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CorOLLARY 2. (Nullstellensatz for Principal ideals). If ge 0,(H)
is drveducible and fe 0y(E) is identically zero om V(g) (the zero sat of ),
then there exists he Oy(E) such that f = g-h.

Proof. Just a question of obtaining a factorization of f and g on
suitably large finite dimensional subspaces of F, applying the clagsical
result and dividing to obtain he 0y (H).

CoroLLARY 3. If X is an analytic subset of a complex Banach manifold
U then: If for all m< X the germ X, does mot contain a principal germ
([61), the pair (U—X, U) possesses the property of emtension ([67).

Proof. From [6] all we must prove is the gpecial case where U is
an open ball in B, X = V(fy, f,), where f;, f,: U~ C and h: U—X — ¢
is analytic. Using the theorem we can reproduce the situation on sufficiently
large finite dimensional subspaces of % and apply the classical extension
theorem to obtain a function : U - C which is analytic on U —X and
also analytic on all finite dimensional (affine) subspaces of U. The regult
follows immediately from work in [1] and the fact that U—X is open,
connected and non-empty.

ProBLEM. Localise Theorem ‘1.
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Formally real rings of distributions

by
MANGHO AHUJA* (Cipe Girardeau, Mo.)

Let @ denote the set of test functions, and its dual 9’ denote the set
of Schwartz distributions [6]: Let 2’ denote the-set of those elements
of 2', which have support in the positive cone R’ , where

R} = {(t,, %, ..., 1,): e R, 1, >0 for ¢ =1, 2, ..., m}.

It is well known that the set &, is a commutative ring under the
operations addition, +, and convolution *. Moreover the ring 2. has
no zero divisors ([6], p. 173) and hence can be embedded into a quotient
field M. In the one dimensional case, where n =1, M is the quotient
field of Mikusinski operators [37.

Let (97.), denote the set of all T in 9, ; for which T () is a real number,
whenever ¢ is a real valued test function. The aim of this paper is to
show that, whereas %', and M cannot be (linearly) ordered, the ring
(2,), and its quotient field M, are both formally real and hence can be
(linearly) ordered.

1. Let 9, denote the subset of 9 consisting of the real valued test
functions, and let 2, denote its real dual, i. e. the set of real valued contin-
uous linear functionals on .. Let (2,), = {Te9,: support T < R"}.

’

The relation between (27), and (2,), is far from superficial.

TawsoreM I. (27.), and (2,) + are isomorphic as convolution algebras
over the reals.

Proof. Let Te 2., and ge 9. Let T'= T,+4T,, and &(2) = ala)+
+ if(z) be their decompositions into real and imaginary parts. Then
T(P) = (Ty+4T5) (a~+14p). It follows that if Te (D)), then

T(D) = Ty(a)+iTy(B).

Let T denote the restriction of T, to 2,. Then 6: T — T furnishes the
desired isomorphism. M

* These results are taken from the author’s doctoral dissertation [7] at the
University of Colorado, written under the direction of Prof. G. H. Meisters.
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2, From Artin and Schreier’s theory of formally real integral fields
([1], p. 269), we know that a field or a ring is orderable (linearly) if and
only if it is formally real.

DEFINITION. A ring R is formally real if

n
a,-eR,‘Zaﬁ =0=>0a =0 for each 4.
i=1
The ring 9, cannot be ordered because T T 4 (iT)% (1) = T’ = ()
for any Te 9, . Theorem I suggests that (#',), is orderable 1121! (9D)).,. is.
For that matter there are some more rings which are formally real if and
only if (2 +)

Let €, denote the set of real valued continuous functions on R,
and 07 denote itis subset consisting of all infinitely differentiable functions.
L, = LIOQ(R" denote the set of all real valued, locally integrable functions
on R’ . Under the operations of + and %, 0, 0%, L, are all commutative
rings. Each one i also a real vector space, and hence a convolution algebra
over reals. There is an obvious embedding

