

Some remarks on strong (\mathfrak{M}, φ) -summability*

by

A. WASZAK (Poznań)

Abstract. In this paper it is proved that the method of strong (A, φ) -summability of sequences given in [8], and the method of strong φ -summability of functions given in [9], are special cases of a very general method of strong (\mathfrak{M}, φ) -summability which was introduced in [10].

In the course of my investigation of modular spaces connected with strong summability I introduced a new method of strong (\mathfrak{M}, φ) -summability.

1. Let E be an abstract set, and let $\mathscr E$ be a σ -algebra of subsets of the set E. $\mathscr E_0$ will denote a fixed σ -ring from $\mathscr E$.

Now, by $\mathfrak T$ we shall denote a locally compact Hausdorff topological space, and let $\tau' \notin \mathfrak T$. Let us write $\mathfrak T_0 = \mathfrak T \cup \{\tau'\}$. $\mathfrak M = \{\mu_{\tau}\}, \tau \in \mathfrak T$ will denote a family of non-negative measures, defined on the σ -algebra $\mathscr E$. Functions on E measurable with respect to $\mathscr E$ and sets belonging to $\mathscr E$, will be called $\mathfrak M$ -measurable.

By $\mathfrak X$ we shall denote the space whose elements are classes of $\mathfrak M$ -measurable real-valued functions, where two functions belong to the same class if and only if they differ on a set belonging to the σ -ring of $\mathfrak M$ -zero sets $\mathfrak R = \bigcap_{\tau \in \mathfrak X} \mathfrak R_{\tau}$. Here $\mathfrak R_{\tau}$ denotes the σ -ring of sets in E of μ_{τ} measure zero.

Let a φ -function φ (see [1]) and a family $\mathfrak M$ of measures be given. We write for any $x \in \mathfrak X$

(*)
$$\sigma_{\varphi}(\tau,x) = \int\limits_{E} \varphi(|x(t)|) \, d\mu_{\tau}(t)$$

and we say that the integral transformation $\sigma_{\varphi}(\tau, x)$ tends to zero, as $\tau \to \tau'$, if for any number $\varepsilon > 0$ there exists a set Z compact in $\mathfrak X$ such that $\tau \notin Z$ implies $\sigma_{\varphi}(\tau, x) < \varepsilon$.

^{*} The paper was presented to the Conference on Functions Spaces and Modular Spaces, Poznań, 1-5 October 1971.

Now we introduce

$$\mathfrak{X}_{\varphi}^{*} = \{x \in \mathfrak{X} \colon \sigma_{\varphi}(\tau, \lambda x) < \infty \text{ for } \tau \in \mathfrak{T} \text{ and } \sigma_{\varphi}(\tau, \lambda x) \to 0 \text{ as } \tau \to \tau';$$

$$\text{for some } \lambda > 0\}.$$

The relation \leq defines a partial order in \mathfrak{X}_{φ}^* and \mathfrak{X}_{φ}^* is a linear lattice with respect to this relation, which is order complete. The elements of the space \mathfrak{X}_{φ}^* are called *strongly* (\mathfrak{M}, φ) -summable to zero.

In \mathfrak{X}_{φ}^* we define a modular $\varrho_{\varphi}(x)$, in the sense of the definition given by J. Musielak and W. Orlicz in [3], [4], by the following formula: $\varrho_{\varphi}(x) = \sup_{\tau \in \mathfrak{T}} \int_{E} \varphi(|x|) d\mu_{\tau}$ if $\int_{E} \varphi(|x|) d\mu_{\tau} < \infty$ for $\tau \in \mathfrak{T}$ and $\int_{E} \varphi(|x|) d\mu_{\tau} \to 0$ as $\tau \to \tau'$, and $\varrho_{\pi}(x) = \infty$ elsewhere.

The theory of these modular spaces was developed in [10] under the following assumptions on the family of measures \mathfrak{M} :

1° For every set $K \in \mathscr{E}_0$, $\sigma_{\varphi}(\tau, x_{\chi_K})$ is a continuous function of the variable $\tau \in \mathfrak{T}$ (where χ_K means the characteristic function of the set K).

