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Preuve. IIn utilisant les inégalités classiques liant les MIT ... T
et les produits des A;(T;), il est aisé de voir que si

‘le produit Ty ... T,e¥P(H) ot Dapplication mulfilinéaire

(TLyveey Tlc) g T]. o 1lc
est continue de ™1 (H) @ ... @%"2(H) dans €7 (H).
Prouvons le a).
En vertu de cette continuité ot de la densité do §F(H) dans €% ()
la Proposition 4 montre que la fonetion définie sur [0, 1%
a > Logsup [Tre (1, ..., 1))

est convexe sur [0, 17% Pour obtenir inégalité de a), il suttit do ln prouver.
Dans le cas particulier p; = &} (¢} symbole do Kronecker), ¢ == 1,...,%
ce qui est évident.
Prouvons le b).
Boit p’ le conjugué de p. En vertu de =)
su;p [TI'(ST” teey Tls)[ < 1111|7)1! e ITI."

St (21)
1811

Or, en vertu du Théordme 1,

g

[Tyy ey Tylp = Ssg’gl?mltr(sw“ oy Til
18l =1

d’ol le résultat.
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On weighted #,-approximation by polynomials

. by
GEZA FREUD (Budapest)

Abstract. The Jackson theorem for the whole real line is formulated and proved
for #,-approximation with weight exp {— }2%*] (Theorem 1). The main tool is a func-
tional analytic duality principle of 8. M. Nikolski (Lemma 4). This is combined with
a suitable new H. Bohr-type inequality (Theorem 4).

1. Introduction. Let us denote by P, the set of polynomials of degree n
at most and let

(1) Wi(z) = exp{—3s®} (k=1,2,...).

For an arbitrary measurable function satisfying F'W,e Z,(— oo, oo)
we define
(@) &) (Wy; F) = inf |[(F—g@a) Wy
PPy
In (2) as well as in the whole of this paper we denote by ||| the £, (— oo, o)
norm.
We introduce the expression

B) (& Wy F;8) =max [ |F(a+0)Wy(@+1)—F (@)W, () do+

ol

+ [ T IR @) Wie)de (8> 0)

and call it the generalized .#;-continuity modulus with respect to the
weight W,. The z(#) figuering in (3) is defined by

ol (sl < 1),

“ v = 1 (ol > 1).

We observe that W,Fe¢%,(—oo, co) implies limw(&L;; Wy; F; d)
= 0. 80
Moreover, we observe that

(8) T(02) < Oz(m) (0=1)
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and consequently
(6) o (Fr; Wi B3 20) < 20 (L5 Wi 115 6).

In all our paper we denote by ¢, ¢,, ... positive numbers which
are either absolute constants or depend on %k but attaining numerical
consgtant values for every fixed % (k ==1,2,...).

The main result of the present papor is as follows:

TieorEM 1. Let I'(w) be the v-times itoratod imdegral function of I ()
and let FOW e Ly (— o0, oo) then

ek ik
O (W5 1) < oy % 0 Wiy B0 5 28
(n>2r; v=0,1,...).

Theorem 1 will be an obvious consequence of Theorem 6, Theorem 7
(see below) and of (4).

A tool of principal interest which we are going to apply is a Bohr-type
inequality (29).

For the. case & =1 Theorem 1 was proved in our paper [1], where
alslo the .WelghFod &p(— oo, co)-approximation problem was gettled for
this special weight. . 'We do hope to retwn soon on the Bernstein-type
converse of Theorem 1. ‘

2. An inequality for polynomials. T.et

=1

. 17"

(7) on(n) = }IT (n =1,2,..).
r=0

Levwma 1. We have for fo=2,38,..."
(8) on{n) > %6 (0< 1K Gn),
(9) loa(n)l < 06" (—o0ym <7< 0)
and

1 Mln—-l 1 ] In—-l
(10) wln) > =g L i o
lon (7)) > =y, 1> =y (n < —2n).

The proofs of (8), (?‘)) and (10) are olementary. We indicate here
only the proof of (9). Taking 0 > 2> —6~%n we have by Taylor’s formula