0% 0y > Ly > (2)),.
THEOREM IL. OF is formally real if and only if (2;), is.

m
Proof. Assume 07 is formally real. Suppose T;e (2;), and ' T, *T;
dem)

= 0. Select any pe 2,. Then gipe J,.

m m
0 =Y ToxTy= (STx T4 (prg) =0 = Y (T,wp)*(Tixg) = 0.
=1 4=1
But T *pe OF, which is formally real.
+ ;% ¢ = 0 for each 4. This is true for any such p. Therefore T, =0
for each i, and proves (2, )+ is formally real. The converse is obvious
from the embedding.

Oororravy. O, 0%, Ly, (20),, (Qﬁr)r are either all formally real,
or mone is. )

3. The task of proving (2, ), formally real is thus mmphfxed to proving
0% or 0, = O(R}) formally real. The proof for C(RY), when n =1, is
shown below.

TeEwOREM ITI. O(RL) 4s formallJ real.

Proof. Let f;e O(R.) and Z Ji*f; = 0. We will prove that f; = 0,
for each 1.

Select T'> 0 and a positive integer n.

Zf.*f‘-O = f gHer=h ch*f (0)a

=l
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Thus
27 m 13
0= [ om0 3 [ fitt—wyfi(wyauas
t=0 i=1 u=0

= fz fe”(’T")Zf(t u)f;(w)dudt.
2o

u=0 i=1

We change variables from u, ¢ to v and w by the formula

% =T—0v,
t=2T—v—w
We have
o={f =ffe”‘”+"’) Zfi(T—w)fi(T-—w)dvdw,
4 4 =
where 4 = {(v, w): v+w > <T,w<T}
Let 4" = {(v, w): v+w < 0; 'u ~T; w> — T}

J=1+1= 1] 540 SV (T o) — ) oo
B 4 a4 a =1

i .
[ e e, (T —0)fy(T —w) dvdw

i ¢

i=1 v=—T Wm-T
=§‘ i &f,(T —v)dv fT e f,(T — w) dw
i=1 p==0 -T
m r
=2(f &F(T —v) v,
i=1 -T

Bach of these summands is a non-negative real number, and so is /.
)3

if =Uf| =]ffen(v+w)Zm'fi(_’l’—n)fi(l’—-w)d'vdw’

<2 f J1e e+ f( T o)) (£(T —w)| dvdw.

qm)
In 4', since v+w< 0, 6™+ < 1.

LIl f‘fj (T =) |fs( T —w)|dviw < m 2T° 4%, where

A =max {SUP [fm(t)l}
1<i<m ts[o 21‘]

Thus, Z‘ (f " f,(

T
*. For any fixed i, | [ ¢"fi(T
—v)do] < Vom AT. -

T—v)o) = [[<2mA*T.
I

T
—ov)dv] < 2mA*T* and | [ *f(T —
. -7
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Using triangle equality

U &f (T —0)do | <VIMAT + | fe’"’f —0)do|

<VZmAT+ f 6™ 1£e(T —v)|dv
-

1/2m,AT+A.T
For every positive integer #, | f (T —v)do| < 1/2m+1 AT, which

is independent of n.

Uking Moments theorem [5] fy(T —v) = 0for 0 <o < T, 1. e. fi(t) =0
for 0<<i<<T. Since T was arbitrarily chosen, fi = 0. Thls is true for
eachi. M .

4. To prove U(R}), n > 1, is formally real; we closely follow the paper
‘Convolution’ of several variables’ by J. Mikugitgki [4]. This paper should
be referred to for definitions and details.

Let o be a commutative Banach algebra over the reals, and «,
denote its least extension with unity. For ¢ > 0, let H (¢) be an ‘exponential
operator’ on 7 i. e., it satisfies

: (1) H(0) =1.
BEt)ay = (B()a}y.

