A fixed point theorem for transformations whose iterates have uniform Lipschitz constant

by

K. GOEBEL (Lublin) and W. A. KIRK (Iowa City, Ia.)

Abstract. For every uniformly convex Banach space X there exists a constant $\gamma > 1$ which has the following property: If $K \subset X$ is nonempty, bounded, closed and convex, and if $T \colon K \to K$ has the property that each of its iterates T^i is lipschitzian with Lipschitz constant $k < \gamma$, then T has a fixed point in K. Some applications of this result are also discussed.

Let X be a Banach space and K a nonempty, bounded, closed and convex subset of X. A mapping $T: K \to K$ is said to be nonexpansive if $||Tx-Ty|| \le ||x-y||$ for all $x, y \in K$. In 1965, F. E. Browder [1], D. Göhde [6], and W. A. Kirk [7] proved independently that if X is uniformly convex then T always has a fixed point in K. (Also see Goebel [3].) It was observed at that time (cf. [7]) that if one only assumes T to be lipschitzian with Lipschitz constant k > 1 then T need not have a fixed point, even if X is a Hilbert space and k is arbitrarily near 1. However, there are classes of transformations which lie between the nonexpansive transformations and those with Lipschitz constant k > 1 for which fixed point theorems do exist; in particular the asymptotically nonexpansive mappings of Goebel-Kirk [5] form such a class. These are mappings $T: K \rightarrow K$ having the property that T^i has Lipschitz constant k_i with $k_i \to 1$ as $i \to \infty$. The principal result of [5] states that nonexpansiveness of T in the theorem of Browder-Göhde-Kirk cited above may be replaced by asymptotic nonexpansiveness.

Our purpose here is to generalize the theorem of [5] by a sharpening of the original argument, thus obtaining a fixed point theorem for mappings which are uniformly lipschitzian (see below) with Lipschitz constant k sufficiently near 1 (but greater than 1). We direct several final remarks to applications of this result.

^{*} Research supported by a Kościuszko Foundation while the author was at the University of Iowa.

^{**} Research supported by National Science Foundation grant GP-18045.

137

The modulus of convexity of a Banach space X is the function δ : $[0,2] \rightarrow [0,1]$ defined as follows:

$$\delta(\varepsilon) \, = \, \inf[1 - \left\| \frac{x+y}{2} \right\| \colon x, y \, \epsilon X, \, \|x\| \leqslant 1, \, \|y\| \leqslant 1, \, \|x-y\| \geqslant \varepsilon \,].$$

In the theorem below we assume that X is uniformly convex [2], i.e., that $\delta(\varepsilon) > 0$ if $\varepsilon > 0$. In such a space it is easily verified that δ is strictly increasing and continuous, and moreover (cf. Opial [9]) the inequalities $||x|| \leq d$, $||y|| \leq d$, $||x-y|| \geq \varepsilon$, imply

$$\left\|\frac{x+y}{2}\right\|\leqslant \left(1-\delta\!\left(\frac{\varepsilon}{d}\right)\!\right)\!d.$$

We say that a transformation $T: K \to K, K \subset X$, is uniformly k-lipschitzian if for each $x, y \in K$,

$$||T^{i}x - T^{i}y|| \leq k||x - y||, \quad i = 1, 2, \dots$$

THEOREM 1. Let X be a uniformly convex Banach space. Then there exists a constant $\gamma > 1$ such that if K is a nonempty, bounded, closed and convex subset of X, and if $T \colon K \to K$ is uniformly k-lipschitzian for $k < \gamma$, then T has a fixed point in K.

Proof. We take γ to be the solution of the equation $\gamma(1-\delta(1/\gamma))=1$ and assume $1 \leq k < \gamma$, i.e., assume k satisfies the inequality

$$(*) k(1-\delta(1/k)) < 1.$$

For $x \in K$ let $d(x) = \limsup_{i \to \infty} ||x - T^i x||$, and let S(x; r) denote the closed spherical ball centered at x with radius r > 0. Fix $x \in K$ and let R consist of those real numbers $\rho > 0$ for which there exists an integer n such that

$$K \cap ig(igcap_{i=x}^{\infty} S(T^i x; \, arrho)ig)
eq \emptyset$$
 .