- ™ _ (e -
6" — e (M)l < *n’r(z Ggm = 06" << g5€";

this implies (9).
We refer to some well-known Tacts, noeded in the sequel, concerning
the theory of orthogonal polynomialg (see o.g. [2]).
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Let 0 < W(#)eZ,, a weight function, p,(W;w) (r=0,1,...) the
sequence of orthogonal polynomials with respect to W and let
1

haa(Wia) = {3 p2(W;2)) 7
r=0

The expression (11), called Christoffel-function, has the following extremal

(11)

- property:
(12) An(Ws2) = min ¢7%@) [ @)W @)t
PPy, —c0

op(@)#0 R
We denote by U, (), as usual, the second kind Chebyshev polynomial
of degree r. Clearly
(@ +Var =1+ — (5 —Va? —1)+!
2Vt —1

<202k (=] = 2).

13)  Up») =

LeMMA 2. We have for every y,eB, and |»| > 2
1 1
(14)  9i@) <2+ [eVI—ea < 2™ (v+1) el [yi(0)di.
-1 -1

Proof. Let Wy (t) = Vi—1® for <1 and W,(¢) =0 for [¢j>1.
The polynomials orthogonal to W,(f) are

o
(W35 @) =]/; Uw) (r=01,...).
We infer from (11), (12)

v

. } e 2 -1
@) [ ROERES LW e = [ ) ve] i)

r=0
Lemma 2 is a consequence of (13) and (15).
THROREM 2. We have for a proper choice of ¢, and oy and for every
Ine€Pp (b =2,3,...)

© cqnllzh .
(16) f 2a(E) e aE < e f 22 (@) e~ dm.
oymlik —cqnli2k

Proof. We apply Lemma 2 with » = n+2k(n—1) and inserting
P, (@) = Xn(oﬂﬂ'l/mm) Qn( - Gﬁk”wm/z) N G'Bv-
1
20" 0) g (— e [2) < 27 (v 1) (ol [ o (09n) g ( — Eni™2) d
. ~1 . .
cynl/2H

[ e (—w*2)a

—cqnli2k

— 09——1n—llzk22v+2(,”+1) lmlz:t (‘w| > 2)
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ie.
an A (- 2)
cgnllﬂc

[ BWE(—*2)a

meqnli2l

< 09—1%—1/2102211»}—2 (,V_'__—l) ]0;1“—1/21{: £|2v

(1€1< 20,n %),

We ingert = — &%/2 in (10) and apply it on the left-hand gide
of (17). This is allowed provided that |&] > 00w where ¢y, > 26, is
chosen sufficiently large. At the same time, in the integrand of the right-
hand side, (9) is applicable with 5 = —#**/2. Choosing, in the case of
necessity, ¢, even smaller:

2(n~1 09“3/21“'
XZ (§> <e 221:-[471[6]271 __,ﬁ__)m (,', ,},l)ﬂ—mﬂnonw_ 2 t ._.[Hcdt
n = Y1y [(%-—-1)!]2 9 xn( )0
,.0911,1/21‘:
cqnli2le
g gty k| g2n s (tye ds.
_cgnll%

From this we obtain (16) by a straightforward caleulation it only e, is
choosen sufficiently large. ‘

3. Estimation of the Christoffel functions. In this paragraph. we will
need a sequence {K,(s, 1)} with the following properties:

(a) for a fixed value of s, —1 < s <1, I, (s,1) is a polynomial of
degree x4 at most ‘with respect to t;

(b) K,(s8,8) =1

1 (r=1,2,...)
(©) [X(s,1)dt < o™ Y

A possible definition of such polynomials is to be found in, [2], V. (6.3)
Tmo;zEM 3. We have for v =1,2, ...

(18) Aoir (Wi €) < 0y v™ W (E) (18] << gn'2H,
Remark. Replacing » by a new variable 2~y wo obtain from (18)
(19) b (Wis ) o™ ™MW (8) (18] < o,p™).