(2)
(38) t—E(?) o is a continuous mayp for each =.
(4) There exists le 4;, a non-zero divisor, satisfying
d
%(E(t)lm) = E(t)z for every  in .

From (1) through (4) it follows that

(8) B(t,+1y) E(h - B(ty).

For 12 0, let f(2), g(t) denote o/-valued functions (Bochner) integrable
on RL.

Select 7 > 0.

Let B T
f=[Bwiwa,

1
(Feg)(®) = [ ft—w)g(w)du, and
-t
K, )I—t)= [ f+w)g(T—w)du.
U=0

icm
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LeMua. f- § = frg+B(T K(f, g)
Proof. See [4].

COROLLARY 1. f —f*f f*f—!—E’.l’)K fr )

COROLLARY 2. For a real number s > 1, let f(s) denote fTE(st)f (1) dt. Then
0

f9)5() = Frg(6)+ Bls) K (1, g)(s).

Proof. See [4].

TusorREM IV. Let of denote a Bamach algebra over R, and B denote
the set of all of-valued functions locally (Bochwer) imtegrable om [0, o).
For a T >0, let By denote the set of all of-valued Junctions, defined and
locally integrable on [0, T'1. Then

(a) Z and By are comolmwn algebras over R, and %y is & Banach

algebra under the norm |fll, = f |f(#)| dt where | | denoted the norm on .

(b} If o satisfies |a?| =
divisors.

(c) If o satisfies |2 ol = 2 la,?, then & is a formally real ving.

Proof. Mikusidski [4] has proved (@), and (b). We show proof of (c),
which is a slight modification of proof for (b).

m
“Let f;e B and > fix f; = 0. We will show f; = 0, for each .
i=1

[acl2 for every a in of, then o has no zero

From the lomma above, f;.ﬁ, = fixfi+ B(T)E (f,, 7). Therefore,
g(fi Zfi*j,’l-E T)é‘ K(fif)
Z o fi+ B(T ; K (f,,f:)
- 0+E(T)Zm’ E(fu,f)-

i=1
Let % be a positive integer. We choose B(t) = ¢~™ as the exponential
operator.
m - m ..
We have, 3 (f;)* =e¢ " 3 K(f;,f), and
i =1

q=]

PO,

=1

= 1671 | ' E(fuf)
t=1
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Using hypothesis on «,
m - m ~
DUl = 7| D E(fi, )
T=1 =1

As shown in Theorem. IT of [4], [ff (fs; fill < My, where M, depends
m . m
on f;, T, but not on . Thus, > [fif<e™™ 3 M,.
el

(L)

- } m . 7 T
For any fixed i, |f;]> < e™™ ZM“ and |fi| < e"’”’?]/ M.
LS

L

<™ SR (f, fl.

qea)

a”%"[fil < M, where M =7/ 3 M,.

PR
& |f) =7 fe—"‘fi(t)dtj m\fe"("f-—t)fi(i)dt\g .

Using triangle inequality,

| Tflze"(zi-‘) filt)at| < 3+ | fe“(%-t) or]
0 e

T .
<M+ [l i
T2

T
KM+ [ @)t =1L say,
e s

where L is independent of n.
For every positive integer n,

T ,,,(i_t) P T2 ot T : .
fuf "V fi(e) t‘r—yofe ft(-—2~— )dtl<13 (independent of n).

. But 7' 'was arbitra-

. Iy
Using Moments theorem, f;(t) = 0, for 0t -“2{

rily chosen, so f; = 0. This is true for each 4
OOROLLARY. Iy = Li,, (RY) ds formally real. More precisely, if

m
S Fixfi(®) = 0 in 0<EST, then, £,(f) = 0 in Ogtgg—for each 4.
=1
- 7
5. We recall that f(s) = [ H(st)f(¢)dt., and
) 1

£(8)-4 (s) =fg(6‘) +E(sT) K (f, g) (8), fors>1.

icm®
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THEOREM V. Let X be a commutative Banach algebra over R and ¥
be the set of all X-valued functions integrable on 0 < u < U, for some U > 0.

