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A finiteness result on the ring of amalytic functions
defined on a Banach space

by
M. J. FIELD (Coventry, England)
Abstract. It is shown that irreducibility of the germ of an analytic function

defined on a Banach space I is equivalent to irreducibility when restricted to suitable
finite dimensional subspaces of H. A number of applications of the result are given.

Recently the study of complex analysis on Banach spaces has been

. receiving increasing attention (for example [1], [2], [4], [6], and [7]).

In this note our main result is to show that irreducibility of a germ in
0y,(B) (E Banach) is equivalent to irreducibility when it is restricted
to some suitable finite dimensional subgpace of E(*). This result is a useful
“theorem proving machine” in that it enables one to establish a number
of theorems in complex analysis in Banach spaces using a combination of
easy analytic methods and classical results rather than the algebraic
methods uged in [6]. I am particularly grateful to Professor J. Bells for
introducing me to the field of complex analysis.

1. A lemma on functions satisfying analytic conditions. Let E be
a complex Banach space and B denote a ball, centre zero, in E. For defi-
nitiong and background see [1] and [2]. Our notation will follow these
papers.

LevMa L If f: B — C is a continwous function satisfying the following
condition:

There ewisls a subset V of B such that if F is any two-dimensional
complex subspace of B then V N I is a neighbourhood of 0 in Vand f| V n F
s amalytic. Then:

1° f is G at O (that is, for every k =1, 2, ... and for every he H the

e

map ol - 8f = (T;ZZ) F(th}|ymo 18 well defined and Sif is a homogencous

. polynomial of degree k).

2° 88fe PR(I, C) (that is, 0Ff is a continuous polynomial of degree k).

(*) T have recently loarnt from J. P. Rgynis that P. Mazet (Orsay) has also proved
a similar type of rosult to the one given i paper.
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w1l ; .
30 The series § i 8% f converges normally at 0< B. The serics therefore
7 k!

defines an analytic function in a neighbourhood of 0.

Proof. 1° For every two-dimensional subspace F of B &¢(f| V N I
= (8%f)] F is a homogeneous polynomial of degree %. So by Corollary 3 in
[2] 8%f is a homogeneous polynomial of degree k.

2° This follows using a Taylor expansion for f and the Baire property
of I (see proof of Theorem 5 [2]).

o 1
3f= 2 T &% fin an absorbing subset of B. Thus, by Proposition 5.2

[ .
of [1], it conv erges normally in a neighbourhood of 0.

2. The main theorem. For properties of rings of germs of analytic
functions we refer the reader to [6]. In particular let @,(#) denote the
ring of germs of analytic functions at the origin of B. 0,(®) is an integral
domain and we have the notion of #rreducibility of germs. We may now state
the main result. .

THEOREM 1. fe 0y (B) is irreducible if and only if there emists a finite
dimensional subspace F of B such that (f | F)ge.0,(F) 48 srreducible. Further
Jor all (closed) subspaces H of B containing F we have (f | H)ge 0y (H)
srreducible.

- Proof. 1. Suppose an F exists with (f | F)ye 0,(F) irreducible then
Wwe may eagily check that for H > F, (f | H), is irveducible. In particular f
ig irreducible. We leave details to the reader. .

2. We now construct . We may suppose, without loss of generality,
that f is a Weierstrass polynomial [6]: ‘

1Z,2) =2°+ ... +a,(2);

Consider f| M, where M is a finite dimensional subspace of ¥. Using
classical theory (for example [5]) fe 0,(M ) factorizes as a product of
p(M) irreducible factors (counting multiplicities). Clearly M, = M, =
2(M,) < p(M,). Thus we may find a finite dimensional subspace L’ of
B such that, for all finite dimengional subspaces M > L', we have p (M)
=p(L). Set I = I'Q Ca. Let (f| L), = froo fur b = p(L) and fye 0,(L)
irreducible. Using the Weierstrass division theorem we may Suppose
that each f; is a Weierstrass polynomial; This uniquely defines the fj,
since f is a Weierstrass polynomial. Suppose L; > L,{ =1, 2, are finite
dimensional. Then we may write: :

f]L,; =f11 f;{ﬂf;e 0o(Ly),

where the ff are Weierstrass polynomials. By rearranging we may suppose

(2',2)e B'® Ca = B.
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il L =f; Clearly then f}|L, N L, = 71 Ly N L, — since the f! are
uniquely defined. Thus we may set f} = f;.

Suppose p(L)> 1, then the above shows that the f: are umiquely
defined on some subset V of E which has the property that for every
complex finite dimensional subspace N of B, N n V contains a neigh-
bourhood of 0. We suppose that f is defined as an analytic function on
some ball B, centre 0, in H.

