COROLLARY 2. (Nullstellensatz for Principal ideals). If $g \in \mathcal{O}_0(E)$ is irreducible and $f \in \mathcal{O}_0(E)$ is identically zero on V(g) (the zero set of g), then there exists $h \in \mathcal{O}_0(E)$ such that $f = q \cdot h$.

Proof. Just a question of obtaining a factorization of f and g on suitably large finite dimensional subspaces of E, applying the classical result and dividing to obtain $h \in \mathcal{O}_0(E)$.

COROLLARY 3. If X is an analytic subset of a complex Banach manifold U then: If for all $x \in X$ the germ X_x does not contain a principal germ ([6]), the pair (U-X, U) possesses the property of extension ([6]).

Proof. From [6] all we must prove is the special case where U is an open ball in E, $X = V(f_1, f_2)$, where $f_1, f_2: U \to C$ and $h: U - X \to C$ is analytic. Using the theorem we can reproduce the situation on sufficiently large finite dimensional subspaces of E and apply the classical extension theorem to obtain a function $h: U \to C$ which is analytic on U - X and also analytic on all finite dimensional (affine) subspaces of U. The result follows immediately from work in [1] and the fact that U-X is open, connected and non-empty.

PROBLEM. Localise Theorem 1.

References

- [1] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), pp. 77-112.
- J. Bochnak and J. Siciak, Polynomials and multilinear mappings, Studia Math. 39 (1971), pp. 59-76.
- [3] E. Hille and E. G. Philips, Functional analysis and semigroups, Collog. Amer. Math. Soc. 1957.
- [4] S. J. Greenfield and N. R. Wallach, The Hilbert ball and bi-ball are holomorphically inequivalent, Bull. Amer. Math. Soc. 77, March 1971.
- [5] Narasimhan, Introduction to the theory of analytic spaces, 1966.
- J. P. Ramis, Sous-ensembles Analytiques d'une variété Banachique Complexe,
- Seminaire de Géométrie Analytique. Publications Mathematique D'Orsay, 1968--69

UNIVERSITY OF WARWICK COVENTRY, GREAT BRITAIN

> Received November 12, 1971 (434)

Formally real rings of distributions

MANGHO AHUJA* (Cape Girardeau, Mo.)

Let \mathcal{D} denote the set of test functions, and its dual \mathcal{D}' denote the set of Schwartz distributions [6]. Let \mathscr{D}'_{+} denote the set of those elements of \mathscr{D}' , which have support in the positive cone \mathbb{R}^n_+ , where

$$\mathbf{R}_{+}^{n} = \{(t_{1}, t_{2}, \dots, t_{n}) : t_{i} \in \mathbb{R}, t_{i} \geqslant 0 \text{ for } i = 1, 2, \dots, n\}.$$

It is well known that the set \mathscr{D}'_+ is a commutative ring under the operations addition, +, and convolution *. Moreover the ring \mathscr{D}'_+ has no zero divisors ([6], p. 173) and hence can be embedded into a quotient field M. In the one dimensional case, where n = 1, M is the quotient field of Mikusinski operators [3].

Let (\mathscr{D}'_+) , denote the set of all T in \mathscr{D}'_+ , for which $T(\varphi)$ is a real number, whenever φ is a real valued test function. The aim of this paper is to show that, whereas \mathscr{D}'_{+} and M cannot be (linearly) ordered, the ring $(\mathscr{D}'_+)_r$ and its quotient field M_r are both formally real and hence can be (linearly) ordered.

1. Let \mathcal{D}_r denote the subset of \mathcal{D} consisting of the real valued test functions, and let \mathscr{D}'_r denote its real dual, i. e. the set of real valued continuous linear functionals on \mathscr{D}_r . Let $(\mathscr{D}'_r)_+ = \{T \in \mathscr{D}'_r : \text{ support } T \subset \mathbb{R}^n_+\}$.

The relation between $(\mathscr{D}'_{+})_{r}$ and $(\mathscr{D}'_{r})_{+}$ is far from superficial.

