¢, < 1 and
Opn == oo, Tuking in this case 0, < 0 <1 and applying a procedu.re analo-
gony to that of the fivst paxt of this proof but only to the p-function ¢,
we obtain the inequality

A 1 .
) < 1(4) for kb =0,1,...
P ('m, ) N mk/,,‘l) ( ) 3 Ay 1}
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where m is some integer > 2 and 4 is some positive constant. Further,
similarly as before, we take a positive integer 7 such that 4r = 1 and
conclude that

= =1 -
X . L ¥ 1 1 1 Ar
S et Sihet) Sl e
r—1 .
1 1 >y A
< gfhl(;‘)‘f’h (7) -i*k%: m 17‘P~1(';)?;)r/):1 (1)

r—1 00 ’
1 1 T e L
< Dol (3] + 2 s pzs ) < o

Theorem 1.14 does not decide on convergence of L. U. Young’s series

1 1 1
when — -+ <1l and — +—2>=1.
O‘q, O‘q,.. Sq, 8¢~
Let ¢ be a convex g-function satisfying conditions (0,) and (ooy)
. 1 1
and let ¢* be its complementary p-function. Then we have — -+ - <1
? [

1 1
and — + — > 1 and, in view of the inequality v < g_;(v)p*, (v) for

S Spx
o0 o
2 1\, (1 E 1
(p“l(-_)q]tl(_) 2 ER
v v v
o=l pa==]

v =0, we get
1.15. Let @ be a convex p-function satisfying conditions (0,) and (oo,)
and let o~ be a strictly increasing p-function. If L. C. Young’s series for
fumctions ¢ and @~ is convergent then, for every A > 0,
9" (M)

ust P~ (%)

Proof. The relation in question oceurs if and only i for every A >
and for every 0 < e <1 there existy & w,> 0 such that ¢* (Au) < sp~ (u)
for 0 < u < %,. This is equivalent to the following inequality:

Apz (0) S oha(er)  for 0 <o oy =~ (u).
Now suppose that the equality in question is not true. Then there oxish
numbers 4> 0 and 0 < e<{1 and a sequence {v,} of positive numbers

tending to 0 such that

Mpzy (0g) > @ly(ev,)  for m =1,2, ...
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Since {v,} i8 & sequence of positive numbers tending to 0 we can take
ity subsequence {v,} such that

1
T <

i for k. =1,2,...

k73 < 27, T

where {v,} if an increasing sequence of positive integers. Now, in virtue
of the inequality v < ¢.., (e:)qu’_“_l(fu) for v = 0, we get

e 4] 00
o1 (L 1 _ixy, (1) (1
D7)z 5 2 remlzhalz)

W, yeal
o0
S N, (2. (2
=y 22 ’“9?_1(”2;;)9’—1 (‘57:)
Jom=s1
o
1, 1
= 524 2 7'7()9__1(5,7,;)(]3:1(”1%)
Jows1
oo
1 2 1y,
=T 2 O”~1("T‘)‘P—-1(wﬂk)
24 o=l 2
1\ L N
> 12{ 2Vch;_1(W)<P—1('2‘vjc“ﬁ)
-

1 o
€
;:»27-‘4 EZIEW.:()O,
k

what contradicts our assumption.

2. Functions of finite p-variation. Let # be a real- or compex-valued
function defined on a closed interval [a,b]. For a g-function ¢ apd ffor
a pavtition 7z of [a,b] by points o =1t < <...<b, =b We define

n .

Vol ws a,b) = D gllo(t) =0

P )
Tarther, wo define

V(@5 a, b) = sup Vo(a; w; @, b).
7

In the sequel, whove no confusion may occur, we shfull simply write
V (w; w) and. V(@) instead of Vi (x;7; a, b) and, res?ec'twely, V (@3 @ b).
Thoe quantity V(@) = V(w; o, b) is called the g-variation of a function z
on. the interval [a, b] (see [9]). ]

By #7 we ghall denote in this paper the f:l.a.ss of Eulll. functions
of finite p-variation on [a, b] satisfying the normalizing condition z(a) = 0,
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and by 7*? the class of all functions @ such that for some constant 1> 0
(depending, in general, on @) ize ¥ holds. Further, ¥ will denote the
clags of all continuous functions on [@, b] belonging to ¥?, and #¥™*
the clags of all continuous functions on [a, b] belonging to ¥™*?. The
class 77 iy a vector subspace of the space consisting of all funetions
defined on [a, ] and satistying the condition #(a) = 0, and the class
%" ig a linear subspace of the space #™7.
2.01. If »(a) =0 ihen

pld (@) < Vy(@)

2. 02 If @ and - are two g-functions such that the fumction x(u)
= @~ (u)fp(u) for w>0 and x(0) = 0 is nondecrcasing for w0, then
Ve (w) < (2d(@) V, (%) where d(x) is defined as above.

2.03. If {x,} is a sequence of fumctions convergent everywhere on the
interval [a, b] to a function », then V(o) < limint V, (2,).

N~00
2.11. If a < ¢ <b then
V¢(m7 a‘i 0)+ti(w; 07 b) < Tf,p<£0; d, b) < V‘p(mz a’! 0) 'l" Vq)(m; 0! b)'}‘
~(0)l)—¢ (|m( 0) —a(ty)|):

+sup {p (| (8) — @ (8)]) — ¢ (j2(4,)
Sh<o < b},

where  d(x) = sup{le(t)]: o <1< b},

Simple proofs of 2.01, 2.02, 2.03 and 2.11 are omitted. Immediately from

this lemma it follows that for a function « of finite ¢-variation on [a, b]
the function v(t) = V,(2; 4, ?) is nondecreasing on [a, b].
Another corollary to 2.11 is this:

2.12. Let x be a function of finite p-variation on [a, b]. The function
v(t) = V,(; a,t) is constant on a certain subinterval [o,d] of [a,b] if
and only if the function x is constant on this subinterval.

Proof. Clearly, if # is constant on the subinterval [¢, d] of [, b]
then also v(¢) is constant on this subinterval. Conversely, if the function
v(t) = V,(@;a,t) is constant on the subinterval [e,d] then, in virtue
of 211, we have V,(z;1,d) =0 for e <t<<d and from the inequality
p{la) —a(@)) < V,(z;t,d) we deduce that @(t) = w(d) for o=t d.

2.13. Let @ be a function of finile p-variation on [a, b). The equality

Hm V(@5 by, to-+-h) =0
FirOvfe
is true for a <ty < b if and only if the function @ is right-continuwous at the
poimt t,. Similarly, for a <it,<b
Lm V(x; 4 —

T4

holds if and only if the function @ is left-continuous at the point 1.

By t) =0

icm
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Proof. The proof i essentially the same ag for the functions of finite
(ordinary) variation. We shall prove only the first part of the theorem,
the second, being analogous, is omitted. If Vol@; %, t,+h) — 0 when
b —0-+ then by thoe inequality

(I)“m(to”{“ h)—m(to)f) <

we gob ®(ty--h) ~w(ty) a8 h —0--.
Conversely, assume that o is vight-continuous at t, and V,(z; t,+ b, #)
- &> 0 when. & - O~lu~ Then we have V,(2; 4, t) > ¢ for every 4, < < b

V(@; b, to+h)

and (o (t) — o (1) |) «:, ° for every fy < t < ¢, for some f, < t, < b.

But V(w5 t) ;?v & implies that there exists a partition of [, ?,]:
by ==ty <y <o <Yy, =1 such that
Wy

2
D #llot) = ot > 5 e

P

—a(t,0)l) <
Noflotw,)

Ve

Sinee here ¢(|a(ty,) ~;~, 50 we geb

—@(ty,-1) [) > ‘g'

Replacing in the above procedure ¢, by #,, we conclude that there exists
a partition of [y, ¢,,]: b =ty <ty < ... <lyn, = b, such that

Ny
&

2 9’(!”“2,1;) ”‘m(tz,«v—m) > 3

Va2

Continuing this we see that for the kth step there exists a partition of

oy tomr1ds bo = Ypo < g < oo <y, = o1 guch that

T
\ ! &
/}J IUMEIUIN) B
sasd)
Henco we got
o
V(s by, by) 22 Z 2

Jewal =2
for r = 1,2,... and thus V,(x;a,b) = oo, contrary to our assumption.
2.14. Let » be a funclion of finite p-variation on [a,d]. The fumnction
(1) = V,(@; @, 1) 18 continuous (lft comtinuous, right continuwous) at a point
t @f cmcl (m,h/ zf the function m is continuous ( (left continuous, right continu-
ous) at this point.