For w = 0, let B(u) be an exponential operator on X, satisfying

() B(U) = 0.

(i) There ewisis u = wu, satisfying m,c X, and

m
ng =0 = Bug)w;=0  for each i.
te=l

Let fie ¥, and Ej(u)iz,’ Foxfi (w) = 0 for 0 < w < U. Then B(u+uy)f,w)
=1

=0 for 0 <u<< U, and for each i.
Proof. Let s > 1.

B(w) 3)f;*filw) = 0in [0, U] = Blsu) 3 f; () = 0 in [0, U] =

ge=l

[22
[ Bsw) Y fixfi(w)du
. m U M s
=D [ Bewrfawau = Y ffils) =o0.
=1 U==0 =1

By making use of Corollary 2, p. 25, we have X (];,t(s))2 = Zj;ﬁ(s)+
+B(sU) ZE(f;,£)(s)- But 3 f;+fi(s) = 0, and since B(T) — 0, B(sT) = 0.
Thus ' (R =0.

I;;i;lg hypothesis (ii) on. X, we have

E(uo)f;(s) =0, for each i, i.e.,

U U
Bu) [ Bswf;(wdu = [ B(su)B(ug)f;(u)du =0
u=0

U=0

for each ¢, and s> 1.
Using theorem IIT of ([4], p. 304),

B (su) B (ug)fi(uw) =0, for 0<u<<Uands>1.

In particular, for s = 1, H(u+u,)f;(u) = 0, for each ¢. W
Let o, #, %y be as in Theorerm IV. Let U > 0 be arbitrarily chosen.
For u > 0, let B(u) he the exponential operator on %, defined by

U r- o
0 otherwise.

T Lt w
(Bwf)@®) = f(’*—u) L

Let & be the set of all #, valued functions integrable on 0 < u <U. We
notice that
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(i) B(U) =0.
m

(ii) Suppose f; « By and Y'fi*f, = 0. The proof of Theorem IV shows
4=l

T
that f;(t) = 0, for 0 < ¢ < —, for each 4, or, in other words, I/ ( ) fi =0,

2’

for each 4.
m
COROLLARY. If f; e, and B (u ;’ Fixfilu) = 0, for 0 <

E(fu-{-—é—)f{(u) = 0 for 0 < u < U for each 1.
6. We recall that L, = ILi,(R%) = set of all real valued functions

locally integrable on RY. Select Ty, T, ..., T, strictly positive numbers.
Let A™(r) denote the simplex

ty ty
]""—"|‘ nee “}”"‘—QV »

T, T,

An(r) ={(i17t27 LX) n) t‘tER—(—:T

~ where 7 > 0.
Let 4,, denote the set of all real valued functions defined and integrable
on A™(L). For fed,, let (Ifl, = [ |f(t)|d It is clear that for every
ted™(1) '

positive integer n, 4, is a convolution algebra over reals, and a Banach
algebra under the norm defined above. Corollary to theorem IV may
m
now be worded as: if f; ¢ 4, and Y fixf; = 0, thenf; = 0 on the set 41(1/2)
i=]
for each 4.
The above statement can be generalized to # dimensions.
m '
TuroreM VL. If fic B, and Y fixf, = 0, then for each i, f; == 0 on
gl
the set A™(1/2).
Proof. We use induction on n. As already noticed, the theorem is
true for #» = 1. Now suppose the theorem iy true for # = k—1. Assume
m
Jie B and 3 fixfy = 0. We may look at &, as the set of By, valued
=1

functions integrable on 0 < #, < 7).