THEOREM I. $(\mathscr{D}'_+)_r$ and $(\mathscr{D}'_r)_+$ are isomorphic as convolution algebras over the reals.

Proof. Let $T \in \mathscr{D}'_+$ and $\varphi \in \mathscr{D}$. Let $T = T_1 + iT_2$, and $\Phi(x) = \alpha(x) + iT_1 + iT_2$ $+i\beta(x)$ be their decompositions into real and imaginary parts. Then $T(\Phi) = (T_1 + iT_2) (\alpha + i\beta)$. It follows that if $T \in (\mathcal{D}'_+)_r$, then

$$T(\Phi) = T_1(\alpha) + iT_1(\beta).$$

Let \tilde{T} denote the restriction of T_1 to \mathcal{D}_r . Then $\theta \colon T \to \tilde{T}$ furnishes the desired isomorphism.

^{*} These results are taken from the author's doctoral dissertation [7] at the University of Colorado, written under the direction of Prof. G. H. Meisters.

Formally real rings of distributions, I

2. From Artin and Schreier's theory of formally real integral fields ([1], p. 269), we know that a field or a ring is orderable (linearly) if and only if it is formally real.

DEFINITION. A ring R is formally real if

$$a_i \in R, \sum_{i=1}^n a_i^2 = 0 \Rightarrow a_i = 0$$
 for each i .

The ring \mathscr{D}'_{+} cannot be ordered because $T*T+(iT)*(iT)=T^2-T^2=0$ for any $T\in \mathscr{D}'_{+}$. Theorem I suggests that $(\mathscr{D}'_{+})_r$ is orderable iff $(\mathscr{D}'_{r})_{+}$ is. For that matter there are some more rings which are formally real if and only if $(\mathscr{D}'_{+})_r$ is.

Let C_+ denote the set of real valued continuous functions on \mathbf{R}_+^n , and C_+^∞ denote its subset consisting of all infinitely differentiable functions. $L_n = L_{\mathrm{loc}}^1(\mathbf{R}_+^n)$ denote the set of all real valued, locally integrable functions on \mathbf{R}_+^n . Under the operations of + and +, C_+ , C_+^∞ , L_n are all commutative rings. Each one is also a real vector space, and hence a convolution algebra over reals. There is an obvious embedding

$$C_+^{\infty} \to C_+ \to L_n \to (\mathscr{D}'_r)_+$$

THEOREM II. C_+^{∞} is formally real if and only if $(\mathcal{D}'_r)_+$ is.

Proof. Assume C_+^{∞} is formally real. Suppose $T_i \in (\mathscr{D}_r')_+$ and $\sum_{i=1}^m T_i * T_i = 0$. Select any $\varphi \in \mathscr{D}_r$. Then $\varphi * \varphi \in \mathscr{D}_r$.

$$0 = \sum_{i=1}^m T_i * T_i \Rightarrow \left(\sum T_i * T_i \right) * (\varphi * \varphi) = 0 \Rightarrow \sum_{i=1}^m (T_i * \varphi) * (T_i * \varphi) = 0.$$

But $T_i * \varphi \in C_+^{\infty}$, which is formally real.

 $T_i * \varphi = 0$ for each *i*. This is true for any such φ . Therefore $T_i = 0$ for each *i*, and proves $(\mathscr{D}'_r)_+$ is formally real. The converse is obvious from the embedding.

Corollary. C_+ , C_+^{∞} , L_n , $(\mathscr{D}'_r)_+$, $(\mathscr{D}'_+)_r$ are either all formally real, or none is.

3. The task of proving $(\mathscr{D}'_+)_r$ formally real is thus simplified to proving C^∞_+ or $C_+ = C(\mathbf{R}^n_+)$ formally real. The proof for $C(\mathbf{R}^n_+)$, when n=1, is shown below.

THEOREM III. $C(\mathbf{R}^1_+)$ is formally real.

Proof. Let $f_i \in C(\mathbb{R}^1_+)$ and $\sum_{i=1}^m f_i * f_i = 0$. We will prove that $f_i = 0$, for each i.