(ik,v——l)l) > i

o (ty) —o 3

V(s a, b) i

¢ — Studia Mathematica XLV.1
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Proof. We shall prove. this only for right-continuous functions,
since the other proofs are analogous.

If o(t) is right continuous at a point 4, ¢ <
quality

0V, (w; tyy o RSV,

ty < b, then by the ine-

(®; 0, 5-+h)—V(z;a0,t) for O0<h<b—i,

which is a consequence of 2.11 we get V, (w; &, tp-+h) — 0 when k —» 0+,
Now, in view of 2.13, we see that » is right continuous at #,. Conversely,

let 2 be right continuous at #, where a < %, < b. Then, by 2.13, for every
s> 0 there exists 0< d,<<b—% such that V,(z;4, %)< g for

0 < h<é;. Further, let u, = sup{|e(,)—2(ly)|: o <t <1, < b} Since
the function ¢ is continuous on [0, u,] and hence iy wumiformly con-

tinuous on this interval, there exists # > 0 such that |p(u,) —@(u,)| < "2{3'

for |w,—u,| < and %, uye[0, ). The function # is right-continuous
at %, thus there exists 0 < 8, <b—1%, such that |[z(t)—x (%) <9 for ¢,
fy<t<t+0,. Then we also have

[z (1) — ()| — [ (7) — 2 (&) | < et
ht+d,and e < T

—=a(l)| <1
for fy <t < < 1. From this we get

sup {p(jz(t) — (1)) —p(le(x) —2({t)): e <T<H SIS +h) < ;m

Now, for 0 < k< 8 = int{d;, d,} we have, in view of 2.11,

0 V(@5 0, ty4-h) — V(a5 a, b)) < Vo (@5 by, fo-+0) +
+sup{g(le (1) — &(z))) — (|0 (v) — @ (o) ): a <T<l<t<t+h}<e
and this completes the proof.

2.2. Let # be a function defined on the interval [w,b] and let =
be a partition of [a,d] by points @ =t <t <...<t, ==b In the
remainder of thiy paper we shall denote by al the %op function defined
by the formula:

b=y,

by << tsit, v=1,2,...,mn,

e (&)  for
2(0,) for

where 6 denotes a set of points 0, satisfying inequalites ¢,_, < 0, =4,
forv =1, 2, ..., n. By 2, we shall denote the polygonal function defined by:

To(wlt)  for ¢ =1,
wn(t)=| 1, —t t—1,_

m(tv—-l) +

t,—1,_y t,—1,_ o(t) for ¢, <t<t, v =1,2,..., 0.
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2.2L. V., (2)) < V().

Basy proof of this lemma is omitted.

2.22. If ¢ is a convex @-function then Volz,) <

I’mof Let = be a partition of [a,b]: a —to<t1< o< by = by
and let #" be another partition of this interval: ¢ = Ty < Ty < are < Ty = b
Let in the interval (f,_;,?,) lie more than one point of the partition a

and let, further, Tuymr Sty <7 <l < Tuy < b K Ty Since then
T/tn’—'[u 7, —1
B (1) 22 e g (b, ) A At = g, -
n( ,U) 1”2___%—1 n( v«—l) Tyz—t,,_ql 9771(7/‘2) for “ My ooy Yoy
80 we get
o
3o flante) —oa(r)
ToHE Y
Tpy = Ty — by
= e 38, (1, Tn(v, 1))+ ————— (2, —, _
(p( wrtv_ - (Belt) = 2 ) 1/12—tm( (i) — {7y 1))) +
Ha
T Ty
-+ Z 7’( ;A“:‘;J’ (mn(ruz)'—mn(tw—l)))
o py b1 “2 vl
Tuy ™ Tt Ty, — by
< "“& y 1'(p(]mn(tv—l)"‘wn(THl—-l)[)—"' - ‘(p(lw"(rﬂz)_w"(rﬂl—l)‘)'!"
Ty = byt . Tyy— b1
Ha
Ty — Ty
+ ) gl — @l )]
Py PRI RS
i
T‘u Tu
= 10ty 2) — 0Ty ea) ) 0 (107, — )+
Ty — byt
Ty — by
-+ ’;L:t'_ (P(lll' (T,u2) - Tn(Tul—d)I)
Ly (e

5 H\l]) {(/7(“ P -1) "'/I":K(TMI»—J ) -+ W(I’v “2

(/(. ( u,) ‘B (T/q——l)‘)}'

Now we conclude that there exists a partition =’ of [¢, b] such that
to every interval (f,.,,%,) there belongs at most one point of this parti-
tion, and such that V,(a.;a) < V,(@,, ")

Let now =’ = =n’' and let to the interval (¢,_,,t,) belong one point

@a(t,_)l) s

7,. Then wo have
t,—T, T, — b
Ta(1,) = e @y () + (1),
v—tw—l t —tﬂ—l
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whence we get

(P (Imﬂ(rﬂ) —mn (Tl‘—l)]) + ‘P (lmn(7u+1) - mrz (T t) |)

= qj(?tli:{z (‘/’U (tv 1) @, (T;z—l))+ %:—tt L (’5’ (t ('L"M 1))) -
T b1
t— —t,..
|“P(t __tfu-(')} ( ,¢|1) B (1, ))+ -Z,'—]“_l (.I‘ (Ty0p1) — @(2, ))’)
< tty:-tffl ((p(lxn(t,_l)~m,,(r,‘_1)\)+<p(1m (Tugr— oy (B [))
+-;-“{7t—( (192 (1) = B (Tu)l) o (120 (T 10) — 2 (1) )

< sup {‘P“%(t) "—mn(ru—l)l) +q7(|"”n(7u+1) '—'mn(l)l) b= tﬂ-—l? tv} °

From the above consideration we conclude that there exists a parti-
tion #""* of [@, b] such that in neither of the intervals (t,_,, t,) lies a point
of thig partition, and such that V,(z,; n") < V,(#,; @’'’). Partition ="
is clearly a subpartition of =. Since at the point of = the Iunction,s @
and @, take the same values, hence V, (z.;7') = V (2;2"") <V, ()
Thus we obtain V,(z,;n') < V,(»). Since =’ is an urbitrary 1)5\.1 m‘rum of
[a,b], weget V,(2,) < V,(w).

2.31. For any o-function @ the functional V,(-) on the space of fumetions
@ defined on the interval [, b] and satisfying condition x(a) = 0 is a modular
in the sense of [10]. Hence it follows that on the linear space

P = (e ¥ Lim V,(An) = 0}
A0+
we may define an F-norm by

llell, = inf{s > 0: V,(#/e) e}, (we ¥™7).

The space 7 s complete with respact to this morm (see B.11).

