A finiteness result on the ring of analytic functions defined on a Banach space

Ъ

M. J. FIELD (Coventry, England)

Abstract. It is shown that irreducibility of the germ of an analytic function defined on a Banach space E is equivalent to irreducibility when restricted to suitable finite dimensional subspaces of E. A number of applications of the result are given.

Recently the study of complex analysis on Banach spaces has been receiving increasing attention (for example [1], [2], [4], [6], and [7]). In this note our main result is to show that irreducibility of a germ in $\mathcal{O}_0(E)$ (E Banach) is equivalent to irreducibility when it is restricted to some suitable finite dimensional subspace of $E(^1)$. This result is a useful "theorem proving machine" in that it enables one to establish a number of theorems in complex analysis in Banach spaces using a combination of easy analytic methods and classical results rather than the algebraic methods used in [6]. I am particularly grateful to Professor J. Eells for introducing me to the field of complex analysis.

1. A lemma on functions satisfying analytic conditions. Let E be a complex Banach space and B denote a ball, centre zero, in E. For definitions and background see [1] and [2]. Our notation will follow these papers.

LEMMA 1. If $f \colon B \to C$ is a continuous function satisfying the following condition:

There exists a subset V of B such that if F is any two-dimensional complex subspace of E then $V \cap F$ is a neighbourhood of 0 in V and $f \mid V \cap F$ is analytic. Then:

1° f is G^{∞} at 0 (that is, for every k = 1, 2, ... and for every $h \in E$ the map $E \ni h \to \delta_0^k f = \left(\frac{d}{dt}\right)^k f(th)|_{t=0}$ is well defined and $\delta_0^k f$ is a homogeneous polynomial of degree k).

2° $\delta_0^k f \in P^k(E, C)$ (that is, $\delta_0^k f$ is a continuous polynomial of degree k).

⁽¹⁾ I have recently learnt from J. P. Ramis that P. Mazet (Orsay) has also proved a similar type of result to the one given in paper.

^{2 —} Studia Mathematica XLVI.1

3º The series $\sum_{0}^{\infty} \frac{1}{k!} \delta_{0}^{k} f$ converges normally at $0 \in E$. The series therefore defines an analytic function in a neighbourhood of 0.

Proof. 1° For every two-dimensional subspace F of E $\delta_0^k(f|\ V\cap F)=(\delta_0^kf)|\ F$ is a homogeneous polynomial of degree k. So by Corollary 3 in [2] δ_0^kf is a homogeneous polynomial of degree k.

 2° This follows using a Taylor expansion for f and the Baire property of E (see proof of Theorem 5 [2]).

 $3^{\circ} f = \sum_{0}^{\infty} \frac{1}{k!} \delta_{0}^{k} f$ in an absorbing subset of E. Thus, by Proposition 5.2 of [1], it converges normally in a neighbourhood of 0.

2. The main theorem. For properties of rings of germs of analytic functions we refer the reader to [6]. In particular let $\mathcal{O}_0(E)$ denote the ring of germs of analytic functions at the origin of E. $\mathcal{O}_0(E)$ is an integral domain and we have the notion of *irreducibility* of germs. We may now state the main result.

THEOREM 1. $f \in \mathcal{O}_0(E)$ is irreducible if and only if there exists a finite dimensional subspace F of E such that $(f \mid F)_0 \in \mathcal{O}_0(F)$ is irreducible. Further for all (closed) subspaces H of E containing F we have $(f \mid H)_0 \in \mathcal{O}_0(H)$ irreducible.

- Proof. 1. Suppose an F exists with $(f \mid F)_0 \in \mathcal{O}_0(F)$ irreducible then we may easily check that for $H \supset F$, $(f \mid H)_0$ is irreducible. In particular f is irreducible. We leave details to the reader.
- 2. We now construct F. We may suppose, without loss of generality, that f is a Weierstrass polynomial [6]:

$$f(Z',Z) = Z^p + \ldots + a_p(Z'); \quad (Z',Z) \in E' \oplus Ca = E.$$

Consider $f \mid M$, where M is a finite dimensional subspace of E. Using classical theory (for example [5]) $f \in \mathcal{O}_0(M)$ factorizes as a product of p(M) irreducible factors (counting multiplicities). Clearly $M_1 \supseteq M_2 \Rightarrow p(M_1) \leqslant p(M_2)$. Thus we may find a finite dimensional subspace L' of E such that, for all finite dimensional subspaces $M \supset L'$, we have p(M) = p(L'). Set $L = L' \oplus Ca$. Let $(f \mid L)_0 = f_1 \dots f_k$, k = p(L) and $f_j \in \mathcal{O}_0(L)$ irreducible. Using the Weierstrass division theorem we may suppose that each f_j is a Weierstrass polynomial: This uniquely defines the f_j , since f is a Weierstrass polynomial. Suppose $L_i \supset L$, i = 1, 2, are finite dimensional. Then we may write:

$$f \mid L_i = f_1^i \dots f_k^i, f_i^i \epsilon \ \mathcal{O}_0(L_i),$$

where the f_j^i are Weierstrass polynomials. By rearranging we may suppose

 $f_j^i | L = f_j$. Clearly then $f_j^i | L_1 \cap L_2 = f_j^2 | L_1 \cap L_2$ — since the f_j^i are uniquely defined. Thus we may set $f_i^i = f_i$.

Suppose p(L) > 1, then the above shows that the f_i are uniquely defined on some subset V of E which has the property that for every complex finite dimensional subspace N of E, $N \cap V$ contains a neighbourhood of 0. We suppose that f is defined as an analytic function on some ball B, centre 0, in E.

We now prove that, on the assumption p(L) > 1, we obtain a contradiction and hence p(L) must equal 1 and we may take F = L.

From the above remarks we have:

$$\mathbb{A}_1 \qquad f(Z',Z) = \prod_{i=1}^{p(L)} \left(Z^{p_i} + b_1^i(Z') Z^{p_{i-1}} + \ldots + b_{p_i}^i(Z') \right) \quad \text{on } \ V,$$

where

1. b_1^i are analytic on $N \cap V$ for all finite dimensional subspaces N of E'.

2. $f_i(Z',Z) = Z^{p_i} + \ldots + b^i_{p_i}(Z')$ is such that $(f_i \mid H)_{0 \in \mathcal{O}_0}(H)$ is irreducible for all finite dimensional subspaces $H \supset L$.

For brevity of exposition we will now assume the known result that $\mathcal{O}_0(E)$ is a unique factorization domain ([6]). Thus, since $\mathrm{D}f \neq 0$ ('Df' denotes the discriminant of f) we may factorize f as:

$$f(Z',Z) = \prod_{i=1}^{p} (Z - a_i(Z')),$$

where $a: B \cap E' \to C$ and is continuous. We wish to prove that there exists a subset $J_k \subset \{1, \ldots, p\}$ for $k = 1, \ldots, p(L)$ such that:

$$A_2$$

$$f_k(Z',Z) = \prod_{j \in J_k} (Z - a_j(Z')) \quad \text{on } V.$$

In fact we prove more: A_1 and A_2 hold in some neighbourhood of $0 \in E$. To prove A_2 we restrict attention to finite dimensional subspaces H of E containing L. A_2 then follows straightforwardly, using $\mathrm{D} f_k \not\equiv 0$, and in fact defines b_i^i on $B \cap E'$ as continuous functions. We omit details. Using Lemma 1 we see easily that the b_i^i are then analytic on some neighbourhood of 0 in E'. Contradiction, since we have now factored f as a product of analytic germs none of which are units.

We give three examples of the use of this theorem.

COROLLARY 1. We could have avoided the assumption that $\mathcal{O}_0(E)$ was a unique factorization domain in the above proof. That $\mathcal{O}_0(E)$ is a unique factorization domain is then an immediate consequence of the theorem together with the classical result.

COROLLARY 2. (Nullstellensatz for Principal ideals). If $g \in \mathcal{O}_0(E)$ is irreducible and $f \in \mathcal{O}_0(E)$ is identically zero on V(g) (the zero set of g), then there exists $h \in \mathcal{O}_0(E)$ such that $f = q \cdot h$.

Proof. Just a question of obtaining a factorization of f and g on suitably large finite dimensional subspaces of E, applying the classical result and dividing to obtain $h \in \mathcal{O}_0(E)$.

COROLLARY 3. If X is an analytic subset of a complex Banach manifold U then: If for all $x \in X$ the germ X_x does not contain a principal germ ([6]), the pair (U-X, U) possesses the property of extension ([6]).