Select T > 0 and a positive integer n.

$$\sum_{i=1}^{m} f_i * f_i = 0 \Rightarrow \int_{t=0}^{2T} e^{n(2T-t)} \sum_{i=1}^{m} f_i * f_i(t) dt = 0.$$

Forme

Thus $\int_{0}^{2T} n^{(2T-t)} \sum_{n=0}^{\infty} \int_{0}^{\infty} n^{n} dx$

$$0 = \int_{t=0}^{2T} e^{n(2T-t)} \sum_{i=1}^{m} \int_{u=0}^{t} f_i(t-u) f_i(u) du dt$$

$$= \int_{0}^{2T} \int_{0}^{t} e^{n(2T-t)} \sum_{i=1}^{m} f_i(t-u) f_i(u) du dt.$$

We change variables from u, t to v and w by the formula

$$u = T - v,$$

$$t = 2T - v - w.$$

We have

$$0 = \iint_{A} = \iint_{A} e^{n(v+w)} \sum_{i=1}^{m} f_{i}(T-v) f_{i}(T-w) dv dw,$$

where $\Delta = \{(v, w): v + w \ge 0; v \le T, w \le T\}$. Let $\Delta' = \{(v, w): v + w \le 0; v \ge -T; w \ge -T\}$.

$$\begin{split} \int_{A'} &= \int_{A} + \int_{A'} = \int_{A \cup A'} e^{n(v+w)} \sum_{i=1}^{m} f_{i}(T-v) f_{i}(T-w) \, dv \, dw \\ &= \sum_{i=1}^{m} \int_{v=-T}^{T} \int_{w=-T}^{T} e^{nv} e^{nw} f_{i}(T-v) f_{i}(T-w) \, dv \, dw \\ &= \sum_{i=1}^{m} \int_{v=-T}^{T} e^{nv} f_{i}(T-v) \, dv \int_{-T}^{T} e^{nw} f_{i}(T-w) \, dw \\ &= \sum_{i=1}^{m} \left(\int_{-T}^{T} e^{nv} f_{i}(T-v) \, dv \right)^{2}. \end{split}$$

Each of these summands is a non-negative real number, and so is \iint .

$$\begin{split} \int_{d'} &= \Bigl| \int_{d'} \Bigr| = \Bigl| \int_{d'} e^{n(v+w)} \sum_{i=1}^m f_i(T-v) f_i(T-w) dv \, dw \, \Bigr| \\ &\leqslant \sum_{i=1}^m \int_{d'} \int_{d'} |e^{n(v+w)}| \, |f_i(T-v)| \, |f_i(T-w)| \, dv \, dw \, . \end{split}$$

In Δ' , since $v+w \leq 0$, $|e^{n(v+w)}| \leq 1$.

Thus,
$$\sum_{i=1}^m \left(\int\limits_{-T}^T e^{nv} f_i(T-v) dv\right)^2 = \iint\limits_{A'} \leqslant 2mA^2T$$
.

$$\begin{array}{c} \boldsymbol{\cdot} \boldsymbol{\cdot} \text{ For any fixed } i, \ \mid \int\limits_{-T}^{T} e^{nv} f_i(T-v) \, dv \rvert^2 \leqslant 2m A^2 T^2 \text{ and } \mid \int\limits_{-T}^{T} e^{nv} f_i(T-v) \, dv \rvert \leqslant \sqrt{2m} A T. \end{array}$$

Using triangle equality

$$\begin{split} \Big| \int\limits_0^T e^{nv} f_i(T-v) \, dv \, \Big| &\leqslant \sqrt{2m} A T + \, \Big| \int\limits_{-T}^0 e^{nv} f_i(T-v) \, dv \, \Big| \\ &\leqslant \sqrt{2m} A T + \int\limits_{-T}^0 |e^{nv}| \, |f_i(T-v)| \, dv \\ &\leqslant \sqrt{2m} A T + A T. \end{split}$$

For every positive integer n, $|\int_0^x e^{nv} f_i(T-v) dv| \leq (\sqrt{2m+1}) AT$, which is independent of n.