2.32. If o satisfies condition (V,) (in particular, ‘Lf o {w) == p(u®) for

= 0, where v s a conven p-function and s > 0) then ¥ = /"’””

Proof. By the hypotheses we have 2p(u) < p(du) for 0= w3 uy
where d > 1 and 4, > 0 are some constants. For arbitrary we ¥ ‘” o ,/ 0
we have by 2.01, 0 < d(2) < co and so for 0 < 4 < u,/(2d (@) and ::1, parti-
tion = of [@,b]: o =t <1t <...<1, =b we obtain.

n

Zzw Ao(t) —a (b)) < D pldile(t,) —

y=l

2V (Azw; =)

a(t,0)l) <V, (dA)
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and further 2V, (ix) < V,(dis). Hence for arbitrary ze ¥™*? we get

2lm V¥V, () < llm V,(dAz) = Hm V,(iz)

A0t A0
what yields lnn V,(Az) = 0. This implies that ¥™* < ¥™**. Since the

other 1n0111310n 1s obvious, the proof is complete.
2.33. Let p(u) = p(u®) for u>

s 48 a nwmber such that 0 < 8

norm in the space ¥™*7 by

= 0, where v is a conver p-function and
< 1. Then we may define an s-homogeneous

lellgp = inf{e > 0: Vo (0/e”) <1} (ze ¥*7).
T'his norm is equivalent to |- ||,; more precisely

ellste < ol < 215, for me V% such that V(@) <1

Proof. We shall prove only the above inequality. A g-function ¢
satisfies the condition ¢(s%w)< ep(u) for v >0 and 0 < e< 1. From
this we deduce that

Volwfe) = V,(e0[el+D8) < eV, (w)e™)  for 0 < e 1.
Now, for we ¥ guch that V,(z) <1 we get
049 = inf{0 < e < L2 V,(/sPT08) < 1}
> inf{0 <e<<L: Vo(afe) < &} = |l

and

1/3}

ol = nt{0 < e < 1: ¥, (afe¥) <
<1t V,(@/e) <1} = |2l

> inf{0<e
2.34. If ¢ is a convew (p—f@'mot'iow, satisfying conditions (0,) and (oo;)

we may define on ¥™*7, besides the homogeneous morm |- l,, another homo-
Jeneous norm

i = om0 ST st st6], e,

o]
where the supremum is taken over all partitions ww of [a, b]: 6 =1, <t < ...

n
.y @) such that 3 ¢*(la,)) < 1. The

V=l

<1, == b and over all n-tuples (a,, ..
norms || ||y, and |||l are equivalent, namely
Il < 1@l < 200l  for every we ¥ ([9]).

3. Riemann-Stieltjes sums. Let o and y be functions defined on
an interval [a, b]. Further, let = be a partition of [a,d]: 6 =4 < ¥, < ...
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<1, =b, and 0 a system of points 0, satisfying inequalities t, ; < 0, <1,
fory =1,2,...,n Let ns denote

Ri(@,9) = D (6,)(y(4) —y(t,_)-
=l

This sum is called the Riemann-Stielijes sum.

In this section we shall estimate the sums Rl(w,y) using ¢-varia-
tions of functions » and y. This estimation will be obtained by two mutually
independent methods.

3.11. Let @ = {a,} be a sequence of real or complex numbers and
let ¢ be a p-function. Let us write

o0

opla) = D p(la,))

=l

and )
(@) = sup g, (a(a)),

where the supremum iy taken over all strictly increasing sequences of
positive integers a = {a,}, while a(e) denotes a sequence whose terms are

ay @,
= ¥ ¢ ‘
0‘1—2% and ¢, = Z a, for »=2,3 ..,
U=l fr==ay.y -1

Cleauly, g,(a) < g}(a)-
3.12. Let @ be a log-convex p-function and a = {a,} o sequence of real
or complex numbers. Then for every positive integer m the following inequality

8 true:
[}

Proof. The inequality in question is obvious when at least one
number a,, L<<» <%, is equal 0. So we may assume that all numbers
a,, L<v < n, are different from 0. Since a log-convex ¢-function ¢ is
representable in the form g(u) = ®(lgu) for > 0, where ¢ i n convex
function on the whole real line, we get

2 o(igla,)

ol - «)(wzlw |)
=—Z pllo) <oy,

v=1

and the desired inequality follows.
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3.138. Let ¢ and g~ be two log-conves g-functions and let o = {a,} and
= {b,} be two sequences of real or complex numbers. Then for every posi-
tive integer n there exists a positive integer k such that 1L < k < n and

1 .
|alcblc| < P (-;b‘ Qq:(a')) Py (’::T Qop~ (b))‘

Proof. It is clear that for every positive integer » there exists a posi- -
tive integer & such that L< k< n and: |ab,) < la,b,) for » = 1,2, ..., 0.
Then, by 3.12, we have

wog<(] [1s0)"=] []=
LY ves)

3.04. Let o and g~ be two log-conver g-functions and let & = {a,} and
b = {b,} be two sequences of real or complex numbers. Then, for every positive
integer n there holds the imequality

‘2 Z a,,b,,l<<n_1(eq; pz1{gp~ ( )+Z ‘p_"( Qq,(a))(p 1(1 k. (b)).

yeml prms]

n

)

Ij b " < (%; ew(“i)w:l (71@_ 0pn (b)).

For n =1 we assume that the second term on the right-hand side is
equal 0.

Proof. Tt is easy to see that this inequality is satisfied for » = 1.
We assume that it is satisfied for n—1 and we shall plove that it
then holds also for #. To this end we consider two sequences a’ = {@, .}
and b = {b,}. In virtue of 3.13 there exists a positive mteger k such
that 1<k n—1 and

) P

(b), we also have

A

b (a) and g,~ (D) < gp~
)) oz 1( -7 enF (b))~

= {¢,} and d = {d,} in the following

Since g,(a) < o,(0

a0l < 1(

Now wo define two other sequences ¢

fashion :
&, for w<k, . b, for <k,
¢, = ay-l-ay,, for w=Dk, and d, =1 bp+bg, for v =5§,
Gy for »>F, D,y for y>Fk.

We observe that ¢ = a(a) and d = a(b), where a = {a,} is the increasing
sequenco of positive integers whose terms ave a, = »forv =1,2,...,k—1
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and o, =y-+1 for v = k k4+1,.... In view of the above we have g (o)
< oh(a) and g} () < o5~ (B). I‘urthel we check that

-1 ¥ k1 n—-1 vl
’Z' Zef‘d" —~2 201 b +Z y (by+ breyr) + 2 Z“Mbwl-l
r=1 p=1 p=1 veafofl gl
= @1 by + Z Z%l’u
PYem] pie=]

Trom this and the induction argument we finally get

‘Z 2“ b< 22” ] + [0 b

N2

L.
(va(o))q) Qm"’ + Z ("‘ )(/) ( 0((1" (d)) ']"

Y]

+qa~1(n—if B (a))qo_l(——— - )

p_1(0p(@)) =1 (25~ (B)) 4 Zw (

wam],

=

@)= (a2 @)

3.15. Let ¢ and @~ be two log-convew p-functions and let 2 and y be fwo
Sunctions defined on [a,b] and, moreover, let x(a) = 0. Then the following
estimation of Riemann—Stieltjes sums is true

1.
)= 37, ).

i} Lo (L
Tl Ve )+ Do 7
Proof. In view of 2.2 and the fact that x(a) = 0 we have

e
Bi(@,y) = Y o(0)y(t) —

B (2, )| < ¢

Y(to)) = D2y (4) —y ()
= g:“z‘“l (mgz (t,u) -—1)) (l.l/ (tv) Y (tv-—l)) .

Now we take into account two sequences @ == {a,} and b == {J,}
where @, = a,(t,) —af(t,4) for » =1,2,...,n and @, = 0 for v = 0|1,
W42y 0y by =y ) —y () for » =1,2,..., 0 and b, = 0 for » == -4

1, m+2,... Let us notice that gp(a) < V,(ah) and gh. (b) = V. (1)
In virtue of 2.21 we have V,(2)) < V,(w). Thus, in view of 3.14., we
obtain the required estimation of R.(z,y).

