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STUDIA MATHEMATICA T. XLV. (1973)

Convolution of singular measnres

by
RAOUF DOSS (Stony Brook, N. Y.)

Abstract. On a compact abelian group @, we prove that if 4 s 0 is any conti-
nuous (possibly singular) measure on @, then there is a real singular measure » such
that the convolution wxv has an absolutely convergent Fourier series. As a conse-
quence we prove that a multiplier from singular meagures to singular measures is
necessarily given by convolution with a discrete measure. Also, we prove that on the
circle group T, if 8 is an uncountable Borel set of measure zero, then there is a Borel
null set S’ such that §+ 8 = T.

In this paper @ is a compact abelian group with dual I". M s = M (G)
is the Banach space of singular measures on G. Bvery ueM, has a unique
decomposition into a continuous part u, and a diserete patt uy: 4 = He -

If ve M is supported by the null set 8, then ug+ is supported by an

. enumerable union of translates of S’ and hence g » is singular. The
- counterpart of this statement is the following theorem:

TemoREM 1. Let G be a compact abelian group. Let u == 0 be any conts-
nuous (possibly singular) measure on G. Then there is a real singular mea-
sure v such that the convolution uxv has a non-vanishing absolutely convergent
Fourier series.

LeMmA 1. Let u be a continuous measure such that u(0) = 1. Then
there is a sequence of characters y,e I' such that

yo (1) i ( £yl < 87
and such that for every m>=1 and every sequence ¢y, ...,06,, ¢; =0, +1,
+2, 43, we have
(2) (Vg Cryat oo+ Cupa)| < 870D
and consequently the v, are distinct.

Proof. We uge the following theorem about a continumous measure
u: “To every &> 0 there corresponds a symmetrie neighborhood V of 0
in @, such that for any continuous positive definite function f, with com-
pact support lying in ¥V and such that f(0) = 1 we have

2iwlamr<e?

yel'

See e.g. Rudin [3], p. 118.
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The function g defined by g(z) = 2”1{]‘ (#)+f(—o)} has the same
properties as f and §{y) =27} (y)—i—f »)}. Hence

D FWLam) R+ A=) = 229

Choose 2 = 87%; since Y'f (y)
I (piR+ |2 (—y) P < 87% ie.

B ()l < 87

P2 < 2.

=f(0) =1 there is a yye I" such that

Assume the first & elements of the desired sequence have been chosen
satisfying (1) and, in case k> 1, also (2) for n < k—1. We show how to
choose y;,, 80 that (2) holds for n = k.

Denote by F,, the finite set of elements of the form. ¢;y,+ ... + ¢y,
where ¢, ..., 6, = 0, &1, +2, +3. ) has at most 7° elements, and 7,
is symmetric: Fj, = —F,.

Consider the finite set of continuous measures du, where 8¢ Iy
Then (8u)” (v) = it(y+9) for yel.

Choose a symmetric neighborhood V of 0 in ¢, and a continuous
positive definite function f whose compact support lies in ¥V and such
that f(0) =1 and

Zf (7)1
Then
2 2fw

OeFy v

—y+ 02+ a(y+ 8)2] < TR+ for every Se F.

Yty + 0) 12+ | (—y + 8)[2] < 8~ 2k+1)

that is
Zf(y ) D Uly+ 2+ i —y + )21 < )

SeFy,

Since Y f (y) = 1 there is y,.,c " such that
yel’

D H(rsa+ O+ |3 (—yaa+ )] < 872040,

eFy,
that is

(£ 7+ 0)l < 8¢,
which is (2) for n = k.
LevmA 2. Suppose {y,} is an infinite sequence of distinct elemenits

in I. Then there is a real singular measure v such that (2) v (0) = %, (b) 7 (v)

=01ify is‘fnot of the form Ly, i+eiyi+ ... +euy,, where ¢; =0, +1,
+2, £3, with at most seven exceptional values of such y’s.