Using Moments theorem [5] $f_i(T-v)=0$ for $0\leqslant v\leqslant T$, i. e. $f_i(t)=0$ for $0\leqslant t\leqslant T$. Since T was arbitrarily chosen, $f_i=0$. This is true for each i.

4. To prove $C(\mathbf{R}_{+}^{n})$, n > 1, is formally real; we closely follow the paper 'Convolution of several variables' by J. Mikusiński [4]. This paper should be referred to for definitions and details.

Let $\mathscr A$ be a commutative Banach algebra over the reals, and $\mathscr A_1$ denote its least extension with unity. For $t \geqslant 0$, let E(t) be an 'exponential operator' on $\mathscr A$ i. e., it satisfies

- (1) E(0) = 1.
- (2) $E(t)xy = \langle E(t)x \rangle y$.
- (3) $t \to E(t)$ x is a continuous map for each x.
- (4) There exists $l \in A_1$, a non-zero divisor, satisfying

$$\frac{d}{dt}(E(t)lx) = E(t)x$$
 for every x in \mathscr{A} .

From (1) through (4) it follows that

(5) $E(t_1+t_2) = E(t_1) \cdot E(t_2)$.

For $t \ge 0$, let f(t), g(t) denote \mathscr{A} -valued functions (Bochner) integrable on \mathbf{R}^1_+ .

Select T > 0.

Let

$$\begin{split} \tilde{f} &= \int\limits_0^T E(t)f(t)\,dt,\\ (f*g)(t) &= \int\limits_0^t f(t-u)g(u)\,du, \quad \text{ and } \\ K(f,g)(T-t) &= \int\limits_{u=0}^{T-t} f(t+u)g(T-u)\,du. \end{split}$$

Lemma. $\tilde{f} \cdot \tilde{g} = \widetilde{f * g} + E(T) \tilde{K}(f, g)$.

Proof. See [4].

COROLLARY 1. $(\tilde{f})^2 = f * \tilde{f} = \overline{f * f} + E(T) \tilde{K}(f, f)$

COROLLARY 2. For a real number $s \geqslant 1$, let $\tilde{f}(s)$ denote $\int\limits_{0}^{T} E(st) f(t) dt$. Then

$$\widetilde{f}(s) \cdot \widetilde{g}(s) = \widetilde{f * g(s)} + E(st) \widetilde{K}(f, g)(s).$$

Proof. See [4].

THEOREM IV. Let \mathscr{A} denote a Banach algebra over \mathbf{R} , and \mathscr{B} denote the set of all \mathscr{A} -valued functions locally (Bochner) integrable on $[0, \infty)$. For a T>0, let \mathscr{B}_T denote the set of all \mathscr{A} -valued functions, defined and locally integrable on [0,T]. Then

- (a) \mathscr{B} and \mathscr{B}_T are convolution algebras over \mathbf{R} , and \mathscr{B}_T is a Banach algebra under the norm $||f||_1 = \int\limits_0^T |f(t)| \ dt$ where $|\ |\ d$ enoted the norm on \mathscr{A} .
- (b) If A satisfies $|\alpha^2|=|\alpha|^2$ for every α in A, then A has no zero divisors.
 - (c) If $\mathscr A$ satisfies $|\sum_{i=1}^m a_i^2| = \sum_{i=1}^m |a_i|^2$, then $\mathscr B$ is a formally real ring.

Proof. Mikusiński [4] has proved (a), and (b). We show proof of (e), which is a slight modification of proof for (b).

Let $f_i \in \mathcal{B}$ and $\sum_{i=1}^m f_i * f_i = 0$. We will show $f_i = 0$, for each i.

