

STUDIA MATHEMATICA T. XLV. (1973)

Convolution of singular measures

b-

RAOUF DOSS (Stony Brook, N. Y.)

Abstract. On a compact abelian group G, we prove that if $\mu \neq 0$ is any continuous (possibly singular) measure on G, then there is a real singular measure ν such that the convolution $\mu * \nu$ has an absolutely convergent Fourier series. As a consequence we prove that a multiplier from singular measures to singular measures is necessarily given by convolution with a discrete measure. Also, we prove that on the circle group T, if S is an uncountable Borel set of measure zero, then there is a Borel null set S' such that S+S'=T.

In this paper G is a compact abelian group with dual Γ . $M_s = M_s(G)$ is the Banach space of singular measures on G. Every $\mu \in M_s$ has a unique decomposition into a continuous part μ_c and a discrete part μ_d : $\mu = \mu_c + \mu_d$.

If $v \in M_s$ is supported by the null set S', then $\mu_d * v$ is supported by an enumerable union of translates of S' and hence $\mu_d * v$ is singular. The counterpart of this statement is the following theorem:

THEOREM 1. Let G be a compact abelian group. Let $\mu \neq 0$ be any continuous (possibly singular) measure on G. Then there is a real singular measure ν such that the convolution $\mu*\nu$ has a non-vanishing absolutely convergent Fourier series.

LEMMA 1. Let μ be a continuous measure such that $\hat{\mu}(0)=1$. Then there is a sequence of characters $\gamma_n \in \Gamma$ such that

(1)
$$|\hat{\mu}(\pm \gamma_1)| < 8^{-1}$$

and such that for every $n\geqslant 1$ and every sequence $c_1,\ldots,c_n,\ c_i=0,\ \pm 1,\ \pm 2,\ \pm 3,$ we have

(2)
$$|\hat{\mu}(\pm \gamma_{n+1} + c_1 \gamma_1 + \dots + c_n \gamma_n)| < 8^{-(n+1)}$$

and consequently the γ_n are distinct.

Proof. We use the following theorem about a continuous measure μ : "To every $\varepsilon > 0$ there corresponds a symmetric neighborhood V of 0 in G, such that for any continuous positive definite function f, with compact support lying in V and such that f(0) = 1 we have

$$\sum_{\gamma \in \Gamma} \hat{f}(\gamma) |\hat{\mu}(\gamma)|^2 < \varepsilon.$$

See e.g. Rudin [3], p. 118.

The function g defined by $g(x) = 2^{-1}\{f(x) + f(-x)\}$ has the same properties as f and $\hat{g}(\gamma) = 2^{-1}\{\hat{f}(\gamma) + \hat{f}(-\gamma)\}$. Hence

$$\sum_{\gamma} \hat{f}\left(\gamma\right) [|\hat{\mu}(\gamma)|^2 + |\hat{\mu}(-\gamma)|^2] = 2 \sum_{\gamma} \hat{g}\left(\gamma\right) |\hat{\mu}(\gamma)|^2 < 2\varepsilon.$$

Choose $2\varepsilon = 8^{-2}$; since $\sum \hat{f}(\gamma) = f(0) = 1$ there is a $\gamma_1 \in \Gamma$ such that $|\hat{\mu}(\gamma_1)|^2 + |\hat{\mu}(-\gamma_1)|^2 < 8^{-2}$, i.e.

$$|\hat{\mu}(\pm \gamma_1)| < 8^{-1}$$
.

Assume the first k elements of the desired sequence have been chosen satisfying (1) and, in case k > 1, also (2) for $n \le k - 1$. We show how to choose γ_{k+1} so that (2) holds for n = k.

Denote by F_k the finite set of elements of the form $c_1\gamma_1 + \ldots + c_k\gamma_k$, where $c_1, \ldots, c_k = 0, \pm 1, \pm 2, \pm 3$. F_k has at most 7^k elements, and F_k is symmetric: $F_k = -F_k$.