3.21. Now we shall estimate the Riemann-Stieltjes sums using the

Haar functions defined as follows: ‘

2(8) =1 for te[0,1]

icm
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and
PR T

i 2k—1 2k
or el —Z"TF,W B

T et 2,

Hamgr (1) = Yo
0 for other ¢ in [0, 1],

(==0,1,..., b =1,2,...,2%,

For a function o integrable on [0, 1] we define the Fourier coefficients
with respect to the ITaar system:

w(0) = [ o) 0t = [ o
0

and
1
s i(@) = [ @(2) g (0)
0
1

1 f (w( 1 n 270—2) m( t n 270—1))dt
= oL nrl | 1 1
2;/2"o 2 2 om 2"
for m =0,1,... and %k =1,2,...,2"

Further, using the Flaar functions we define the polygonal Schauder
funetions

t N
wt) =1  and  w,(t) = [ ga(r)dv for m =1,2, ... (te[0,1]).
; ,

The system {w,} is, ag is well known [1], a Schauder basis in the
space of all continuous functions on [¢, 1], i.e. every continuous function y
on [0, 1] can be expanded into the following uniformly convergent series

y(t) = Z O @, (1),

M

where the coefficients e, == e, (y) are given by

1
= [ nbdy ) =y1)—y(0)
0 .

and.

2k —2 2k —1 2k
sz"Hk )y (8) == “‘/Zn(?/( PR )“21-/( gntl )+?/(2u+1))

for w =0,1,... and % =1,2,...,2"
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From this we deduce that if # is a function. of finite (ordinary) variation
and 4 a continuous function on [0, 1] then
1

CJomay) = D) an(@)en(®)

0 Ma=1

Indeed, by well-known theorems comcerning Riemann-Stieltjes integral
we get

1 /]
[eway ) = lim {1 w(t)d(z O (1) O t)) Zom(y f £) ey, (1)
0 OO

Mea e 0

~Zam f ) tn (1) = Zam &) 6 (1)

m=1 M1

3.22. Let ¢ and o~ be two convex p-functions and © and y two funclions
defined on the interval [0, 11. If the function w is of finite (ordinary) variation
on [0, 1] and satisfies the condition 2(0) = 0, and if for the function y the
inequality

@~ (ly () =y (ta)]) < J (b — o)

holds for 0< b, <t <L (K 48 some constant, K > 0), then the Riemann—
Stieltjes integral for the function @ with respect to the function y ewists (m(?
moreover, the following inequality is true:

| f 0(0)dy()] < p-(Volalloz 22%_‘(9” v (r))w(;{»fw)

Proof. The existence of the integral in question follows immediately
from the fact that & is a function of finite variation and y is a continuous
function on [0, 1]. To prove the desired inequality we notice that since
(0) = 0 and @ is 2 convex g-function, we have

o l—w((” )—a(0))dt])) < g (frp(lm ) =@ (0)])dt) < g V(@)

and
2;/2”
[ o lﬂznuc(”/
Iemal
0 9% —2 t 2h—1
= o5 2 g T —gar | — W\ g T g ||
Ic-l 0
Py & ¢ 9k—2 o ok—1 1
—_ () - 5 .,
<f o Ly (‘ (27141 -+ gl )_m( STl -+ ST ) )(“ngﬁ- Vq,(w).
0 k-1
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Thig implies that
P
N g @) < W gy (=
2 oMl ES Py W V,,,(w) for n = 0, 1,...
Toam,
Taking into account the property of y we obtain

lox()] = Iy (1) —y(0)] < gz, (K)

2% ~2 2% —1 2k—1 2k
(l/( ot )*—?{( ontl )’ +‘f’/( o+l )—y(zn-{-l)
o K
S 21/2” 'p—':l( ol )
for »=0,1,... and & =1,2,...,2

Hence, in view of the following inequality, which is a simple conse-
quence of 3.21:

J f o (t)dy ()

wo get the desired inequality.

3.23. Let ¢ and ¢~ be two conver p-functions and x and y two functions
defimed on [a, bl and let x(a) = 0. Then the following estimation for the
Riemanmn—Slielijes sums 1s true:

/ 1
B, 11 < gVl Toet) + 8% ) e )

and

loang(9)] u/‘é’ﬁ(

).

[

> lan(@)len(®)] = las(m |cly1+22mmk @)l o491

=0 k=1

n=0

00
o 0 1 1
% 54\_/ 7’»‘1(';1‘ Vw(w))‘f’:l(”v“ V,,,~(y)).
Weul
Proof. In virtue of 2.2 the Riemann-Stieltjes sum can be written
in the form of an integral,
n

l"” ( ! "/) > m(()ﬂ) (('/( nl) -Y (tw'—l)) -.:_— E mgx(tv) (yn(tv) "'yn(tal'Fl))

vr»~l yesl

f Wy (11/,,

When. the polygonal function 4, is constant on the whole interval [a, b,
i.e. when V,~(y,) = 0, then the required inequality is obvious. Let us
excludo this caso ,m(l guppose that y, is nobt constant on any subinterval
of the interval [«, b]. Then by 2.11, 2.12 and 2.14 we see that the function
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0(t) = Vo (Ya; @, 1) is strictly increasing and continuous on [a,d] and
$0 there exists its inverse function v_,. The function ¢(s8) = v_,(V,~ (¥.)8)
is strictly increasing and continuous on [0, 1] and, moreover, ¢(0) = «
and ¢(1) = b.

Thus ¥, (o (

());0,1) = V,(a}: a, b) = V,(ah) and

b
Ri(,9) = [ o (tdj,,uwfw (8)) 8y (4 (5))-

The function «f(¢(-)) is a step funetion on [¢,1] and besules at (¢(0))
= #(a) = 0, and by 2.11, the function y, (¢(-)) satisties for 0 < s, <5, < 1
the inequality

P~ (lf‘/n(Q(sz)) ~yn(4(81))|) < Vpn (f’/ni q(s4), ‘1(32))
K Vo (Y3 @) 4(82)) = Vo (U3 @5 4(81))
= ”(4(32))“7)(!1(31)) = Vo (42) (82— 81)
Thus, in view of 3.22, 2.21 and 2.22 we get the required estimation of
R (2, ).

To complete the proof we must consider the case when y, is not

constant on [a, b] but is constant on some subintervals of [@, b]. Then
the polygonal function
1 i
Ui ) = 021V, (0) 5= [ (L—signly ())ds, (a<t<D),

a

where y'(s) = lim (g/,, (s-+1) ——y,,(s)) /b for a <8 < b, is strictly increasing
J—0--

on these subintervals. Moreover, since y; is a nondecreaging funection
on e, b]and ¢~ a convex p-function, so (see [9], 1.03)V,. (¥z) = p~ (yz (b) —

— 9z (@) <V, (y,,). Hence for arbitrary 0 < e < 1 the polygonal Iuncmon
(L—¢)y,.+eyy; is not constant on any subinterval of [a,b]. Besides,
sinee ¢~ iy a convex g¢-function, so in view of 2.22, V,,,N((l-—a)g/,,wl-ey/;)
S L—=&)Vou (Ya) -V (yy) < Voo () € Vou (). By what has already
been proved we get :

I(L— &) Bo(m, ) +eRal@, y7)| = 1B (@5 (L— o) Yn-teyz)|

@) + Z 2" (51,; Ve (w>) P (;,1—.1— Vo~ (?/)) ,

n=0

(V@) @y (Ve

and letting ¢ tend to 0 we obtain the desired estimation of RZ(w, y).
To complete the proof we write, in view of 1.12 and the fact tlmb
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P-1(20) € 29..

AT ) D2 (R0 g e v )

N0

1(v) for v = 0, the inequality

, . 1
é(p—l(vrp(m))(p: (l ne ’l/ 2 2 ’1177—- ('ZTQ_V (x )‘P 1(211,+1 Vv"" (y))

=)
1 ' 1
aZm SVol@)) 21 Vo ).
Pt ],

4, Ricmmm~S‘tiell;jes integral. In this section we shall be concerned
with the problem of existence of the Riemann-Stieltjes integral (RS-inte-
gral) of a funetion we ¥™ with respect to a function ye ¥™*~. Besides
we shall prove a generalization of Helly’s theorem on passing to the limit
under the sign of RS-integral. From the estimation of Riemann—Stieltjes
sums given in 3.16 we derive the following

4.0L. If ¢ and ¢~ are log-convex @-functions and the RS-integral of
a funotion we V" with wagpe('t to o function ye ¥ exisis then the following

estimation holds:
, 1
| f w(t)y (1) )+ an- =V,@)) v (= 7, ).
o =l v
From this we get
4.02. If ¢(u) = p(u®) and ¢~ (u) = p~(@*"), (4= 0) where v and p~
are convex g-funclions and 0 < 8, 8~ < 1, and if the RS-integral of a function
we PP with respect to a function ye ¥*" emists then the following esti-
mation holds:

‘fl ol "/“f (f/‘ (L)pzy (1) + 2,‘7’ 1() ( ))nwn”suyn;':';.