From the lemma above, $\tilde{f_i} \cdot \tilde{f_i} = \tilde{f_i} * f_i + E(T)\tilde{K}(f_i, f_i)$. Therefore,

$$\begin{split} \sum_{i=1}^m (\tilde{f_i})^2 &= \sum_{i=1}^m \widetilde{f_i * f_i} + E(T) \sum_{i=1}^m \tilde{K}(f_i, f_i) \\ &= \widetilde{\sum f_i * f_i} + E(T) \sum_{i=1}^m \tilde{K}(f_i, f_i) \\ &= 0 + E(T) \sum_{i=1}^m \tilde{K}(f_i, f_i). \end{split}$$

Let n be a positive integer. We choose $E(t)=e^{-nt}$ as the exponential operator.

We have,
$$\sum_{i=1}^{m} (\tilde{f}_i)^2 = e^{-nT} \sum_{i=1}^{m} \tilde{K}(f_i, f_i)$$
, and
$$\Big| \sum_{i=1}^{m} (\tilde{f}_i)^2 \Big| = |e^{-nT}| \; \Big| \sum_{i=1}^{m} \tilde{K}(f_i, f_i) \; \Big|.$$

Using hypothesis on A,

$$\sum_{i=1}^m |\tilde{f_i}|^2 = e^{-nT} \Big| \sum_{i=1}^m \tilde{K}(f_i, f_i) \Big| \leqslant e^{-nT} \sum_{i=1}^m |\tilde{K}(f_i, f_i)|.$$

As shown in Theorem II of [4], $|\tilde{K}(f_i, f_i)| \leq M_i$, where M_i depends on f_i , T, but not on n. Thus, $\sum_{i=1}^m |\tilde{f}_i|^2 \leq e^{-nT} \sum_{i=1}^m M_i$.

For any fixed
$$i$$
, $|\tilde{f}_i|^2 \leqslant e^{-nT} \sum_{i=1}^m M_i$, and $|\tilde{f}_i| \leqslant e^{-n\frac{T}{2}} \sqrt{\sum_{i=1}^m M_i}$.

$$ightharpoonup e^{nrac{T}{2}}| ilde{f_i}|\leqslant M, ext{ where } M=\sqrt{\sum\limits_{i=1}^m M_i}.$$

$$e^{n\frac{T}{2}|\tilde{f_i}|} = e^{n\frac{T}{2}} \Big| \int\limits_0^T e^{-nt} f_i(t) dt \Big| = \Big| \int\limits_0^T e^{n\left(\frac{T}{2}-t\right)} f_i(t) dt \Big| \leqslant M.$$

Using triangle inequality,

$$\begin{split} \Big| \int\limits_0^{T/2} e^{n\left(\frac{T}{2}-t\right)} f_i(t) \, dt \Big| &\leqslant M + \Big| \int\limits_{T/2}^T e^{n\left(\frac{T}{2}-t\right)} f_i(t) \, dt \Big| \\ &\leqslant M + \int\limits_{T/2}^T |e^{n\left(\frac{T}{2}-t\right)}| \, |f_i(t)| \, dt \\ &\leqslant M + \int\limits_{T/2}^T |f_i(t)| \, dt = L \quad \text{say}, \end{split}$$

where L is independent of n. For every positive integer n,

$$\left|\int\limits_{0}^{T/2}e^{n\left(\frac{T}{2}-t\right)}f_{i}(t)\,dt\,\right|=\left|\int\limits_{0}^{T/2}e^{nt}f_{i}\left(\frac{T}{2}-t\right)\,dt\,\right|\leqslant L\quad \text{(independent of }n\text{)}.$$

Using Moments theorem, $f_i(t)=0$, for $0\leqslant t\leqslant \frac{T}{2}$. But T was arbitrarily chosen, so $f_i=0$. This is true for each i.

COROLLARY. $L_1 = L^1_{loc}(\mathbf{R}^1_+)$ is formally real. More precisely, if $\sum_{i=1}^m f_i * f_i(t) = 0 \text{ in } 0 \leqslant t \leqslant T, \text{ then, } f_i(t) = 0 \text{ in } 0 \leqslant t \leqslant \frac{T}{2} \text{ for each } i.$

5. We recall that
$$\tilde{f}(s) = \int_{0}^{T} E(st)f(t) dt$$
., and

$$ilde{f(s)} \cdot ilde{g}(s) = f \cdot ilde{g}(s) + E(sT) ilde{K}(f,g)(s), \quad \text{ for } s \geqslant 1.$$

THEOREM V. Let X be a commutative Banach algebra over R and Y be the set of all X-valued functions integrable on $0 \le u \le U$, for some U > 0. For $u \ge 0$, let E(u) be an exponential operator on X, satisfying

(i) E(U) = 0.