2° For every M-measurable function x for which $\sigma_{\varphi}(\tau,x)$ is finite for all $\tau \in \mathfrak{T}$, and $\sigma_{\varphi}(\tau,x) \to 0$ as $\tau \to \tau'$ the integral remainders are uniformly small on set Z compact in \mathfrak{T} .

3° The family of measures M is uniformly bounded.

4° For an arbitrary set $K \in \mathcal{E}_0$ and for any $\varepsilon > 0$ there exist a set Z compact in $\mathfrak T$ such that $\tau \notin Z$ implies $\mu_{\varepsilon} K < \varepsilon$.

5° Let us denote $A(K) = \sup_{\tau \in \mathfrak{T}} \mu_{\tau} K$.

(a) For an arbitrary set $K \in \mathcal{E}_0$ there exist a set Z compact in \mathfrak{T} such that $A(K) = \sup_{x \in Z} \mu_x K$.

(b) There exist constants $\delta > 0$ and $0 < c \le 1$ such that for every number η satisfying the inequalities $0 < \eta \le \delta$ there exist a set $K \in \mathscr{E}_0$ such that $c\eta \le A(K) \le \eta$.

We show that the assumptions on the family of measures \mathfrak{M} are sufficiently general in order to cover the special cases of purely atomic measures or atomics measures considered in [8], [9] and also in [2], [4], [6].

2. Let us first consider the case where \mathfrak{M} is a family of finite, atomless measures. Then we take $\mathfrak{T} = [\tau^*, \infty[$, where τ^* is a positive number which may be chosen arbitrarily depending on the concrete family of measures, and $\tau' = \infty$. As $\mathscr E$ we take the σ -algebra of all Lebesgue measurable subsets of $[0, \infty[$. In place of $\mathfrak X$ we shall write X; thus the elements of X are classes of equivalence of real, measurable, finite functions, with respect to the relation of equality almost everywhere. We take measures $\mu_{\tau}, \tau \in [\tau^*, \infty[$, absolutely continuous with respect to the Lebesgue measures

sure. Then, applying the Radon-Nikodym theorem, we may find a non-negative function $a(t,\tau)$ defined in the product $[0,\infty[\times[\tau^*,\infty[$ such that it is measurable with respect to the variable t for every $\tau \in [\tau^*,\infty[$ and satisfies the condition

$$\mu_{\tau}A = \int_{0}^{\infty} a(t,\tau)_{z_{A}}(t) dt$$

where $\chi_{\mathcal{A}}(t)$ is the characteristic function of the set $A \in \mathscr{E}$. For such a family of measures, the integral transformation (*) is of the form $\sigma_{\varphi}(\tau, x) = \int_{0}^{\infty} a(t, \tau) \varphi(|x(t)|) dt$.

We now show that if the function (kernel) $a(t, \tau)$ possesses properties (1), (2) and (I)–(V) given in [9], p. 116, then the family of measures $\mathfrak{M} = \{\mu_{\tau}\}, \tau \in \mathfrak{T}$, where μ_{τ} are defined by (**), satisfies conditions 1°–5° given in Section 1 of this Note.

It is easily observed that conditions (1) and (2) in [9] imply that the measures (**) are non-negative.