Proof. From [6] all we must prove is the special case where U is an open ball in E, $X = V(f_1, f_2)$, where $f_1, f_2: U \to C$ and $h: U - X \to C$ is analytic. Using the theorem we can reproduce the situation on sufficiently large finite dimensional subspaces of E and apply the classical extension theorem to obtain a function $h: U \to C$ which is analytic on U - X and also analytic on all finite dimensional (affine) subspaces of U. The result follows immediately from work in [1] and the fact that U-X is open, connected and non-empty.

PROBLEM. Localise Theorem 1.

References

- [1] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), pp. 77-112.
- J. Bochnak and J. Siciak, Polynomials and multilinear mappings, Studia Math. 39 (1971), pp. 59-76.
- [3] E. Hille and E. G. Philips, Functional analysis and semigroups, Collog. Amer. Math. Soc. 1957.
- [4] S. J. Greenfield and N. R. Wallach, The Hilbert ball and bi-ball are holomorphically inequivalent, Bull. Amer. Math. Soc. 77, March 1971.
- [5] Narasimhan, Introduction to the theory of analytic spaces, 1966.
- J. P. Ramis, Sous-ensembles Analytiques d'une variété Banachique Complexe,
- Seminaire de Géométrie Analytique. Publications Mathematique D'Orsay, 1968--69

UNIVERSITY OF WARWICK COVENTRY, GREAT BRITAIN

> Received November 12, 1971 (434)

Formally real rings of distributions

MANGHO AHUJA* (Cape Girardeau, Mo.)

Let \mathcal{D} denote the set of test functions, and its dual \mathcal{D}' denote the set of Schwartz distributions [6]. Let \mathscr{D}'_{+} denote the set of those elements of \mathscr{D}' , which have support in the positive cone \mathbb{R}^n_+ , where

$$\mathbf{R}_{+}^{n} = \{(t_{1}, t_{2}, \dots, t_{n}) : t_{i} \in \mathbb{R}, t_{i} \geqslant 0 \text{ for } i = 1, 2, \dots, n\}.$$

It is well known that the set \mathscr{D}'_+ is a commutative ring under the operations addition, +, and convolution *. Moreover the ring \mathscr{D}'_+ has no zero divisors ([6], p. 173) and hence can be embedded into a quotient field M. In the one dimensional case, where n = 1, M is the quotient field of Mikusinski operators [3].

Let (\mathscr{D}'_+) , denote the set of all T in \mathscr{D}'_+ , for which $T(\varphi)$ is a real number, whenever φ is a real valued test function. The aim of this paper is to show that, whereas \mathscr{D}'_{+} and M cannot be (linearly) ordered, the ring $(\mathscr{D}'_+)_r$ and its quotient field M_r are both formally real and hence can be (linearly) ordered.

1. Let \mathcal{D}_r denote the subset of \mathcal{D} consisting of the real valued test functions, and let \mathscr{D}'_r denote its real dual, i. e. the set of real valued continuous linear functionals on \mathscr{D}_r . Let $(\mathscr{D}'_r)_+ = \{T \in \mathscr{D}'_r : \text{ support } T \subset \mathbb{R}^n_+\}$.

The relation between $(\mathscr{D}'_{+})_{r}$ and $(\mathscr{D}'_{r})_{+}$ is far from superficial.

THEOREM I. $(\mathscr{D}'_+)_r$ and $(\mathscr{D}'_r)_+$ are isomorphic as convolution algebras over the reals.

Proof. Let $T \in \mathscr{D}'_+$ and $\varphi \in \mathscr{D}$. Let $T = T_1 + iT_2$, and $\Phi(x) = \alpha(x) + iT_2$ $+i\beta(x)$ be their decompositions into real and imaginary parts. Then $T(\Phi) = (T_1 + iT_2) (\alpha + i\beta)$. It follows that if $T \in (\mathcal{D}'_+)_r$, then

$$T(\Phi) = T_1(\alpha) + iT_1(\beta).$$

Let \tilde{T} denote the restriction of T_1 to \mathcal{D}_r . Then $\theta \colon T \to \tilde{T}$ furnishes the desired isomorphism.

^{*} These results are taken from the author's doctoral dissertation [7] at the University of Colorado, written under the direction of Prof. G. H. Meisters.