(ii) There exists $u = u_0$ satisfying $x_i \in X$, and

$$\sum_{i=1}^{m} x_i^2 = 0 \Rightarrow E(u_0)x_i = 0 \quad \text{for each } i.$$

Let $f_i \in Y$, and $E(u) \sum_{i=1}^m f_i * f_i (u) = 0$ for $0 \le u \le U$. Then $E(u + u_0) f_i(u) = 0$ for $0 \le u \le U$, and for each i.

Proof. Let $s \ge 1$.

$$\begin{split} E(u) \sum_{i=1}^m f_i * f_i(u) &= 0 \text{ in } [0, U] \Rightarrow E(su) \sum f_i * f_i(u) = 0 \text{ in } [0, U] \Rightarrow \\ & \int_{u=0}^U E(su) \sum f_i * f_i(u) du \\ &= \sum_{i=1}^m \int_{u=0}^U E(su) (f_i * f_i)(u) du = \sum_{i=1}^m \widetilde{f_i * f_i}(s) = 0. \end{split}$$

By making use of Corollary 2, p. 25, we have $\Sigma (\tilde{f}_i(s))^2 = \Sigma \tilde{f}_i * f_i(s) + E(sU) \Sigma \tilde{K}(f_i, f_i)(s)$. But $\sum_{i=1}^m \tilde{f}_i * f_i(s) = 0$, and since E(U) = 0, E(sU) = 0. Thus $\sum_{i=1}^m (\tilde{f}_i(s))^2 = 0$.

Using hypothesis (ii) on X, we have

$$E(u_0) ilde{f}_i(s)=0, \quad ext{for each i, i. e.,} \ E(u_0)\int\limits_{u=0}^{U}E(su)f_i(u)du=\int\limits_{u=0}^{U}E(su)E(u_0)f_i(u)du=0$$

for each *i*, and $s \ge 1$.

Using theorem III of ([4], p. 304),

$$E(su)E(u_0)f_i(u) = 0$$
, for $0 \leqslant u \leqslant U$ and $s \geqslant 1$.

In particular, for s=1, $E(u+u_0)f_i(u)=0$, for each i. Let \mathscr{A} , \mathscr{B} , \mathscr{B}_T be as in Theorem IV. Let $U\geqslant 0$ be arbitrarily chosen. For $u\geqslant 0$, let E(u) be the exponential operator on \mathscr{B}_T defined by

$$egin{aligned} ig(E(u)fig)(t) &= egin{cases} f\Big(t-rac{T}{U}u\Big) & ext{if }rac{t}{T}\geqslantrac{u}{U}, \ 0 & ext{otherwise}. \end{cases} \end{aligned}$$

Let $\mathcal S$ be the set of all $\mathcal B_T$ valued functions integrable on $0 \leqslant u \leqslant U.$ We notice that

(i) E(U) = 0.

(ii) Suppose $f_i \in \mathscr{B}_T$ and $\sum_{i=1}^{m} f_i * f_i = 0$. The proof of Theorem IV shows that $f_i(t) = 0$, for $0 \le t \le \frac{T}{2}$, for each i, or, in other words, $E\left(\frac{U}{2}\right)f_i = 0$,

for each i.