Consider the finite set of continuous measures $\bar{\delta}\mu$, where $\delta \in F_k$. Then $(\bar{\delta}\mu)^{\hat{}}(\gamma) = \hat{\mu}(\gamma + \delta)$ for $\gamma \in \Gamma$.

Choose a symmetric neighborhood V of 0 in G, and a continuous positive definite function f whose compact support lies in V and such that f(0) = 1 and

$$\sum_{\gamma} \hat{f}\left(\gamma\right) \left[|\hat{\mu}\left(-\gamma+\delta\right)|^2 + |\hat{\mu}\left(\gamma+\delta\right)|^2\right] < 7^{-k} 8^{-2(k+1)} \quad \text{ for every } \delta \in F_k.$$

Then

$$\sum_{\delta \in F_L} \sum_{\gamma} \hat{f}(\gamma) \left[|\hat{\mu}(\gamma + \delta)|^2 + |\hat{\mu}(-\gamma + \delta)|^2 \right] < 8^{-2(k+1)}$$

that is

$$\sum_{\gamma} \hat{f}\left(\gamma\right) \sum_{\delta \in \mathbb{F}_k} \left[|\hat{\mu}\left(\gamma + \delta\right)|^2 + |\hat{\mu}\left(-\gamma + \delta\right)|^2 \right] < 8^{-2(k+1)}.$$

Since $\sum_{\gamma \in \Gamma} \hat{f}(\gamma) = 1$ there is $\gamma_{k+1} \in \Gamma$ such that

$$\sum_{\delta \in F_k} [|\hat{\mu}(\gamma_{k+1} + \delta)|^2 + |\hat{\mu}(-\gamma_{k+1} + \delta)|^2] < 8^{-2(k+1)},$$

that is

$$|\hat{\mu}(\pm \gamma_{k+1} + \delta)| < 8^{-(k+1)}, \quad \delta \in F_k$$

which is (2) for n = k.

LEMMA 2. Suppose $\{\gamma_n\}$ is an infinite sequence of distinct elements in Γ . Then there is a real singular measure ν such that (a) $\hat{\nu}$ (0) $\geqslant \frac{1}{2}$, (b) $\hat{\nu}$ (γ) = 0 if γ is not of the form $\pm \gamma_{n+1} + c_1 \gamma_1 + \ldots + c_n \gamma_n$, where $c_i = 0, \pm 1, \pm 2, \pm 3$, with at most seven exceptional values of such γ 's.

Proof. It is evident that if $\{\delta_n\}$ is a subsequence of $\{\gamma_n\}$ and if ν is a measure satisfying the conditions of Lemma 2, with γ_n replaced by δ_n , then ν will also satisfy these conditions for the original sequence $\{\gamma_n\}$. Hence there is no problem, if, considering a subsequence of $\{\gamma_n\}$ we still call it $\{\gamma_n\}$.

We consider two cases:

Case I. The set $\{2\gamma_n\}$ is infinite.

Then we can extract from γ_n a subsequence, still denoted $\{\gamma_n\}$, such that, for $n=1,2,\ldots$

(3)
$$2\gamma_{n+1} \neq c_1\gamma_1 + \ldots + c_n\gamma_n, \quad c_i = 0, \pm 1, \pm 2, \pm 3.$$

This is possible, since for any fixed n, the set

$$\{c_1\gamma_1+\ldots+c_n\gamma_n:\ c_i=0,\ \pm 1,\ \pm 2,\ \pm 3\}$$

is finite.

Put

$$P_N(x) = \prod_{k=1}^N \{1 + \frac{1}{2}(x, \gamma_k) + \frac{1}{2}(x, -\gamma_k)\}.$$

Then $\|P_N\|_1 = 1$. Since, for every N, $\hat{P}_N(\gamma) = 0$ except for an enumerable (even finite) set of values of γ , then a subsequence of $\{P_N\}$ converges in the weak *-topology of M(G), to a measure $\lambda \in M(G)$.