We now prove that, on the assumption p(L) > 1, we obtain a con-
tradiction and hence p (L) must equal 1 and we may take F = L.

From the above remarks we have: '

p{L)
A, flz,z) = n (Z74+ (2 2% + ...+ ¥ (Z))

i=1

~on V,

where:

1. b;ﬁ are analytic on N nV for all finite dimensional subspaces
NotE. : .

2 fiZ,8) =2%+ ... + b;,i(Z') is such that (f;|H)pe On(H) is
irreducible for all finite dimensional subspaces H o L.

For brevity of exposition we will now assume the known result that
0,(B) is a unique factorization domain ([6]). Thus, since Df 5= 0 (‘Df?
denotes the discriminant of f) we may factorize f as:

12,2) =[] (z—a(2"),

where a : B N E'— C and is continuous. We wish to prove that there
exists a subset J, = {1,...,p} for ¥ =1, ..., p(L) such that:

onV.

A, 522 =[] (2—a;(2))
jel g

In fact. we prove more: A; and A, hold in some neighbourhood of
0< B. To prove A, we restrict attention to finite dimensional subspaces
H of B containing L. A, then follows* straightforwardly, using Df; s 0,
and in fact defines b on B N F as continuous functions. We omit details.
Using Lemma 1 we see easily that the b} are then analytic on some neigh-
bourhood of 0 in E'. Contradiction, since we have now factored f as
a product of analytic germs none of which are units.

‘We give three examples of the use of this theorem.

CoroLLARY 1. We could have avoided the assumption that 0,(E) was
a unique factorization domain in the above proof. That 0,(F) is & unique
Sactorization domain is then am immediate consequence of the theorem together
with the classical resul.
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CorOLLARY 2. (Nullstellensatz for Principal ideals). If ge 0,(H)
is drveducible and fe 0y(E) is identically zero om V(g) (the zero sat of ),
then there exists he Oy(E) such that f = g-h.

Proof. Just a question of obtaining a factorization of f and g on
suitably large finite dimensional subspaces of F, applying the clagsical
result and dividing to obtain he 0y (H).

CoroLLARY 3. If X is an analytic subset of a complex Banach manifold
U then: If for all m< X the germ X, does mot contain a principal germ
([61), the pair (U—X, U) possesses the property of emtension ([67).

Proof. From [6] all we must prove is the gpecial case where U is
an open ball in B, X = V(fy, f,), where f;, f,: U~ C and h: U—X — ¢
is analytic. Using the theorem we can reproduce the situation on sufficiently
large finite dimensional subspaces of % and apply the classical extension
theorem to obtain a function : U - C which is analytic on U —X and
also analytic on all finite dimensional (affine) subspaces of U. The regult
follows immediately from work in [1] and the fact that U—X is open,
connected and non-empty.

ProBLEM. Localise Theorem ‘1.
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Formally real rings of distributions

by
MANGHO AHUJA* (Cipe Girardeau, Mo.)

Let @ denote the set of test functions, and its dual 9’ denote the set
of Schwartz distributions [6]: Let 2’ denote the-set of those elements
of 2', which have support in the positive cone R’ , where

R} = {(t,, %, ..., 1,): e R, 1, >0 for ¢ =1, 2, ..., m}.

It is well known that the set &, is a commutative ring under the
operations addition, +, and convolution *. Moreover the ring 2. has
no zero divisors ([6], p. 173) and hence can be embedded into a quotient
field M. In the one dimensional case, where n =1, M is the quotient
field of Mikusinski operators [37.

Let (97.), denote the set of all T in 9, ; for which T () is a real number,
whenever ¢ is a real valued test function. The aim of this paper is to
show that, whereas %', and M cannot be (linearly) ordered, the ring
(2,), and its quotient field M, are both formally real and hence can be
(linearly) ordered.

1. Let 9, denote the subset of 9 consisting of the real valued test
functions, and let 2, denote its real dual, i. e. the set of real valued contin-
uous linear functionals on .. Let (2,), = {Te9,: support T < R"}.

’

The relation between (27), and (2,), is far from superficial.

TawsoreM I. (27.), and (2,) + are isomorphic as convolution algebras
over the reals.

Proof. Let Te 2., and ge 9. Let T'= T,+4T,, and &(2) = ala)+
+ if(z) be their decompositions into real and imaginary parts. Then
T(P) = (Ty+4T5) (a~+14p). It follows that if Te (D)), then

T(D) = Ty(a)+iTy(B).

Let T denote the restriction of T, to 2,. Then 6: T — T furnishes the
desired isomorphism. M

* These results are taken from the author’s doctoral dissertation [7] at the
University of Colorado, written under the direction of Prof. G. H. Meisters.
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