Proof of Theorem 3. We conclude from (12) amd. (16) that for
every ¢,«B,, ¢,() # 0
(,9,,1/2k
(20) hir(Wis @) < 0w (@) [ Gb()Wh()ds.
—ep L20 .
Let us put in (20) .

(21) o) = K[g](%'l”—lmwi ) Q[_g](t%/2)~
2 Al
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Then we have by (b) and (8) ‘
(22) 2 (@) = W (@) (12] < eyg9™™)
and then by the evident inequality o, (1%/2) < Wil()
cgli2le cqrli2E

@) [ domea< [ K2,](o; Ly~ s oty R ) @

—cgpl/2 — gl [E

1

= gy f Kle (057w~ g5 1) @t < Dy 035 v I,
-1 2

We see from (22), (23) and (20) that (18) holds for ¢;; = min(e,, 6,,) With
€1y = 869013055

4. A Harald Bohr-type inequality. Let

1 (<9,
@4) T@h =l w9,

‘We consider I'(z,t) and—in what follows —K,, (¢, f) as a function of » for

each fix value of the parameter ¢.
Luvmuma 3. We have for every fiwed positive integer k and n = 1,2, ...

(25) &P [Wis T, )] < 030 HHEW(8)  (—o00 < i< 00).

Proof. By the Markov-Stieltjes construction we obtain a I, (z, t)< B,
go that (see e. g. [2], § L B).

(26) [ 1@, t) =K (@, )| Wi(@) @0 < Agnyaper (Wis £).
We see from (22) and (19) that (25) is valid for [t < 650", Fort > 10;%%1/”‘
we approximate I'(z,t) by {(#) =1e¢P, and for i< — 65, 0% by
Lo(w) = 0eP,. In this way (25) is true for every real i.

THREOREM 4. Let G (x) be measurable and
27 vraimax |G (z)|We{z) < 1

=00 L0

and for every p,eP, let

(28) [ 6@, (@)Wi@)ds =0 (pacPBn)

—0co

then we have

:
(29) ‘ f & (z) Wi (@) dml< 0 VWL (1) (—o0 <E < 0).

—00
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Proof. Denoting the integral between the modulus signs in (29)
by H(t) we have

(30) H(t)

fi

f I'(w, 1) G (@) W(z)do

i

[ 7@, 1) =g, (2)16(2) Wi(@) deo,

—00

where ¢, is any element of P,,. We choose ¢, in accordance with Lemma 8
8o that

[ 17 (@, 1) = o (@) | Wy (@) daw < agom™ W (8);

consequently (29) holds.

5. A weighted L -variant of Jackson’s inequality.
ImMMA 4. We have

sa(Wyi ) = sup f T () G (@)W} (o) do
where G is the set of measurable functions G(x) satisfying (27) and (28)
(as far as (28) is considered, p,e B, arbitrarily).

Lemma 4 is a transeription of 8. M. Nikolski’s duality theorem ([3],
Corollary 2).

TamorEM 5. Let I'(x) be of bounded variation in every finite imterval,
then we have—provided that the imtegral om the right-hand side of (31) is
finite —

(31) e D (W3 ) < ogqn™'102% f Wi(@) |dF (@)

Remark. In particular, if we replace in (31) F(2) by a function g(w)
which is absolutely continuous in every finite interval them

(32) s“(W,c,g) Opgm ™A f lg’ ()| Wy () dew

Proof of Them em b. First we show that from the existenco of
the integral in (31) it follows
(33) lim F ()W, () = 0.

[t]-+c0

For an arbitrary > 0 let us choose £ >0 so large that

[ Wi@)|dF (@) < e.

icm

On weighted Z,-approzimation by polynomials 131

Thus we have for ¢t > Q

]
FO< [FQ)+]| [ Wi @) Wa@)|dF @)] | < [F(@)]+ Wi (0)e.
. Q
This shows the validity of (33) for ¢ — oo ;’for t — —oo the proof is the
same.
Secondly, we observe that taking Ge G, H(t)
have by Theorem 4

(34) LH (1)] < eaan™ HEW(8).

Taking (33) in consideration we obtain by a partial integration

= ftG(m)W?E(m)dm we

(35) fF(m)G(m) = — fH 2)dF (z).