Denote by A the set of finite sums of the form

$$a_1 \gamma_1 + \ldots + a_n \gamma_n$$
, $a_i = 0, \pm 1, \quad n = 1, 2, \ldots$

Clearly

$$\hat{\lambda}(\gamma_k) \geqslant \frac{1}{2}$$

while

$$\hat{\lambda}(\gamma) = 0$$
 if $\gamma \notin A$.

Put

$$\lambda_{\nu} = \gamma_{\nu} \lambda$$
.

Then $\hat{\lambda}_k(\gamma) = \hat{\lambda}(\gamma + \gamma_k)$. Again, for every k, $\hat{\lambda}_k(\gamma) = 0$ except for an enumerable set of values of γ . Hence a subsequence of λ_k converges in the weak *-topology of M(G) to a measure $v_0 \in M(G)$. Using a device due to Helson (see [1]), we show that v_0 is singular.

In fact, let $\lambda = \lambda' + \lambda''$ be the Lebesgue decomposition of λ , where λ'' is singular (with respect to Haar measure). The Fourier coefficients of λ' vanish at infinity; hence the absolutely continuous translates $\overline{\gamma}_k \lambda'$ converge weak* to zero. Therefore ν_0 is a weak* limit of the singular translates $\overline{\gamma}_k \lambda''$. For every f continuous on G we have

$$\left| \int f d\nu_{\mathbf{0}} \right| \leqslant \int |f| \, d \, |\lambda^{\prime\prime}|$$

which shows that ν_0 is absolutely continuous with respect to λ'' ; since λ'' is singular so is ν_0 .

Since $\hat{\lambda}(\gamma_k) \geqslant \frac{1}{2}$, then $\hat{\lambda}_k(0) \geqslant \frac{1}{2}$ and therefore

$$\hat{\nu_0}(0) \geqslant \frac{1}{2}.$$

Now, assume $\gamma \neq 0$, $\gamma \neq \pm \gamma_1$, and γ is not of the form

(4)
$$\gamma = \pm \gamma_{n+1} + c_1 \gamma_1 + \ldots + c_n \gamma_n, \quad c_i = 0, \pm 1, \pm 2, \pm 3,$$

If, for some $k_1 > 1$ we have

$$\gamma + \gamma_{k_1} = a_1 \gamma_1 + \ldots + a_n \gamma_n \epsilon A, \quad a_i = 0, \pm 1,$$

then we may suppose $a_n \neq 0$, for the relation $\gamma + \gamma_{k_1} = 0$ is impossible by assumption (see (4)). Also $n = k_1$, otherwise γ would be of the excluded form (4). Moreover the relation $a_n = a_{k_1} = 1$ would contradict the assumption on γ . Thus $a_{k_1} = -1$ and therefore

(5)
$$\gamma = a_1 \gamma_1 + \ldots - 2 \gamma_{k_1}, \quad a_i = 0, \pm 1.$$

If for some $k_2 > k_1$ we have also

$$\gamma + \gamma_{k_2} = a'_1 \gamma_1 + \ldots + a'_m \gamma_m \epsilon A, \quad a'_i = 0, \pm 1,$$

then

$$\gamma = a_1' \gamma_1 + \dots - 2\gamma_{k_0}.$$

Relations (5) and (6) are incompatible with (3). Therefore, there is at most one integer k such that $\gamma + \gamma_k \in A$. Hence, $\hat{\lambda}(\gamma + \gamma_k) = 0$ for large k and therefore $\hat{r}_{A_k}(\gamma) = 0$.

Now v_0 is not necessarily real. Put $v=\frac{1}{2}\{v_0+\bar{v}_0\}$; v is real; if $\gamma\neq 0$, $\gamma\neq\pm\gamma_1$ and if γ is not of the form (4), then $\hat{v}_0(\gamma)=\hat{v_0}(-\gamma)=0$ and therefore $\hat{v}(\gamma)=0$. The singular measure v has now all the required properties.

Case II. The set $\{2\gamma_n\}$ is finite.

Then there is an infinite subset of $\{\gamma_n\}$, still denoted $\{\gamma_n\}$, such that $2\gamma_n=2\gamma_1$ for all n. (The case $2\gamma_1=0$ is not excluded.)