Let us suppose that the function $x \in X$ satisfies the conditions

$$\sigma_{arphi}(au,x)<\infty \quad ext{ for } au \in [au^*, \, \infty[\, ; \, \, \, \, \, \sigma_{arphi}(au,x) o 0 \, ext{ as } au o \infty.$$

Let us take any numbers $\bar{t} \in]0, \infty[, \bar{\tau} \in]\tau^*, \infty[$, and let $\tau, \tau_0 \in]\tau^*, \bar{\tau}[, \tau_0 < \tau$. Finally, let $K \subset [0, \bar{t}], K \in \mathscr{E}_0$, be an arbitrary set. Then

$$\begin{split} &|\sigma_{\varphi}(\tau,x\chi_K)-\sigma_{\varphi}(\tau_0,x\chi_K)|\\ &=\Big|\int\limits_{E}\varphi\big(|x(t)|\chi_K(t)\big)d(\mu_{\tau}-\mu_{\tau_0})\Big|\leqslant\int\limits_{K}|a(t,\tau)-a(t,\tau_0)|\varphi\big(|x(t)|\big)dt\\ &=\int\limits_{K\backslash\{\tau_0,\tau\}}|a(t,\tau)-a(t,\tau_0)|\varphi\big(|x(t)|\big)dt+\int\limits_{[\tau_0,\tau]}|a(t,\tau)-a(t,\tau_0)|\varphi\big(|x(t)|\big)dt. \end{split}$$

But, by property (II) a) in [9], there exists a constant c>0 such that $a(t,\tau) \leq c$ for $t \in [0,\bar{t}]$ and $\tau \in [\tau^*,\bar{\tau}]$. Moreover, by property (II) b) in [9], we have the inequality $|a(t,\tau)-a(t,\tau_0)| \leq L |\tau-\tau_0|^a$ for $\tau,\tau_0 \in [\tau^*,\bar{\tau}]$ and $\tau,\tau_0 < t$ or $\tau,\tau_0 \geq t$, where $0 < a \leq 1$ and the constant L does not depend on $t \in [0,\bar{t}]$. Thus we may write

$$|\sigma_{\varphi}(\tau,x)-\sigma_{\varphi}(\tau_{0},x)|\leqslant 2c\int\limits_{\left[\tau_{0},\tau\right]}\varphi\left(|x(t)|\right)dt+L\left|\tau-\tau_{0}\right|^{a}\int\limits_{\mathbb{K}\backslash\left[\tau_{0},\tau\right]}\varphi\left(|x(t)|\right)dt.$$

From property (I) in [9] it follows that for an arbitrary set $K \subset [0, \infty[$ there exist constants d > 0 and $\tau_0 > \sup K$ such that $a(t, \tau_0) \geqslant d$ for every $t \in K$. Hence we obtain for a function $x \in X$ satisfying conditions (+),

$$\int\limits_{\mathbb{R}} \varphi \left(|x(t)| \right) dt \leqslant \frac{1}{d} \int\limits_{\mathbb{R}} a(t, \ \tau_0) \varphi \left(|x(t)| \right) dt \leqslant \frac{1}{d} \int\limits_{\mathbb{R}} a(t, \ \tau_0) \varphi \left(|x(t)| \right) dt < \ \infty.$$

Finally, we have $|\sigma_{\varphi}(\tau, x) - \sigma_{\varphi}(\tau_0, x)| < \varepsilon$ for τ sufficiently near τ_0 , and so the family of measures \mathfrak{M} possesses property 1.

Let $x \in X$ be an arbitrary function satisfying conditions (+). From condition (III) in [9] it follows that for every $\varepsilon > 0$ and every $\tau_1 \in]\tau^*$, ∞ [there exists a set $K \in \mathscr{E}_0$ such that $\int_{K'} a(t,\tau) \varphi(|x(t)|) dt = \int_{K'} \varphi(|x|) d\mu_{\tau} < \varepsilon$. This means that the integral remainders are uniformly small in the set $[\tau^*, \tau_1]$, i.e. the family of measures \mathfrak{M} possesses the property 2° .

Properties 3° and 4° of the family M follow from conditions (IV) and (V) in [9] immediately.