Se I,
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Proof. It is evident that if {d,} is a subsequence of {y,} and if » is
a measure satisfying the conditions of Lemma 2, with y, replaced by 4,,
then » will also satisfy these conditions for the original sequence {y,}.
Hence there is no problem, if, considering a subsequence of {y,} we still
call it {y,}. ‘

We consider two cases:

Case L The set {2y,} is infinite.

Then we can extract from y, a subsequence, still denoted {y,}, such
that, for n =1, 2, ...

(3) 2Yp41 F G2t e ¢; =0, +1, £2, £3.
This is possible, since for any fixed =, the set

¢ =07 il! Iiiza 3‘53}

+ Cn Vs

{0171+ . "]"cnyn:
is finite.
Put

Py ()

N
=[]t +3@, 7+
k=1

Then [Pyl = 1. Since, for every .V, 13N(y) = 0 except for an epumerable
(even finite) set of values of y, then a subsequence of {Py} converges in
the weak *-topology of M (@), to a measure AeM (G).

Denote by 4 the set of finite sums of the form

) —VE)}-

Wyt oor FOYn, o, =0,4+1, n=1,2,..
Clearly
AR
while
Aly) =0 if y¢d.
Put
A = Vil

Then Ji(y) = A(y+9yi). Again, for every %, .(y) =0 except for an
enumerable set of values of y. Hence & subsequence of 4, converges in the
weak *-topology of M (@) to a measure v eM (@). Using a device due to
Helson (see [1]), we show that », is singular.

In fact, let A = A'-+1" be the Lebesgue decomposition of 1, where A"
ig singular (with respect to Haar measure). The Fourier coefficients of 1/
vanish at infinity; hence the absolutely continuous translates y,A’' con-
verge weak* to zero. Therefore », is a weak” limit of the singular translates
A", For every f continuous on @ we have

| [ fave|< [ 1£12127]
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which shows that », is absolutely continuous with respect to A'"; since A"
is singular so is »,.
Since A(y;) > %, then i,(0)>

{a) 7 (0) = %
Now, assume ¢ # 0, y 5% £y, and y is not of the form

4+ and therefore

(4) y = dypptoyit o Foyn, ¢ =0, 41, +2, 43,
If, for some %k, > 1 we have
Y&V = @it Fagvped, a4 =0, £1,

then we may Suppose a, # 0, for the relation y -y, =0 is impossible
by assumption (gee (4)). Algo #n = %, otherwise y would be of the excluded
form (4). Moreover the relation a,, = a3, = 1 would contradict the assump-

tion on y. Thus @, = —1 and therefore
{5) Y =Gyt _2yk1’ a4 =0, +1.
If for some k,> %k, we have also
7+ v = 0yit o FOpyacd, a;=0, +1,
then
(6) Y= Gyit o =2,

Relations '(5) and (6) are incompatible with (3). Therefore, there is at
most one mte,gier k such that y -y, eA. Hence, i(y-+y;) = 0 for large %
and therefore », (y) = 0.

Now v, is not necessarily real. Put v = §{»,+w}; » is real; if y ‘;é 0,
¥ # 4vy; and if y is not of the form (4), then 7,(y) = v,(—y) = 0 and

therefore #(y) = 0. The singular measure » has now all the required
properties.

Case IL. The get {2y,} is finite.

Then there is an infinite subset of {y,}, still denoted {y,}, such that
2y, = 2;‘/l for all n. (The case 2y, = 0 is not excluded.)

Define Py, 1, {4} and v, as in Case I. Then, as before

W>d ) =0, if y¢4,

7, is singular and 7,(0) > %.

Assume that y 0, y % £y, ¥ # £2y4, v # 43y, (seven exeop-
tional values for y) and that y is not of the form
{4) Y = EVapt oyt ... 6 =0, £+1, +2, 3.
X (k> 2)

+Cu¥ns

YEVE = Gy1t oot apyaed, 4, =0, 41
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then as before (see (5))

+ @1 Vi1 — 2V

Y Ay Y1t ...
that is

Y (4, —2)y1+ ...

This contradicts the assumption about y. Therefore

p+dd, Alyty) =0, 5(y) =0.

Again, replace v, by ¥ = ${»+»}. Then » will have all the properties
mentioned in the lemma.