For fe By, and 0<#, < Ty, lot f(t,) denote the element of 4,
defined by,

f(tla)(t17 tayoeny tk—;) =f(t1, tay ey tk)-

< U, then

icm®
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Ty, and

T T
Ez-tk, oyl = tk) if all the coordinates
k k

T
f(tl—fpitk,tr
E(tk)f = k
are, positive,
0 otherwise.
Clearly,
(i) B(Ty) =0,
(i) if @;¢ B, and Z #xw; = 0,1 6., T ko, = 0 on the set 4%~1(1),

i=1

then by induction hypothesis, ; = 0 for each 4, on A"‘l(1/2
T
In other words, E( ) @;= 0 for each 4.

‘We see that #,_; satisfies all the conditions on X in Theorem V.

m
We have f;« 4, and 3 f;+f; = 0. In the language of exponential operator,
=l

this means,

m
B() D) fixfilt) =0 for 0<4, < T,

=1
T
From Theorem V, we conclude E{t, +7 filty) = 0 for 0< 1, < T},

for each <.
This means that for each 4, f; = 0, on 4* (1/2). Thus, the theorem
is true for # = k-as well. W

COROLLARY. L, is formally real for all n.

m
Proof. Suppose f;¢ L, and Y fi*f; = 0. Select Ty, T, ..., T, strictly
i=1

positive numbers. Let f; also denote the restriction of f; on 4™(1). Then

fie B, and 2 fixfy = 0. From Theorem VI, we conclude f; = 0 on A™(1/2),
for each 4. Slnce T, were all arbitrarily chosen, we conclude f; =0 on
R, for each 4. Thig proves that L, is formally real.

COROLLARY. (i) O, OF, Ly, (1), (D)) are all formally real.

(ii) If M, denotes the gquotient field of (2,
real.

(iii) The quotient field of Mikusiniski operators is formally real.

1)1, then M, is formally
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Vector space isomorphisms of (*-algebras

by
KARY YLINEN (Heolsinki)

Abstract. Tor a veclor space isomorphism of two O*.algebras, connections
existing betweon the properties of being a O*-isomorphism, isometric, bipositive,
or preserving an approximate identity, are indicated.

1. Introduetion. This paper is concerned with exftending to the
non-unit situation some results obtained by Kadison [4], [6], in the
course of characterizing the linear isometries between (*-algebras with
identity or betiween their real linear subspaces of self-adjoint elements.
Following Kadison we call a linear isomorphism between two (*-algebras
a quantum mechanical isomorphism or.a O*-isomorphism if T (%) = (To)*
and T'(a") = (Ta)" for each self-adjoint element ¢ and natural number #.
For two (“-algebras 4 and B, a linear map T: 4 — B ig positive, it Ta
is positive for each positive ae 4, If T is a vector space isomorphism and
both 7' and. I are positive, we call ' bipositive. In this terminology some
of Kadison’s resulty may be stated in the following form (see [4], Theorem
B, ity proof, Theorem 7, and [3] Corollary 5):

Tomornm 1.1. (Kadison) Let 4 and B be O*-algebras with identities
61 A and oy B and I': A — B 4 veclor space isomorphism. If T is a C*-
~isomorphism, T is isometric amd bipositive, and Te, = e,. Conversely, any
two of the latter three properties together imply that T is a C*-isomorphism.

In Section 3 we extend this theorem to cover the case of linear
isomorphisms between general (*-algebras by replacing the identity with
an approximate identity. Kadison’s results are also applied to show that
the natural extension of a real linear isometric isomorphism between
the subspacoes of self-adjoint elements of two C*-algebras is also isometric.
Our main tool is the Sherman-Takeda—Grothendieck theory (see [3],
[6] and [7]) yielding the structure of & von Neumann, algebra in the bidual
of a ("-algebra. For the bagic theory of (*-algebras we refer to [1].

2. Auxilisxy results, Lot A he a O*-algebra. We identify its bidual
A" with the enveloping von Newmann algebra of A (ef. [L],p. 237). In
this identification the weak operator topology of A’ coincides with
o(d”, A) and the structure of A" extends that of 4 via the canonical
embedding ® > &. Wo use the term ‘approximate identity’ in the sense
of [1], p. 3b9.
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