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A sub-regularity inequality

for conjugate systems on local fields
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and
MITCHELL H. TAIBLESON (Saint Louis, Mo.)

Abstract. In this paper a sub-regularity inequality iz established for conjugate
systems over local fields, from which a classical F. and M. Riesz Theorem can be
established. The F. and M. Riesz Theorem referred to is one which identifies a singular

integral transformation f — f such that whenever f and f are both finite Borel measure
then each is an I function. These results depend on generalizations of the properties
of harmonic and sub-harmonic functions, least harmonic majorants, area integral
operators and non-tangential boundary behavior of harmonic functions for local
fields as developed in [1] and [8].

§1. Let K be a local field. That is, K is a locally compaet, non-
discrete, complete, totally disconnected field. (Such a field is a p-adic
field, a finite algebraic extension of a p-adic field, or a field of formal
Laurent series over a finite field. See [6] for details.) In a series of papers
(61, [71, [8], [9], [4], [6], and [3]) the details of harmonic analysis on
local fields, K, and on the n-dimensional vector spaces over K, K” have
been extensively treated.

In particular, the foundations for a treatment of HP-spaces over K
and K" have been developed. From [8] we have the notion of regular
functions on K"x Z and regularization of distributions on K" These
generalize the notion of harmonic functions on euclidean half-spaces, B**%+ -
and Poisson integrals of distributions on E™. From [9], [4] and [5] we
have the notion of singular integral operators and multipliers on local
fields.

Recent work of J-A. Chao [1] has shown that the properties of regu-
lar functions essential to a treatment of H”-space theory are valil. We
have that there is a valid notion of sub-regular functions, least regular
majorants of non-negative sub-regular functions, that regular functions
on “bounded domains” are determined by their “boundary” values,
and (most crucially) that the local field variant of the Lusin area integral
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theorem holds and that convergence-of a regular function to boundary
values on a set B < K" is equivalent, a.e., to local boundedness,

The central result for the theory of HP-gpaces that is then required
is that if (f, f is'a “conjugate pair” in gsome appropriate sense, then there
exists a p, 0 < p <1, for which [(f, j )|? is sub-regular. One umncdmte
consequence (see Chao [1]) of such a result is that if f and f are both

finite Borel measures then each is an L* function.
'We will show in § 2, by a gpecific example, how such results can be

established in local fields. In § 3 we will demonstrate how the idea of the .

proof of Lemma 1 in §2 can he used to establish the sub-harmonicity

IfyH f {? for all p > 0, where (f, f is a conjugate pair of harmonic func-

) txons in the complex plane, without reference to the harmonicity of

log|f —H’f{, the concept of a Laplacian or, for that matter, the notion of
differentiability.

§ 2. Let K be the 3-adic or 3-series field, o the ring of integers in K,
p the (unique) maximal (principal) ideal in p. Then o/p o2 GF(3). Let =
be a non-trivial multiplicative character on K* which is homogeneous
of degree zero and ramified of degree one. (The reader iy referred to [6]
for notation and details.)

Then # is determined by its values on the non-zero elements of GI(3).
In this case, m(1) = 1 and ={—1) = —1 (an obvious “relation” of the sgn
function on R.)

One then considers the multiplier transform on the space of distrib-
utions, f —f, defined by (f)" = nf, where f — fhis the Fourier transform
operation on the space of distributions on K.

Let F(x,k) :(f(w,k),f(mz k) where wel, keZ, f(w, k),_f(m,k)
are the regularization of f and f respectively. The vector valued function

F(w, k) is called a conjugate pair. We note that'(f(-, &))" = =F(-, k).

For each &, f(, k) and f(=, ) are constant on cosets of p~* in K+ (™",

keZ, are the fractmnal ideals in K*). Let gy-4-p~*+Y be a fixed coset
and w,+p"°(l =1,2,3) three mutually disjoint cosets whose union is
z, +p—(7ﬂ+1)

Let

Jl@oy b+1) = a; flay, k) = a+tg
Flarny b+1) = b5 Flay, B) = b+,
From the regularity of f(», k), f (@, &) we obtain

Zepztsl*o

1—1

l=1,2,8.

(2.1)
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Furthermore, since (f(z, k) f (2, k)) is a conjugate pair, one obtains
(see Chao [1])
Z &]* = 2 [6,}2, and
7 7

(2.2)
Z & 61 = 0.

i

(2.3)

Let us repeat here the definition of regularity, using the notation
above. A function, f(», &), defined on K X Z, is regular if f(w, k) is constant
on cosets of p~* and whenever m,, #,, @,, ¥, are related as above, then
flag, b41) = (1/3);']‘(50,, k). It is sub-regular if f(m,, & +1) < (1/3)21:‘]”(50,, k).

It is easy to see that whenever p > 1, then |F(x, k)|® is sub-regular,
where |F(z, k)| = {|f(z, &)|*+ |3‘(w, k)?}*. This follows from (2.1) and
gtandard convexity arguments. Our object is to extend this fact to a p,
0 < p <1, when F(», k) is a conjugate pair.