The proof of Lemma 2 is now complete.

For results related to Lemma 2, see [2].

Proof of Theorem 1. By translation and multiplication by a scalar
we may assume that 4(0) =1.

Let {y,} be the sequence given by Lemma 1 and let » be the real
singular measure given by Lemma 2.

Consider now uxv.

Suppose y is not one of the seven exceptional values mentioned in
Lemma 2. If y is not of the form

(4) y = tPaptevit o FVny ¢ =0, 41, +£2, 43,

then zi(y)» (y) = 0. For any fixed n, the set B, of elements of the form (4)
has at most 2-7" elements and for these

DA <278 < G bl

yely,

Hence Y |i(»)»(y)|< co. Since #(0) =1 and »(0)>}
yel'
has a nonvanishing absolutely convergent Fourier series and Theorem 1

is proved.

COROLLARY 1. Let u be any singular measure with nonvanishing con-
tinuous part. Then there is a singular measure v such that the convolution
uxy is not singular.

Proof. Put u = g+ pg where u, is continuous and g is discrete.
Since u, is nonvanishing, there exists, by Theorem 1, a singular measure »
such that u,*» has a non-singular part. On the other hand, ug*» is singular.
Hence w+*» is not singular and the Corollary is proved.

+op_1VE-1-

I

then wu*v

APPLICATION 1

DEFINITION. Denote by M, = M,(G) the Banach space of singular
measures on G. A function @ on I"is called a singular multiplier if for every

veM,, the function @7 is the transform of some ZelM,: gy = A

N
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THEOREM 2. Let G be a compact abelian group. A function p is a singular
multiplier if and only if @ is the transform of a discrete measure p: ¢ = p.

Proof. Taking », to be the unit mass at the origin, we have v, = 1.
Hence ¢ = gv, is the transform of some singular measure u: ¢ = 4 where
peM,. Hence

v = av = (uky)"  for every veM,.

If now p has a nonvanishing continuous part, then, by Corollary 1, there
is a singular measure » such that w*» is not singular. Hence ¢» is not the
transform of a singular measure. This contradiction shows that the conti-
nuous part of u is zero and therefore u must be discrete.

APPLICATION 2

We specialize G to the unit circle T.

TEEOREM 3. Leét § be an uncountable analytic (in particular Borel)
set in T of measure 0. Then there is a Borel set 8' of measure zero such that
S+8 =1T.

Proof. By a theorem of Souslin, see e.g. [4], p. 224, the analytic
set § contains a non-empty perfect set P. Since m(P) = 0 then P is totally
disconnected. A classical construction of Lebesgue gives a real nonva-
nishing eontinuous singular measure x on P. By Theorem 1 there is a real
singular measure v, concentrated on a null set P’ such that u%» has an
absolutely convergent Fourier series (and hence duxy = ¢(2)de with ¢
real continuous). Since » is regular, there is a sequence of compact sets
K, = P’ such that |»|(K,) — [v|(P’). Hence, replacing P’ by (UK, we
may assume that P’ is an F,-set and therefore that PP’ is measurable
(Borel).

Let @, be a point yuch that ¢(»,) = a # 0. We may assume a > 0;
hence there is-a non-degenerate interval I such that ¢(x) > a2 for @eI.
We shall show that the set 4 = I\(P+P’) has measure 0.

For assume m(4) > 0. We have

PeP,p'eP =>pt+pdd=>piA—yp,

that is
Xa-p (D) =0 for peP,p'eP .
Therefore
prv(d) = fyA —p") v (p ffo (p)av(p) = 0.
But

pxv(d) = [ p(@)dn > fam(4)> 0.
A
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This contradiction shows that m(4) = 0, ie. that P+ P’ covers almost
all I. It P is a suitable finite union of tlanslates of P’, then P+ P" covers
almost all T

m(IN(P+P") =0, m(P")=0

If now x, is any element of P and if we put
§ =P U((T\(P+P"))—a)
then § is a null set and
P+8 o> P+P UTNP+P") =T.

A fortiori S8 > T and the theorem is proved.
A direct proof of Theorem 3 would be desirable.
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