Define P_N , λ , $\{\lambda_k\}$ and ν_0 as in Case I. Then, as before

$$\hat{\lambda}(\gamma_k) \geqslant \frac{1}{2}, \quad \hat{\lambda}(\gamma) = 0, \quad \text{if } \gamma \notin A,$$

 v_0 is singular and $\hat{v_0}(0) \geqslant \frac{1}{2}$.

Assume that $\gamma \neq 0$, $\gamma \neq \pm \gamma_1$, $\gamma \neq \pm 2\gamma_1$, $\gamma \neq \pm 3\gamma_1$ (seven exceptional values for γ) and that γ is not of the form

$$\gamma = \pm \gamma_{n+1} + c_1 \gamma_1 + \ldots + c_n \gamma_n, \quad c_i = 0, \pm 1, \pm 2, \pm 3.$$

If $(k \geqslant 2)$

$$\gamma + \gamma_k = a_1 \gamma_1 + \dots + a_n \gamma_n \epsilon A, \quad a_i = 0, \pm 1$$

then as before (see (5))

$$\gamma = a_1 \gamma_1 + \ldots + a_{k-1} \gamma_{k-1} - 2\gamma_k,$$

that is

$$\gamma = (a_1 - 2)\gamma_1 + \ldots + a_{k-1}\gamma_{k-1}$$

This contradicts the assumption about γ . Therefore

$$\gamma + \gamma_k \notin A$$
, $\hat{\lambda}(\gamma + \gamma_k) = 0$, $\hat{\nu}_0(\gamma) = 0$.

Again, replace v_0 by $v = \frac{1}{2}\{v + \overline{v}\}$. Then v will have all the properties mentioned in the lemma.

The proof of Lemma 2 is now complete.

For results related to Lemma 2, see [2].

Proof of Theorem 1. By translation and multiplication by a scalar we may assume that $\hat{\mu}(0) = 1$.

Let $\{\gamma_n\}$ be the sequence given by Lemma 1 and let ν be the real singular measure given by Lemma 2.

Consider now $\mu * \nu$.

Suppose γ is not one of the seven exceptional values mentioned in Lemma 2. If γ is not of the form

(4)
$$\gamma = \pm \gamma_{n+1} + c_1 \gamma_1 + \dots + c_n \gamma_n, \quad c_i = 0, \pm 1, \pm 2, \pm 3,$$

then $\hat{\mu}(\gamma)\hat{r}(\gamma) = 0$. For any fixed n, the set E_n of elements of the form (4) has at most $2 \cdot 7^n$ elements and for these

$$\sum_{\gamma \in E_n} |\hat{\mu}(\gamma)\hat{\nu}(\gamma)| \leq 2 \cdot 7^n 8^{-(n+1)} \|\nu\| < (\frac{7}{8})^n \|\nu\|.$$

Hence $\sum_{\gamma \in \Gamma} |\hat{\mu}(\gamma)\hat{\nu}(\gamma)| < \infty$. Since $\hat{\mu}(0) = 1$ and $\hat{\nu}(0) \geqslant \frac{1}{2}$ then $\mu * \nu$ has a nonvanishing absolutely convergent Fourier series and Theorem 1 is proved.

COROLLARY 1. Let μ be any singular measure with nonvanishing continuous part. Then there is a singular measure ν such that the convolution $\mu*\nu$ is not singular.

Proof. Put $\mu=\mu_c+\mu_d$ where μ_c is continuous and μ_d is discrete. Since μ_c is nonvanishing, there exists, by Theorem 1, a singular measure ν such that $\mu_c*\nu$ has a non-singular part. On the other hand, $\mu_d*\nu$ is singular. Hence $\mu*\nu$ is not singular and the Corollary is proved.

APPLICATION 1

DEFINITION. Denote by $M_s=M_s(G)$ the Banach space of singular measures on G. A function φ on Γ is called a *singular multiplier* if for every $v \in M_s$, the function $\varphi \hat{v}$ is the transform of some $\lambda \in M_s$: $\varphi \hat{v} = \hat{\lambda}$.