4.1, If ¢ and g~ are log-convex p-functions such that their L. C. Young’s
b

% oy (Vo (@) oz

sorios 8 conmargent then the RS-integral f Yydy(t) for functions ©e@¥™*?

it e

and ye ¥V oiwists.

Proof. With no losy of generality we may assume that z<% ¥ and
e, From the hypothesis, by 1.13, we deduce that there exists a convex
g-function y satisiying condition (0,) and such that the L. 0. Young’s
sories for log-convex functions -~ (u) = p(p(w) and ¢ (¥) = plp~ (v)
(w32 0) iy convergent. 'We notice here that the funot:ons %~ and yv de-
tined by g () = g (u)fp(u) and xv(u) = @ (w)/p~ () for w> 0 and
2~(0) =5 v (0) == 0 are non-decreasing and contmuous :for %z 0.
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Now, let m; and m, be two partitions of [a,d], my: @ =¥ <1V < ...
e <t =D, my: o =1 <1 <... <) = b and let = be a partition
of [a,b]: @ =1, <t <...<t, =>b such that all partiting points of =,
and m, are partiting points for =, and no else partiting points of = exist,
ie. m =m Um,. We observe that

1 n ’
Rii(w,9) = X @ () [y () —y () = D ant (0) (W () —y (1,..0))
pe=] ]
and, analogously,
n
R (@, y) = D) oz () (y (6) —y (b))
yeal

Hence we have

n
R} (w,y)— B2 (0, y) = 221‘ (ol () — 022 (8) [y (4) ~ y (b)) -
The sum on the right-hand side of the above equation is the RS-sum
of the functions % (27! —af2) and y with respect to the partition m. Thus,
in view of 3.15 applied to the log-convex functions ¢~ and ¢v, we get

% 1 ’ 1
B @, 9) R 0,9 <4 D) v Vo (=)o Voo ).

y=l

By 2.02, 2.01 and 2.21 we have here

Vor (4) < 27 (28(9)) Vo (9) < 17 (2020 (Ve (9)) Vi (9) < 00
and
Von(Rlant—a22) < (03 —2)) V,(Hait —al2))
< gr(dla—al2)) (Vo) + V,(472)) < x- (@ (alt —a) +d (2% —))- 2V, ().
Now we take an arbitrary number # > 0. Since the function », being
continuous, is uniformly continuous on [a, b], so there exists a 6> 0
- such that for the partition «, of the mesh &, = sup{H’—ufl),:
» =1,...,m} the following holds true:
Aot —w) = sup |op2(t) —a(b)|
astsh *
=gup{ sup |@(0M)—a@)]: v =1,...,m)} < iy

Y <V
and similarly for the partition =, of the mesh o, = sup{f —2,:
vo=1,..., fa}, d(mgni"‘m) < 3.

Thus we have

]

1 ]
D22t Vw(w))(p:l (575 ).
1

Vo=

RS2, y)— Rl (0, 9)| < 4
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On generalized variations IT 95

The right-hand side of this inequality tends to 0 when 5 — 0+, since
for 5 == 1 the series converges, by 1.11, and when 5 — 0+ the terms of
thig series comverge monotonically to 0. From this we conclude the exis-
tence of the integral postulated in the theorem.

4.12. When lim supu™p(u) = co Theorem 4.11 is trivial.
o4

U0+t
Indeed, it is known ([2]) that then the only function belonging to
@y* is identically equal 0 on [a,b].
In case when ¢~ is a gp-function such that liminfu'p~(u)> 0 it
U0+

is known ([87) that the inclusion #™?~ < ¥ holds, where ¥ denotes
the clasy of functions of finite (ordinary) variation on [a, b] and equal
b .

zero at the point ¢ = ¢. Thus then the RS-integral [ (t)dy(t) exists for

a

every function @ continuous on [a,d] and for every function ye ¥™°".
Theovem 4.11 in this case does not always decide on the existence of the
RS-integral sineé L. C. Young's series is then not always convergent.
B. g, for convex g-functions ¢(u) = exp(—u~") for 0 <u <} and p(u)
== ¢ % (du —1) for » > ¥ and ¢~ () = w for 4 > 0 the L. C. Young’s series
is divergent. b

The existence of an RS-integral [« (:)dy(t) always implies the exis-

b

a
tence of the RS-integral [y (¢)da(t) and we always have the relation
[

b b

[yhan(t) = ((0)y(0) —o(a)y (@) — [ o @)y ().

a a
Thus Theorem 4.11 is also true for ze ¥™*? and y«# % *?". This symmetry
in the problem of existence of the RS-integral for functions # and ¥ and
symmetry of L. C. Young’s series for ¢ and g~ suggests to atitempt prov-
ing a theorem analogous to 4.11 where no assumption of continuity of y
is done. Such a theorem would have a symmetric form. This can be done
when the sets of discontinuity of functions # and y are disjoint. We shall,
however, limit ourselves to remarking that it is then convenient to use
the following theorem.

4.13. Lot ¢ amd ¢~ be conmen p-funetions such that their L. 0. Young's
sorios (*) s convergent. If fhe sequences @} & ¥ and {y,} = V77 are
uniformly comvergent on [@, b] respectively to functions @ and y, and such
that sap V, (A @,) < oo and sup Voo (Ay,) < oo for some constants A, A, > 0,

n n

and if the RS-integrals of functions w, with respect to funclions i, ewist for
W= 1,2, ... then the RS-integral of the function w with respect to the Sfumction
y owisls and

b b

Jowar = 1m [ 5,0dn0.

a N0 o
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Proof. The proof will remain general if we assume that {#,} = ¥
and sup V, () = My < o0, {y,} = ¥* and sup V,~ (4,) = M, < oco. By
) n

n
2.03 we then have V,(z) < M, and V,~(y) < M,. Now, in view of 1.13,
we introduce, as in the proof of 4.11, functions ¢+, v, y~ and y~. Further,
in virtue of 3.15, we obtain that

|R (‘T:y) R (m'm J'H)
<2|E(d(@+a), $ly— ynH-le"(%(w )5 3+ )

s Sl oo fir (o)

( (w— wn))) (ﬂh(%%(*}(y-&?/n)))-

-l-42¢ 1( 14

The right-hand side of this inequality tends to 0 when # — oo, since
by 2.02 and 2.01 and by the uniform convergence of the sequences {w,}
and {y,} we have

sup V4p '\(%:(a} + mn)) < V,,,.\ (w) -[" sup Vq)* (mn)
< 120 Vo @) Vo (@) 451D (1 (20 (Vo)) Vo (a)
< 2%‘(2‘7’~1(M1))M1 = M{ < oo,

2 (Y= YV o (39 — ) < 27 (AW — 9V e () +V e (92))
27 (Y —v,) -2 M, >0

Vo (3 — )

N

with # — co.

N

Similarly,

Sllp va(’z‘(ft/-l-yn)) < 2xv(2(p:_1(M2))M2 =M, < oo,

Voo (b@—a,) <

From these inequalities it follows that for an &> 0 there exists an =,
such that for n > n,

2~ (d@—a,) 2M; ~0 with % — oo.