TrrorEM 1. Let T (v, k) be a conjugate pair on K X Z. Then there is a
Doy 0 < po< L, P, independent of F, such that |F(w, k) is sub-regular
for all p = pq.

Proof. Using the notation above, we need to show that

I(a, b)] ”<%~Z|a+6ub+3)l
I=1
where (@, b)e0? and (ey, &3, &), (1, 05, 6;) are 3-tuples satistying (2.1),
(2.2) and (2.3). )
Theorem 1 is then an immediate consequence of the next theorem,
which properly belongs in the domain of elementary linear algebra.

TunorsM 2. Let n =3 be a fived inleger. For s = (&1, &g, ..., &,) €O
let lle] = [3lexl®]. Let a,be0; &, 8eC™ be such that
1
(2.4) Do =0 =0, )
& ke
(2.5) flelt = 181,
(2.6) Z 6,0, = 0.
%

Then there ewists @ py, 0 < Po < 1, such that

(2.7) (@, B)P < (1/m) D) l(a+ e, b+ 6P
&

for all p 3= p,, where p, is independent of a,b, & and 8.
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Before proceeding to a proof we prove the following:

ImvmA 1. Let a,b, e, 6 be as in Theorem 2. Given py, 0 < p, <1,
there ewists a constant A, > 0 such that (2.7) holds for all p > p,, provided
llell < A, [(@, b)].

Proof. The lemma holds trivially if |(¢,d)] =0 or p:=1
we may assume that |(a, b)| %0 and 0 < p, < p << 1.

Z] G+, b+ )P

. Thus,

Z[Ia+ et [0+ 8277

= Z {a+ b+ 2 Re (e +58,) -+ eyl + 8,72
k .

2 Re(d@s, by,
= |(a, b)|” 1 -
(@, D) Z{ + e

o 10,
(@, b)? } ’

(2.9)
2, [Re(@e, +08,)12 < D] e, + b8,
T o k

2 Ey ‘Sk)

= [al? ) legl2+ 1012 3 |8,)2 +2 Re (ab
k ] . k
= [al?[ls]®+ B[26]* = |(a, b)|?|e|®,
as follows from (2.5) and (2.6).
Assume now that |lel| < (1/3)|(a, b)li It is easy to see that

2Re(ae, 156, | &l% 4]0, |2 llell llel®

[(@, b)? l(a, b))z |~ |(a, b)] (@, b)|®
1 1 3

<2(“3*+'9")=‘9“ 1.

Therefore it is valid to expand each snmmand of the last term of
(2.8) by the binomial theorem, obtaining that the sum in the last term of
(2.8) is equal to

(2.10) Z‘ {1 +p

k
p(2—p)
= S by [A(Re @B+ eyl + 0,12

lenl? -+ |8
(@, )%

Re (E% +5d)
(@, b)J? ~|_~2“

+ 4 (Reo (@e+50,) (gl + 18,19)] - Rm},

where Ry, are the third Taylor remainders.
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Let us observe that

(2.11) P(2-p)<1 for all p.

(2.12) 1(%2)' = pw—ié(‘i"‘p) < 9;5 , 0<p<1
(2.13) 2’; p»Bfﬁ%?’fl =0, as follows from (2.4).
(2.14) 2;12'1 ‘F‘ngl'bl)‘?’;w = |(ol]f|§)1z’ as follows from (2.5).
(2.15) g [((2 ?)?—ll Z 4[Re(de,+58,) ] < ﬁ(—z—;—pl T(i'—f'%];,

as follows from (2.9).

It follows from (2.11), (2.12), (2.14) and (2.15) (together with easy
applications of ¥6lder’s inequality) that the remaining terms are bounded
by

lle]
l(a; )P’
provided |l < (1/3)|(a, b)].
‘We have now that the sum in the last term of (2.8) dominates

(2.17)

(2.16) B —— B> 0, B independent of p,0 <p <1,

) __p(Z—p)] lel® el Bl lel®
’”[p 5 T Cleors "2 Tanr T N o)p
provided [[sll/|(a, b)|] < 4,, = min[1/3, p}/2B].

This completes the proof of Lemma 1.
Proofof Theorem 2. Suppose Z; o+ &y b+ 6;)| = 0. Then ¢, = —aq,

Oy == —0b for all k and (2.4) unplleﬂ that a,b, e, 6 are all zero and then
(2.7) is immediate. Ience we may assume that S e+egy b+ 8, # 0
k

and from the homogeneity of (2.7) that
(218) (Lfm) X0+ e b+ )] =1
k
‘We now fix any p,, 0 < p; <1 and we may assume that

(2.19) llell = Ap, (@) D)

as follows from Lemma 1.
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Let f = {(a+&g b+ 8)}imy- The co]lectlon, D, of vectors f satis-
fying (2.4), (2.5), (2.6), (2.18) and (2.19) is easily seen to be compact (in
the usual C* topology).

Note that if fD then ] # 0. For if |le]| = 0 then [(a, b)| =1
(2.18)). This contradicts (2.19).

We will show that
(2.20) There is an a, 0 < a < 1, « independent of feD, such that

1/n Z‘[ at ey b0, feD.