COROLLARY. If $f_i \in \mathcal{S}$, and $E(u) \sum_{i=1}^{m} f_i * f_i(u) = 0$, for $0 \le u \le U$, then $E\left(u+\frac{U}{2}\right)f_i(u)=0 \text{ for } 0\leqslant u\leqslant U \text{ for each } i.$

6. We recall that $L_n = L^1_{loc}(\mathbf{R}^n_+) = \text{set of all real valued functions}$ locally integrable on \mathbb{R}_{+}^{n} . Select $T_{1}, T_{2}, \ldots, T_{n}$ strictly positive numbers. Let $\Delta^n(r)$ denote the simplex

$$\Delta^{n}(r) = \left\{ (t_{1}, t_{2}, \dots, t_{n}) \colon t_{i} \in \mathbf{R}_{+}^{1}; \frac{t_{1}}{T_{1}} + \frac{t_{2}}{T_{2}} + \dots + \frac{t_{n}}{T_{n}} \leqslant r \right\},\,$$

where r > 0.

Let \mathcal{B}_n denote the set of all real valued functions defined and integrable on $\Delta^n(1)$. For $f \in \mathcal{B}_n$, let $||f||_n = \int_{t \in \mathcal{A}^n(1)} |f(t)| dt$. It is clear that for every positive integer n, \mathcal{G}_n is a convolution algebra over reals, and a Banach algebra under the norm defined above. Corollary to theorem IV may now be worded as: if $f_i \in \mathcal{B}_1$ and $\sum f_i * f_i = 0$, then $f_i = 0$ on the set $\Delta^1(1/2)$ for each i.

The above statement can be generalized to n dimensions.

THEOREM VI. If $f_i \in \mathcal{B}_n$ and $\sum_{i=1}^m f_i * f_i = 0$, then for each $i, f_i = 0$ on the set $\Delta^n(1/2)$.

Proof. We use induction on n. As already noticed, the theorem is true for n = 1. Now suppose the theorem is true for n = k - 1. Assume $f_i \in \mathscr{B}_k$ and $\sum_{i=1}^n f_i * f_i = 0$. We may look at \mathscr{B}_k as the set of \mathscr{B}_{k-1} valued functions integrable on $0 \leqslant t_k \leqslant T_k$.

For $f \in \mathcal{B}_k$, and $0 \leqslant t_k \leqslant T_k$, let $f(t_k)$ denote the element of \mathcal{B}_{k-1} defined by,

$$f(t_k)(t_1, t_2, \ldots, t_{k-1}) = f(t_1, t_2, \ldots, t_k).$$

We also define an exponential operator on \mathscr{B}_{k-1} . For $0 \leqslant t_k \leqslant T_k$, and $f \in \mathcal{B}_{k-1}$, let

$$E(t_k)f = \begin{cases} f\left(t_1 - \frac{T_1}{T_k}t_k, t_2 - \frac{T_2}{T_k}t_k, \dots, t_{k-1} - \frac{T_{k-1}}{T_k}t_k\right) \text{ if all the coordinates} \\ 0 & \text{otherwise.} \end{cases}$$

Clearly.

(i) $E(T_{\nu}) = 0$,

(ii) if $x_i \in \mathcal{B}_{k-1}$ and $\sum_{i=1}^{m} x_i * x_i = 0$, i. e., $\sum_{i=1}^{m} x_i * x_i = 0$ on the set $\Delta^{k-1}(1)$, then by induction hypothesis, $x_i = 0$ for each i, on $\Delta^{k-1}(1/2)$. In other words, $E\left(\frac{T_k}{2}\right)x_i=0$ for each i.

We see that \mathscr{B}_{k-1} satisfies all the conditions on X in Theorem V. We have $f_i \in \mathcal{B}_k$ and $\sum_{i=1}^{\infty} f_i * f_i = 0$. In the language of exponential operator, this means,

$$\mathrm{E}\left(t_{k}
ight)\sum_{i=1}^{m}f_{i}st f_{i}(t_{k})=0 \quad ext{ for } \ 0\leqslant t_{k}\leqslant T_{k}.$$

From Theorem V, we conclude $E\left(t_k + \frac{T_k}{2}\right) f_i(t_k) = 0$ for $0 \leqslant t_k \leqslant T_k$, for each i.

This means that for each $i, f_i = 0$, on $\Delta^k(1/2)$. Thus, the theorem is true for n = k as well.