&
(+) B (@, 9) = Ral@n; 9l <5
regardless of the partition = of [a, ] and of the system of points 0.
Since the RS-integral of *,, With respect to Yy exists, hence for
a given &> 0 there exists a § > 0 such that for two partitions =, and m,
of (@, b] whose meshes are, respectively, § wr Ony < 0 we have

lR?tll(xnwyno) -R (50‘7,07Jn0)[< —

3"
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Trom thig and from (+) we get for the partitions =, and z, of [a, b]

|RoA (0, ) — B2 (2, )| < B3 (x, )~ R @y, Y) + IR gy Ymy) —

= 185 Oy Gag)| -+ 4 (g )~ B (0,9)] < 445 =2
and this implies the existence of the RS-integral of @ with respect to Y.
Now, taking in (+) & sequence {m,,} of partitions of [a, b] with meshes

6,,! -0 (m > oo) we obtain the mequahty

!fw(t)dy(-n)-—

and this immediately gives our assertion.
The following theorem concerns the case of the interval [0, 1].

4.14. If ¢ and ¢~ are conven p-functions such that thewr L. 0. Young’s
series (*) 18 convergent then for functions me ¥ and y<€¥™*" the following

relation holds:
Z O ()0 (9),

M=l

fwn(t)d?/n(t)\Q.—:' tor n = ny,
[

1

jw(t Ydy (t) =

where a,,(x) ond ¢, (y) are defined in 3.21.
Proof. We may assume here that y<##* . From the proof of 2
and in view of properties of polygonal Schauder functions o,, we see that
o () < (2d(wm)) < o0 and ,,(0) = 0 for m = 1,2, ... and further,
tham W, €@ ¥*". Thus, by 4.11 and 4.12, the RS-integrals of o with respect
to w,, exist and

f (1) dew,y, ()

Now we observe that the function

”/N/ 24 07?1 m (i

Meal
in in faet o polygonal function ¥, for a partition @ of [0,1] by the points
By == /2 fory == 0,1, ..., 2handt, = (v—F)2"fory =25 +1,..., 2"+ F,
when, m = 2"}k, 0 < T < 2" Hence, by 2.22, we have V- (y,) < V,~ ().
Tho sogquence {y,} converges uniformly on [0,1] to a function y. Thus,
by 413, we get

f @ (1) (1) @t = 6, ().

<1<

1 n
fl a@dy () =1lim [o@)d( Y only) onl)
0 k0o § =1
= 2‘ only fm(t Ay (1) = Zom(y)a’m(m)-

7 - Studia Mathematica XLV.1
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4.15. Lei ¢ and o~ be log-conven p-functions such that their L. 0. Young’s
series (*) is convergent. If w0V amd {y,} = ¥ *~ i a sequence of fumctions
converging in o dense subset of [a,b] containing the point b to a function
ye ¥ and if sup Vo~ (Ay,) < oo for some constant > 0, then

n

11mfw(t dyn ——fm Yy (8)
N> g
Proof. Without affecting generality of the proof we may assume
that @07 and that {y,} = ¥, sup V. (4,) = M < oo and ¥, ({) -0
n

a8 1 — oo for te D, where D is a dense subset of [4, b] containing the point b.
Algo the point @ belongs to D since ¥,(a) = 0 for » =1, ... Replacing
in the proof of 4.11 the function y by functions y, (» =1,2,...) and
taking into account that

 sup Ve () < 12 (120 Voo (0] Ve () < - R0 (DD < 0,

we conclude that for every &> 0-there exists & § > 0 such that for arbi-
trary partitions w; and m, of [a,b] with meshes 6., 4, < we have

regardless of x.

&
|Rf,11(.%‘, yn)—Rgr:_fz(wz yn)‘ < '3‘7

Hence it follows that for an arbitrary partition = of [a, bj of megh 8, < §

we have
’ f 1) dy, (

The set D is dense in [a , b], containg the points ¢ and b, so we can
find a partition = of [a,b]: @ =4 <¥ <...<t, =b whose mesh ig
8, < 6 such that all its points #, (v = 0, ..., m)belong to D. Since y,,(4,) - 0
when # — oo for » =0,1,...,m, thus for a given &> 0 there existy
an. 7, such that

(B (o, 9] = {Z 0,) 1 (6) =t

&
Rz, v,) <§, regardless of n.

"
<2d > Wu u ]< — Lor n 0

™ 0

Hence for # 2= 1, we get the inequality

Ub w(t)dyn(t)i < me(t)(zyn(@) -

from which it follows that

- & 2
B30, 90| + T, ] < 5t 5 =

llnlj d./n( ) =

N0 3y
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Theorem 4.15 generalizes Helly’s theorem on passing to the limit
under the sign of RS-integral.

421, If ¢ and o~ are convew g-functions such that 1 < 8, K0, < 0
and 1 < 8yn K 0y < 0o and their L. C. Young’s series is divergent, then
there owist functions %eB V™ and y<@¥™**" such that their RS-integral
does not exist.

‘Proof. Hypotheses 1<s,<o,<oo and 1< $,.< 0, <oo are
equivalent to the statement that for some constants ¢, d, ¢~, @~ > 1 and
uy > 0 the following inequalities hold for 0 < u < u,:

(By) ?(2u) < ep(u),
(Vs) 20 (u) < d™ p(du),

From these for 0 <v << v ini{qo(uo ), @~ (%)} and for a positive integer m
such that sup{e, 2d, ¢~, Zd , Y 4} <m we geb

2 (2“)\ ¢~ ( )
20~ (u) < & Lo~ (d7u).

< p_a(mo), (7)) pzu(0) < gz (mo),
< fmp_, (v), (27) gz (mo) < Fmpz; (v).

1) el
(2) rrf—l(mv

We take into account the functions # and y defined on the interval
[0,1] in the following fashion:

1 - 1
— 3 k
2(t) = i E qo_l(——-mh) sin(2nm®e),

1 1
y(t) = e Z Py (W)(l — cos (2mm®t)).

Both series in the above definition are uniformly convergent, since by (1)

1 1 1 1 . ~
we have ¢_; (W) <“599—1 (“,;,';k‘:i‘) <... <‘2‘F‘P—1(1)7 and similarly by (1)

1
(13 1(%1 ) = (1) for B =1,2,...

uous on [0, 1] and their value at ¢ = 0 is 0. We shall show that V,(z) <1
and V,.(y) <1 For 0 <h<1and 0<I<1—Fk we have

The functions z and y are contin-

s (bR —a (8) ;<-m2(p_ (w) -2| cos (mm® (26 + 1))| Jsin (xm”b)|

BT IVING Y

k=1
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with ! = sup{k: m*'h<1}. When I =1, the first term in the outer

brackets equals 0. By (2), for k=1,...,1—1 (1>2) we get the

inequality
A

1 i1 1 m
e L e
L\-E-L g 1
(—2—) T m ’Wq

<(5) e f]

1\-kL g,
<3 o

and, by (1), for & =1,1+1,... 1>

1 1 1 1 k-1 1 1‘75—-2
ool < 3ol <) el (a) e

Thus

|m(t+h>—w<t)|<%{n2( )M" +§j( )k_}fp- (h) < ga ().
k=l

]

1) the inequality

LT

From this we deduce that V,(#) < 1. For the function y we get a similar

egtimation

Wy (E+h)—y @) < <% 290_1( )2[s1n mm® (264 h))| |sin (rm¥h)|

Te==1

YT SESS WY

mP'h <1}, Using now inequalities (1) and (27) in
1) and (2) we see that [y (t--h) —y ()] < gy ()
(y) € 1. Thus we have shown that @ ¥

with 1 = sup {%:
a similar manner as we used (
‘and hence we deduce that V,~
and ye®r**".

Let us now consider the Riemann-Stieltjes sums of the form

mh

o= Sl bl o5
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We notice that
mt n—1
R ! 1 mcm®y
n = '8*7;2‘}7_1 -”7‘; Sin. =

1 k=1

-1 1 7

. _E_Z . 1 cos 2mnm’ (v —1) 2nm'y

8m £ el P ’ m® TS

11.1n1

(si)nm Sioal3e) e )
(S

By the identities

1 < sin(n 4 §)¢ X cos 31— cos (n+ %)1
i P ol L 20 = re T R TR
g Z O = Zsm”t 25 37 :

pam vl
(0 <t < 2n),

27:'m, v ( 2t (w—l) 2-rcm’v))
cos —co8 .

m"
va=]

well known. in the.theory of trigonometric series, we get for k 1

' '
Y . 2wy 2mmt(v —1) Ormly
$in ———— { cos . — o8 ——
#em] m m m

mn ' - N
2reml = (mk 7 O (m¥ — m?