Let us also remark that in the case of a family $\mathfrak M$ of finite and atomless measures the function $A_y=\sup_{\tau>\tau^*}\mu_{\tau}([y,y+1])$ introduced in [9] is finite for every $y\geqslant 0$ and is a continuous function of the variable $y\geqslant 0$ if the function $a(t,\tau)$ satisfies conditions (1), (2), (I)–(V) given in [9]. If we write $k=\sup_{y\geqslant 0}A_y$, then the continuity of A_y implies that for $0<\eta< k$ there exists a y_0 such that $\eta=A_{y_0}$. Hence it is easily seen that the family of measures $\mathfrak M$ possesses property 5° , and the inequality which appears in 5° (b) may be replaced by the equality $\eta=A([y_0,y_0+1])$.

Thus we have proved that the space of functions strongly φ -summable to zero, defined by means of a family of finite atomless measures, is a special case of the space \mathfrak{X}_{φ}^* , and that theorems given in [10] generalize the respective theorems from [9].

3. In the case where \mathfrak{M} is a family of finite and purely atomic measures, as both the topological space \mathfrak{T} and the abstract set E we take the set N of natural numbers. Measures μ_n , $n \in N$, are defined on the σ -algebra \mathscr{E} of all subsets of the set N. Then there exists a non-negative matrix $A = (a_n)$, n, $r \in N$, such that

$$\mu_n K = \sum_i a_{nv_i} \quad \text{for } K = \{v_i\} \epsilon \ \text{δ} \ \text{and} \ \mu_n \emptyset = 0.$$

In the case of this family of measures, the integral transformation (*) is of the form $\sigma_{\varphi}(n,x) = \sum_{r=1}^{\infty} a_{nr} \varphi(|t_r|)$. It is easily verified that if the matrix A is non-negative and possesses no column consisting of zero only, and if it possesses properties 3(a)–(d) in [8], p. 243, then the family of measures $\mathfrak{M} = \{\mu_n\}, n \in \mathbb{N}$, where μ_n are defined by (***), satisfies conditions 1° – 5° given in Section 1 of this Note.

In connection with property 5° (b) let us remark that in [8] it was shown that if the matrix A possesses properties 3(b) and (c) in [8], then there exist constants $c \in]0, 1[, \eta_0 \in]0, \infty[$ such that for every $\eta \in]0, \eta_0]$ there exists a ν for which the inequality $c\eta \leqslant A_v \leqslant \eta$ is satisfied, where $A_v = \sup a_{nv}$.

Condition 5° (b) plays an important role in the theory of strongly φ -summable sequences. It is connected with the condition of equisplittability of a family of measures formulated in [5]; moreover, if we reformulate it in terms of [7], it corresponds to condition (D) given in [7].

If \mathfrak{M} is a family of finite, purely atomic measures, we get a special case of space \mathfrak{X}_{φ}^* ; this is then the space of sequences strongly (A, φ) -summable to zero [8]. Other special cases of such spaces have been investigated in [2], [4], [6] and [8].

References

 W. Matuszewska, On generalized Orlicz spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 8 (1960), pp. 349-353.

[2] J. Musielak, On some modular spaces connected with strong summability, Math. Student, 27 (1959), pp. 129-136.

[3] - and W. Orlicz, On modular spaces, Studia Math, 18 (1959), pp. 49-65.

[4] -, - On modular spaces of strongly summable sequences, ibidem 22 (1962), pp. 127-147.

[5] - and A. Waszak, Countably modulared spaces connected with equisplittable families of measures, Comment. Math. 13 (1970), pp. 267-274.

[6] W. Orlicz, On some spaces of strongly summable sequences, Studia Math., 22 (1963), pp. 331-336.

[7] - On some classes of modular spaces, ibidem 26 (1966), pp. 165-192.

[8] A. Waszak, On spaces of strongly summable sequences with an Orlicz metric, Comment. Math. Prace Mat. 11 (1968), pp. 229-246.

[9] — Strong summability of functions in Orlicz metrics, ibidem 12 (1968), pp. 115-139.

[10] - Orlicz spaces connected with strong summability, III, Publ. Inst. Math. (Beograd), Nouvelle série. 12 (26) (1971), pp. 149-160.

A. MICKIEWICZ UNIVERSITY, POZNAŃ.

Received March 1, 1972 (497)