THEOREM 2. Let G be a compact abelian group. A function φ is a singular multiplier if and only if φ is the transform of a discrete measure μ : $\varphi = \hat{\mu}$.

Proof. Taking v_0 to be the unit mass at the origin, we have $\hat{v_0} = 1$. Hence $\varphi = \varphi \hat{v_0}$ is the transform of some singular measure $\mu \colon \varphi = \hat{\mu}$ where $\mu \in M_s$. Hence

$$\varphi \hat{\nu} = \hat{\mu} \hat{\nu} = (\mu * \nu)$$
 for every $\nu \in M_s$.

If now μ has a nonvanishing continuous part, then, by Corollary 1, there is a singular measure ν such that $\mu*\nu$ is not singular. Hence $\varphi\hat{\nu}$ is not the transform of a singular measure. This contradiction shows that the continuous part of μ is zero and therefore μ must be discrete.

APPLICATION 2

We specialize G to the unit circle T.

THEOREM 3. Let S be an uncountable analytic (in particular Borel) set in T of measure 0. Then there is a Borel set S' of measure zero such that S+S'=T.

Proof. By a theorem of Souslin, see e.g. [4], p. 224, the analytic set S contains a non-empty perfect set P. Since m(P)=0 then P is totally disconnected. A classical construction of Lebesgue gives a real nonvanishing continuous singular measure μ on P. By Theorem 1 there is a real singular measure ν , concentrated on a null set P' such that $\mu*\nu$ has an absolutely convergent Fourier series (and hence $d\mu*\nu = \varphi(x)dx$ with φ real continuous). Since ν is regular, there is a sequence of compact sets $K_n \subset P'$ such that $|\nu|(K_n) \to |\nu|(P')$. Hence, replacing P' by $\bigcup K_n$ we may assume that P' is an F_{σ} -set and therefore that P+P' is measurable (Borel).

Let x_0 be a point such that $\varphi(x_0) = \alpha \neq 0$. We may assume $\alpha > 0$; hence there is a non-degenerate interval I such that $\varphi(x) > \alpha/2$ for $x \in I$. We shall show that the set $A = I \setminus (P + P')$ has measure 0.

For assume m(A) > 0. We have

$$p \in P$$
, $p' \in P' \Rightarrow p + p' \notin A \Rightarrow p \notin A - p'$

that is

$$\chi_{A-p'}(p) = 0$$
 for $p \in P$, $p' \in P'$.

Therefore

$$\mu * \nu(A) = \int\limits_{P'} \mu(A-p') \, d\nu(p') = \int\limits_{P'} \int\limits_{P} \chi_{A-p'}(p) \, d\mu(p) \, d\nu(p') = 0 \, .$$

But

$$\mu * \nu(A) = \int\limits_A \varphi(x) dx \geqslant \tfrac{1}{2} \alpha m(A) > 0.$$

This contradiction shows that m(A)=0, i.e. that P+P' covers almost all I. If P'' is a suitable finite union of translates of P', then P+P'' covers almost all T:

$$m(T \setminus (P+P'')) = 0, \quad m(P'') = 0.$$

If now x_1 is any element of P and if we put

$$S' = P'' \cup ((T \setminus (P + P'')) - x_1)$$

then S' is a null set and

$$P+S'\supset P+P''\cup T\backslash (P+P'')=T.$$

A fortiori $S + S' \supset T$ and the theorem is proved. A direct proof of Theorem 3 would be desirable.

References

- H. Helson, Proof of a conjecture of Steinhaus, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), pp. 205-206.
- [2] E. Hewitt and H. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Phil. Soc. 62 (1966), pp. 399-420.
- [3] W. Rudin, Fourier analysis on groups, N. Y. 1963.
- [4] W. Sierpiński, General Topology, Toronto 1956.

STATE UNIVERSITY OF NEW YORK STONY BROOK, NEW YORK

Received May 19, 1971 (344)