) 1 _1_ c()sﬂ —1] {sin 21(/’” —X—m)'ll —{—sin ﬁ(m "y Wb)y +

Z 2 m” . m"® m .

waz]

3 - m

o4 2mwt 2w (mF—mb)y
4 = sin - [ Gos
2 m m

) kL o\ '
o5 2% (m _[—m)v)} -0

and for ko=l o==1,2,...,0—1

Uil i P %
\“1 . uTClH;")J Brem® (v —1) 2nm”y

’" H [N — 4“’/ o — COS n

m" n m"

2remk drcm¥y
n——T 1 ~cos )
m m

|'mx1

171“’
(1 o '. 4nm y 1,
- cosm-n-——l 231

s

1 m l '
= g e I e T T
T mE 2

Ty
3
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Thus
w1,

1 1y .1
2 g 3, ) o 5

k=1

The aggumption that L. C. Young’s series for ¢ and ¢~ is divergent
then implies by 112, that R, — oo when n — oc. This proves that the
RS-integral for # and y does not exist.

From 4.21 follows the following:

4.22. If ¢ is o conven o-fumction satisfying conditions (0,) and (oo,)
and such that 1 <s,< 0, < oo then there ewist functions <®+¥™" and
Y&V such that their RS-imtegral does mot owist.

5. Vector functions of finite ¢-variation. In this section we shall
attempt to generalize the motion of a function of finite g-variation to
vector functions.

Let X be a Banach space and & its dual, and let 5, = {£e5: ||£] < 1}
Further let ¢ be a ¢-function and # a function whose domain is [a, b]
and range is in X. We define

VE(#) = sup{V,(éw): £<E}.

We call V¥(x) the p-variation of  on [a, b]. In the sequel we shall denote
by 7% the class of ‘all functions #: [a, b] — X of finite p-variation on
[a, b] and satisfying the condition #(a) = 0, and by ¥ the class of all
tunctions # such that ize 7% for some number 1> 0 (depending, in
general, on ). Further, by ¥#"% we shall denote the class of all contin-
uous functions on [a, b] belonging to ¥'% and by 7% the class of all
continuous functions on [a, b] belonging to ¥f. ¥ is a vector subspace
of the space consisting of all functions #: [a, b] - X satistying the con-
dition #(a) = 0, and €% is a vector subspace of V32,

5.0L. If a function w: [a,b] ~ X satisfies the condition w(a) = 0
then

P (@) < V@), where d¥(@) = sup{le()|: o<t <b}.
Proof. By 2.01 we have
o (sup{d(£n): Ee5}) = sup{p(d(sw)): £e5,}
<sup{V,(5m): feBy} = Vi¥(a)
and this yields the desired inequality, since
sup{d(&x): £eBy} = sup{sup{|&n(t)]: EeFy): a<<t< b}
=sup{lle()l: a<t<b} = d¥(2).
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5.02. If ¢ and @~ are p-functions such that the fumction y defined by
y(u) =g~ (u)p(u) for w>0 and x(0) =0 is nondecreasing for u >0,
then

Vi (@) < x(2d% (@) Vi (=),

where &~ () 18 defined as in 5.01.
5.08. If {w,} is a sequence of functions from [, b] to X which is weakly
convergent on [a, b] to & function @, then Vi () < limint V7 (w,).

--»00

‘We omit easy proofs of 5.02 and 5.03 since one needs only apply
2.02 or 2.03 o the function &z, where &5, in the obvious manner.

Similarly as for scalar functions we may also define by formulae
2.2 the step functions a2 and polygonal functions @, for a vector function
z: [a,b] - X.

Since for every &eZ and, in particular, for every £eZ, we have
gl = (&w)) and &v, = (£),, hence, by 2.21 and 2.22, respectively, we
obtain the following lemmas:

5.04. V¥(@l) < V().

5.05. If p is o conven p-function then VZ(w,) < Vi (#).

506, ze ¥V if and only if Ewe V™7 for every e

Proof. Let we ¥¢. Then we have x(a) = 0 and V‘;‘(lm) < oo for
some number A > 0. Hence, for arbitrary &<, £ # 0, we get éz(a) = £0 =0
and V,((A/|1€]) &) < Vi (Aw) < co. Thus &we ¥** for every &eH. Con-
versely, let &xe ¥ for every £e&. Then for any &= we get V,(26x) < oo
for some 1 > 0, and so for a positive integer » such that sup {47, V,(Akm)}

<n we have V"‘(“alw Em) < V,(Akr) < . This implis that

0o 1
5 = U I, where -E'n ={E€E: Vq,(~%—£w)<%} forn =1,2,...

N |

By 5.03 we conclude that the sets B, are closed in E.. Since the space &
is of the second category, hence some set B, contains a ball K (&;7)

1
ex {EeE: g~ & < r}, r> 0. For EcK(&;r) we have V’”(%; 5:0) < .
Thuy for &e, wo got

r /1 1
o) = vl o)
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Hence V;Z‘( !
21,
implies #(a) = 0, we get we ¥¥.

5.07. lun VE () =0 ’Lf and only if 11m Vo (Aéw) = 0 for m;eM/ Eef.

Ploof. If lim V¥ (Ar) = 0 then for any £e¢B, & 5 0, in view of the
204

inequality V,{(4/|I€]) &x) <

let lim V,(Afx) = 0 for every £e& Then for arbitrary number &> 0
A0

we have

VE (), we get lim V,(Aéw) = 0. Converscly,
Ar0

J (1
=UB, vhewr, = {sfs; m(;b-sac)g—;—} for n =1,2,...
M=l

In virtue of 5.03 the sets I, are closed in & Thus, similarly as in the
proof of 5. 06 cerbain set B, contains a bmll K(é},, ), r > 0. For eI (&; r)

we have Vg,(? §m) <3 For 0 < A<
0

and £¢5, we now get
g

3 1 1
V() < 7, (2—;;- sm) < Vw(%(rf—l- 50)50) + ‘V“(%I ;-om).<

This means that Vy(in) < e for 0 < 1< »2-%, and hence 11m V¥ (dm) = 0.
0 Aer0e

5.11. For any q-function ¢ the functional VE(-) defined on the space

of fumctions x: [, b] — X satisfying the condition z(a) = 0 15 a modular

n the sense of [107]. Consequently, in the vector space
P = {we v hm V¥ (i) = 0}
we may define an F-norm,
loly =int{e> 0: V¥(w)s) <}, (we ¥27).

The space ¥~ 3‘3" equipped with the topology induced by this norm is complets.

Proof. Let {x,} be a sequence of eloments of "//”*"’ such. that for any
&> 0 there existy an n, such that |u,, — z,,,”m < & for m, m = n,. Then
we also have

(+) Vol ~wn)le) <& for n, m = m,.

From this, by 5.01, we get (@, — ) [6) << & for a1, m 23 mg. Thig, to-
gether with the eomp]utneqs of X, implies that the scqu(sn('o {m, ()} is
uniformly convergent on [a, b] 10 a function @(-). Obviously, this function

satisfies the condition #(a) = 0. Now let m ~ oo in (+); then, by 5.03,
we get

(++) ' V:,,\'((m,b-—m)/a) <e  for mzin,.

m)éZ%. From this and since &x(a) = 0 for every £e¢&
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1Xence we get for the function z

lim Vi (3e) < lim (V{22 (0 —a,,)) + VE (240, )

X,
Arlile A0 <V ((m“mno)/8)<8

and, sinco ¢ > 0 was an arbitrary number, this implies that lim VE () = 0.