(from

(@, b)] <

If (2.20) bolds, a simple computbation shows that (2.7) holds for
BeD,p=p, = (14 [log(1/a)/logn])™, and so (2.7) is valid for p > p,
= max [py, ps] and § satisfying (2.4), (2.5) and (2.6).

We now establish (2.20).

Clearly, |(a,b)]< (1/'”’)%2 o+ e 000 IE

then there is a feD such that

(L/m) D (a+ e, b+ 86| = L.
&

(2.20) does not hold

(2.21) l(@, )] =

Hence, there exist {4;}}.., such that

(@+e5) b+ &) = Xy(a, B)

(2.22)
=0

h=1,2,...,n

We have now, ¢, = (4,—1)a, §, =
A —1 real and so (4, —1)2 > 0 for all k.
From (2.6) we obtain

0= Doy = ab}j(lk—l)“.
k k

Hence, 4, =1, & =1, .
conditions implies |l = 0, a contradiction.

This completes the proof of Theorem 2.

Note. The main idea of the proot; namely, to reduce it to the estimate
(2.20) on a compact subset of admissible vectors, is due to A. P. Oalderén,

and is exploited here in a manner similar to its use by Coifman and
Weiss [2].

(p—1)b, & =1,2,...

(2.23)

§3. We will now give yet another proof of the following result:

Let f(2) be analytic in & domain of the complex plane. If p > 0 then
|f(2)® is sub-harmonic on the domain.

Our proof will follow closely the idea of Lemma 1.

) %, with -

vy M @ =03 or b = 0. Wach of these three .
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Teb 2, be a point where f is analytic, f = u+4v be the decomposi-
tion of f into its real amd imaginary parts. Let () = @, v(2) = b, and
w(zy+re") = at+e(r,0), v(+rd’) =b-+4(r,0) in a neighborhood of z.
The sub-harmonicity result now follows from:
TomvmA 2. Let 2, be a point where f is onalytio. Fiz p > 0. Then there
is an R(p, %) > 0 such that if 0 <r < R(p, %) then .

(3.1) (@, B)[P \———f I(a;l—er 9), b-+4(r, )} do.

Proof. The result is trivial if p > 1 or |(q, b)| == 0 80 we may assume
that 0 <p <1, [(a,b)] # 0. Let
l6(r

le ()| = [}"[s('r, o)™ | f 16(r, 6)2d6]'".

The following properties are immediate from the fact that s(r, 6), -
8(r, 6) are harmonic conjugates and the fact that ¢(0, 6) = 8(0, 0) =

21 b2
(3.2) f e(r, 0)d0 = [ o(r, 0)a8 =0,
0 0
(3.3) lle()l = 16,
(3.4) [ ey 0)5(r,0)a0 = 0.
[

Since ¢ and 6 are continuous we may choose Fy(2) > 0 so

(3.8)  le(r, 0) < (1/3)|(a, ), 18(r, O) < (1/8)[(a, b)]; all O,
0 <7< RBy(2).
Ag before we compute,
. 2
(3.6) f (a-Fa(r, 0), b+ d(r, 0)d0
0
I 2 2P/
B(as(r, 0)+03(r, 0))  le(r, 0)2+18(r, O)F)7"
m'(“’b)wof {1"'” T i b * l(a, B)F
= l(@, BIPL().
Tn a computation similar to that following (2.9) we obtain
’ 2(ae(r, 0)+d(r, 0)) +le(r, )P+ [0(r, O)1* \-‘213<1 0 <7< Byler).

(@, b)I?
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‘We may then expand the expression in “curly” brackets in (3.6)
by the binomial theorem and obtain

bid

2ac(r, 0)+00(r, 0)) | P lelr; O)*+15(r, )]
@0 1= {1+2’ l(a, B)F 3 a0

o
_%%Zﬁ; [4{as(r, 0)+b3(r, O)) -+ (le(r, 0)12-+|8(r, )

+4(az(r, 0)+bd(r, 0))(le(r, )2+ |8(r, 0)]¥)] - By (r, 0),d0.

Following the argument of Lemima 1 we obtain

P* e
(3.8) I(r)>2m+- o

2m 2»—‘ ‘
f {g,((a’, bj;|)4 [("9("; 024 18(r, 0)|2)2

+4(ae(r, 0)+08(r, 0)){|e(r, 0)[2+15(r, 0)[4)] + Ry (r, 0)}d0’.

Let E(r) = sup,[le(r, 6)I, 18(r, 6)|1-
Then it is easy to check that the integral remainder in (3.8) is domi-
nated by

[l& (#)11?
(3.9) BR(r)
) e, 2R
where Bis a positive constant that depends only on p and Z and H(r) = o0(1)
as r — 0. )
It follows that

2’ ls(r))?
(310) I(’r‘),>,271;+l:,,,_ —BE #:I““*"-M.
Y () @, B
Choose B (p, &) > 0 s0 0 <r < Ruy(p, 2) implies
(p2/2) — BE(r) > 0.

)
Let R(p, ) = min[R,(2), Ry(p, 2)] and the proof is completed.
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