Corollary. L_n is formally real for all n.

Proof. Suppose $f_i \in L_n$, and $\sum_{i=1}^{n} f_i * f_i = 0$. Select T_1, T_2, \ldots, T_n strictly positive numbers. Let f_i also denote the restriction of f_i on $\Delta^n(1)$. Then $f_i \in \mathcal{B}_n$ and $\sum f_i * f_i = 0$. From Theorem VI, we conclude $f_i = 0$ on $\Delta^n(1/2)$, for each i. Since T_i were all arbitrarily chosen, we conclude $f_i = 0$ on \mathbf{R}_{+}^{n} , for each i. This proves that L_{n} is formally real.

COROLLARY. (i) C_+ , C_+^{∞} , L_n , $(\mathscr{D}'_r)_+$, $(\mathscr{D}'_r)_r$ are all formally real.

- (ii) If M_r denotes the quotient field of $(\mathcal{D}'_r)_+$, then M_r is formally
- (iii) The quotient field of Mikusiński operators is formally real.

References

- [1] N. Jacobson, Lectures in Abstract Algebra. Vol. III.
- [2] G. H. Meisters, A formally real ring of distributions Notices Amer. Math. Soc. 17 (1970), p. 940. Abstract No. 70T — Al84.
- [3] J. Mikusiński, Operational Calculus. 1959.
- [4] Convolution of functions of several variables, Studia Math. 20 (1961), pp. 301-312.
- [5] and C. Ryll-Nardzewski, A theorem on bounded moments. Studia Math. 13 (1953), pp. 51-55.
- [6] L. Schwartz. Theorie des distributions, Paris 1966.
- [7] M. Ahuja, Ph. D. thesis, Uni. of Colorado (1971).

Received December 6, 1971

(495)

Vector space isomorphisms of C*-algebras

by
KARI YLINEN (Helsinki)

Abstract. For a vector space isomorphism of two O^* -algebras, connections existing between the properties of being a O^* -isomorphism, isometric, bipositive, or preserving an approximate identity, are indicated.

1. Introduction. This paper is concerned with extending to the non-unit situation some results obtained by Kadison [4], [5], in the course of characterizing the linear isometries between C^* -algebras with identity or between their real linear subspaces of self-adjoint elements. Following Kadison we call a linear isomorphism between two C^* -algebras a quantum mechanical isomorphism or a C^* -isomorphism if $T(x^*) = (Tx)^*$ and $T(x^*) = (Tx)^*$ for each self-adjoint element x and natural number x. For two C^* -algebras x and x and x and x are positive for each positive x and x are positive. In this terminology some of Kadison's results may be stated in the following form (see [4], Theorem 5, its proof, Theorem 7, and [5] Corollary 5):

THEOREM 1.1. (Kadison) Let A and B be C^* -algebras with identities $e_1 \in A$ and $e_2 \in B$ and $T \colon A \to B$ a vector space isomorphism. If T is a C^* -isomorphism, T is isometric and bipositive, and $Te_1 = e_2$. Conversely, any two of the latter three properties together imply that T is a C^* -isomorphism.

In Section 3 we extend this theorem to cover the case of linear isomorphisms between general C^* -algebras by replacing the identity with an approximate identity. Kadison's results are also applied to show that the natural extension of a real linear isometric isomorphism between the subspaces of self-adjoint elements of two C^* -algebras is also isometric. Our main tool is the Sherman-Takeda-Grothendieck theory (see [3], [6] and [7]) yielding the structure of a von Neumann algebra in the bidual of a C^* -algebra. For the basic theory of C^* -algebras we refer to [1].

2. Auxiliary results. Let A be a C^* -algebra. We identify its bidual A'' with the enveloping von Neumann algebra of A (cf. [1], p. 237). In this identification the weak operator topology of A'' coincides with $\sigma(A'', A')$ and the structure of A'' extends that of A via the canonical embedding $w \mapsto \dot{x}$. We use the term 'approximate identity' in the sense of [1], p. 359.