A0+
< s for n = n, and
f with respect to the norm |-|¥.

Ience we “// o, Now, from (++) we get that i, — wIIE
fthis ends the proof of completness of "//
‘We shall also ghow thatb
lolly’ = sup{lléall,: &e5y}

Imleml let [w]ly < & Then VX (w/s) < & and for any £eg, we get V,(fw/e)
< ¢ al farther ||, < & 'J‘hls implies that &), < |2|F for any &£es,.
'Nm,s wup {[| Gl : §e~0} J|m[f Now let sup{|éw|,: éeF} <e Then
for every £¢5, we have V fm/p < & This means that V¥ (a/e) < e and
21 < e Hence [al¥ ::smp{“&ay”m Ee ).

From 5.07 it follows that the relation "/f ¥% holds if and only

it 7™ = ™ This implies, in view of 2.32, that "//X ¥ when ¢
satisfies (Vy), and, in particular, when p(u) = y(u) for 3> 0, where o
is a convex rp-funotmn and g > 0.

5.12. When o(u) = w(u®) for w0, where v s o convex o-function
and 8 18 @ number such that 0 < g <1 we may equip the space ¥F with
an §-homogeneous norm

lllfy = inf{e > 0: V¥ (n/e") < 1}
Nimilarly ag in 5.11 we have here ;
2l = sup{ll&sly,: £e5} for every me ¥72.
This, together with 2.33 yields the inequality
(I3 < ol < (lolly)* for  @e ¥¥ such that VX (s)<1.

From this we see that the norms || [¥ and |- ¥ are equivalent.
5.13. When ¢ is a convew p-function satisfying conditions (0,) and

for every we ¥,

(e ’V;{m)

" (o)) the spave ¥ oan be furwished with, besides the homogencous morm

(15, the Imrmqa'n,a(ms NOPI

]y == wup H2a,‘,(w(t,,)wm(t,,,,.l))H,

where the .wp’r'amum i laken over oll partitions w of [a,b] by points
Wy ey ety en boand over all m-tuples (g, ..., a,) such  that

M
21 " (lo)) =% 1.

Clearly

(e 7Y),

0]y = sup {l£wllpy: EeSo}  for every we VX
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From this and 2.34 we get the inequality

for every ze ¥,

llellfy < l2lite) < 2ol

from which it follows that the norms |- [ and || [ are equivalent.

5.2. We shall now be concerned with the problem of existence of
the RS-integral for vector functions. We ghall consider two cases: (a) x
is a scalar function and y — a vector function, (b) @ is a vector function
and y — a sealar function. In both these cases we define the Riemann—

Stieltjes sums analogously to what we have done is Section 3 and by
b

the RS-integral [ (d)dy(t)
a

property that for every &> 0 there exists a 6> 0 such that for any

partition « of [, d] whose mesh is d, < 8 we have [R%(z,y)—z| <&

regardless of 0.

5.21. Let g and ¢~ be log-convex p-functions. Then, if we assume ©(a) =0,

the following estimations of the RS-sums RL(m,y) are true for cases (a)
and (b) respectively:

we mean an element zeX posessing the

(a’) ”Rf,(my?l)ll<¢-1(qum)q9— 17X 7/ ‘|‘Z’(P 1("“" ‘tp )7”‘ (—'“V;}"’(J))
Vel

) 12l 1 g TN T )+ D (27 002V, ).
v-xl

b
Moreover, if the RS-integral [ w(t)dy(t) ewists then analogical estimations
a

hold also for this integral.

Proof. We shall consider only case (a) since for (b) the proof is
analogous.

By '3.15 we get for arbitrary £eH,

IR (2, )] = lRa(w &)l < g- (Vm(m))()”:il(vqw(f:'/)) +

P Vo (@) 2o Vo (y

S

Wl

)(]’"' ( V;;W (/,/))

- and this yields our inequality since sup{|&R.(w,¥)|: EeBy} = [[BL(w, )|

From 5.21 we derive the following result
5.22. If o(u) = y(u°) and ¢~ (1) = v~ (u®"), (3= 0), where v and p~
are convey g-functions and s, s~ are numbers such that 0 < 8,8~ < L and

icm
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if the RS-integral f}o () dy (8) of the fumetions (a) we Ve VET, (D) we ¥

ye ¥, ewisls Il@m the following estimation is true:

b w0
(‘:l:) “jm(t)(lﬁl(t)’f ((/),,' (]J" 1)+ Zq) ]( ) ( )) WHIIB(”Q/HS o~ )lls ,
u —1
] ]
(b) Hfm(t)d?/(t) L ((}u EV’—l(“) ( ))(lelx)”‘“llyll‘i’f,}
@ Vi)

Liet as now look again at Theorems 4.11, 4.13 and 4.15. Since we may
apply the corresponding methods in the vector case, these theorems
are valid also for vector functions, Thus we have three theorems:

5.28. If g and p~ are log-convem p-functions such that their L. . Young's
series (*) is convergent then in both cases (a) G V™%, y e ¥¢" and (b) £ B 773,

b

ye ¥, the RS-integrals f w(t)dy (t) emist.
b
The existence of 1.110 vector RS-integral f w(t dy(t) always 1mphes,
as iy well known, the existence of the RS- 1nt;e0~ra1 f y(¢)dz(t) and the

following relation holds:

[
Jy@do) = (20)y(0)~2(a)y (0) fw(t 0

Thug Theorem 5.23 is also true in any of the cases () we ¥™7, yeF ¥ 3¢
and (b) we ¥, yeF ¥,
5.24. Let ¢ and g~ be log-convex g-functions such that their L. 0. Young’s
serigs (*) is convergent. Then in any of the cases:
(a) {mye 7™ and {y,} = V¢ are sequences such that sup Vo~ (A2,
n

< 00 wnd H’ll],) VX (Ayln) < 0o for some constants Ay, Ay > 0,

(b) {mn = ¢ and {y,} < Y are sequences such that sup Vi (Aw,)
n

%

< oo and RUp Vo~ (Agy,) <0 oo for some constants Ay, Ay > 0,
K

if these sequences aro mm?/'wmly convergent on [a, b] to, respectively, & and y

then the BS-inte-

and 71 the RS-integrals f o, (8) Ay, (1) ewist for m = 1,2, ...

gral f w(t)dy (1) ewists (md
3 b

f@()dy(¥) = lim f 2 (8) Ay ().

o N300 ¢
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5.25. Let ¢ and ¢~ be log-conven, p-functions such that their L. 0. Young's
series 18 convergent. Then in both cases:

(a) 2e®¥™ and {y,} < V" is a sequence convergent in o dense subset
of [a,b] containing the point b to & fumction ye V5", and such that
sup V&5 (Ay,) < oo for some comstant 1> 0, .

n

(b) we® 7 and {y,} < ¥ is a sequemce convergent in o dense
subset of [a, b] containing the point b to a function ye #™**, and such that
sup V,~ (Ay,) < oo for some comstant 4 > 0,

n

we have
b b

Jatay() =lim [ o()dy, ).

a Ner00 )

5.26. Let ¢ and ¢~ be log-convex p-funciions such that their L. 0. Young’s
series is comvergent. If <GV and {y,} <= V5" is a sequence of fumctions
weakly convergent to a function ye ¥ in a dense subset of [a,b]
containing the point b and such that sup Vi (ky,) < co for some comstant

n

A> 0, then
b b
[ady(t) = w-lim [ @)y,
”"’Wa

a

where w-1im 4s the weak limit.

Proof. From assumptions made on {y,} it follows that for every
é<E the sequence {&y,} = ¥™*” is convergent to &ye ¥™**~ in a dense
subset of [a, b] containing the point b. Besides, for this sequence we have
sup V,~ (Aéy,) < oo for some constant 1> 0. Hence by 4.15 we get
k(2

b

b b b o
£ [amay() = [ a(t)déy(t) = lim [ w(t)dey, () = lim £ [ o(t)dy, ()
{;L @ w»oon N—r00 @
which was to be proved.
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