Theorem 5 follows from Lemma 4, (35) and (34).
THEOREM 6. Let f be absolutely continuous and f'Wye Ly, then
(36) oD (Wi ) < caan™ % el), (W5 £).
Proof. Let ¢, e, _; and let
I — @) Wall <

= F(0)+ [ pas(t)dte B, W apply (32) for F = f—p,:

2600, (W3 ')

Seting v, (®)
| eV (Wi ) = e (Wi; £ —1pn)

< can= [ |f'(0)

< oD, (W, ).

6. Estimation of the L,-approximation by the generalized continuity
modulus. Let fW, e L, and let h, = n %

— o1 (@) Wy () do

We set .

D) = F(z)Wi(w) (ol <n™),
(37) () = o (ol >
and

w+h
(38) F,(z) = W;(@)h;* f @, (t)dt.
Lemma 5. We have

(39) (B — Fp) Wil < g5 00 (L5 Wi; F; hy)
and

(40) 1T Wl < 0gsht 0 (Ly; Wi I'5 hy).
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Proof. Obviously

%nl!zk
1) (F-F)Wil < [ 1F(@)—Fo(@)Wy(@)do+
—gn}2
+ [ P@We)det [ T (@) Wi(@)da
fo] >4 /2 || >§n /2

and

[ 1P @ W0 o <17 f { [ wwaga

mlf2k [T 1
< [ 1TWIWL)dy.
nl/20

In the last part of this chain of inequalities we wused that h, < Fntn
if # > 4. We have a similar estimation for the integral between --co and
— 3% therefore by virtue of (4) and ()

) [ R@Wiodt+ [ (F@ W

(@) >int/2k (| >§n
<oy f [v(n~>% ) %2 F(@) | W, (@) do
Moreover -0
gl
3) [ |B. () —F@IW,(0)d
—nlf2k

nl/2lk T,
< bt §f {f | F ()W (w+t)— F(w)W,,(w)ldt}dw

«}11.1/27‘7 0

< max f |F (@ + )Wy (s +1) — F(0) W, (@) deo.

o<i<hy, _o
The statement (39) is a consequence of (41), (42), (43) and the definition (3)
of w(Ly; Wy). )
Now we turn to the proof of (40). By differentiation
(44)  Fo(0) = — k™ 1, () + b Wit (2) [Po(@ + hy) — P ()]
" We consider now the weighted integrals of these two terms. For |o| > 2n'*,
F,(v) vanishes as a consequence of definition. It follows

-]

(48) [ o |y (@) Wy (a) do

-:.1/276 an)f2k )

< [ PR@) -F@\Wy@dot+ [ (el (@) W (@) do
—anlf2k —an}2h

< 0o h (B = FYWyl +0p0h? [ [o(n ) P2 |7 (@) W (@) dor.
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Taking the just proved inequality (39) in consideration we see that the
weighted integral of the first term in (44) is smaller than eoh; o (Ly;
Wi I's hy). We estimate the contribution of the second term in (44) by

[ 18y (@+hy) ~ &, (@) do < 287 f (@, (@)

—00 —0o

46) B! —F(2)W, (@) do+

B [P @ ) Wi+ hy) —

~—ca

I (z)Wy ()| dec.

The integrand of the first integral on the right-hand side vanishes for
1@ < n*?*, consequently this term is smaller than

onhy f [o(n ") P2 | F () | W () dov.

The second term on the right of (46) is evidently smaller than h;'e (Ly;
Wi; F; hy). Allin all, we obtain the desired second inequality (40).
TurorEM 7. We have for every FWye L, with h, = n~'+1*

(47) MW FY < ogpo (L Wy F3 b)) (0 =1,2,...).
" Proof. By (39)
sg'bl)(Wk; (1)(ch) n)+025w (I’l; ch;F§ hn)

Applying (32) with ¢ = Fn and by virtue of (40) it results inequality (47).

As it has been already pointed out in the introduction, our main
statement Theorem 1 is obtained by the combination of Theorem 6 and
Theorem 7.
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