Then $R \neq \emptyset$ (because R contains the diameter of K) so we can define $\varrho_0 = \varrho_0(x) = \text{g.l.b. } R$. For each $\varepsilon > 0$ define

$$C_{arepsilon} = igcup_{n=1}^{\infty} ig(igcap_{i=n}^{\infty} \, S(T^i x; \, arrho_0 + arepsilon) ig).$$

Then for each $\varepsilon>0$ the sets C_{ε} are nonempty and convex, so reflexivity of X implies that

$$C = \bigcap_{\epsilon>0} (\overline{C}_{\epsilon} \cap K) \neq \emptyset.$$

Let $z = z(x) \in C$. Notice that z and ϱ_0 have the properties:

(i) for each $\varepsilon > 0$, $S(z; \varrho_0 + \varepsilon)$ contains almost all terms of the sequence $\{T^i x\}$;

(ii) given $m \in K$ and $\varrho < \varrho_0$, the set $\{i: ||m - T^i x|| > \varrho\}$ is infinite. Now if $\varrho_0 = 0$ or if d(z) = 0, then $\lim_{z \to z} T^i x = z$ yielding Tz = z.

We may therefore assume $\varrho_0 > 0$, d(z) > 0. Let $\varepsilon > 0$, $\varepsilon \leqslant d(z)$, and select j so that

$$||z-T^jz||\geqslant d(z)-\varepsilon$$
.

By (i) there exists an integer N such that if $i \ge N$, then

$$||z-T^ix|| \leqslant \varrho_0 + \varepsilon \leqslant k(\varrho_0 + \varepsilon).$$

Thus if $i-j \geqslant N$,

$$||T^{j}z-T^{i}x|| = ||T^{j}z-T^{j}T^{i-j}x|| \leqslant k||z-T^{i-j}x|| \leqslant k(\varrho_{0}+\varepsilon).$$

Letting $m = \frac{z + T^j z}{2}$, in view of the property of δ we have

$$\|m-T^tx\|\leqslant \left(1-\delta\left(rac{d(z)-arepsilon}{k\left(arrho_0+arepsilon
ight)}
ight)k\left(arrho_0+arepsilon
ight),$$

for $i \geqslant N+j$.

This implies (by (ii))

$$\varrho_0 \leqslant \left(1 - \delta \left(\frac{d(z) - \varepsilon}{k(\varrho_0 + \varepsilon)}\right)\right) k(\varrho_0 + \varepsilon);$$

hence by continuity of δ ,

$$\left(1-\delta\left(\frac{d\left(z\right)}{k\varrho_{0}}\right)\right)k\geqslant1.$$

This implies $d(z) \le k\delta^{-1}(1-1/k)\varrho_0$. Furthermore, because of (ii), we have $\varrho_0 \le d(x)$ yielding

$$d(z) \leqslant k\delta^{-1}(1-1/k)d(x).$$

Therefore $d(z) \leq ad(x)$ where $\alpha = k\delta^{-1}(1-1/k)$, and $\alpha < 1$ because k satisfies (*). Also $||z-x|| \leq d(x) + \varrho_0(x) \leq 2d(x)$.

To complete the proof, fix $w_0 \in K$ and define the sequence $\{x_n\}$ by $x_{n+1} = x(x_n)$, $n = 0, 1, \ldots$, where $x(x_n)$ is selected in the same manner as x(x). If for any n we have $\varrho_0(x_n) = 0$ then $Tx_{n+1} = x_{n+1}$. Otherwise we have

$$||x_{n+1}-x_n|| \leqslant 2d(x_n) \leqslant 2\alpha^n d(x_0)$$

which implies $\{x_n\}$ is a Cauchy sequence. Therefore $x_n \to y \in K$ as $n \to \infty$. Also

$$\begin{split} ||y - T^i y|| &\leqslant ||y - x_n|| + ||x_n - T^i x_n|| + ||T^i x_n - T^i y|| \\ &\leqslant (1 + h) \, ||y - x_n|| + ||x_n - T^i x_n|| \, . \end{split}$$

139

This implies $d(y) \le (1+k) \|y-x_n\| + d(x_n) \to 0$ as $n \to \infty$ yielding Ty = y. We now list several consequences of Theorem 1.

1. Let K_1 be the unit ball in Hilbert space and S_1 its boundary. Theorem 1 has a connection with the following problem which was raised recently by K. Goebel [4]: If $T\colon K_1\to K_1$ satisfies a Lipschitz condition $\|Tx-Ty\|\leqslant k\,\|x-y\|,\,x,\,y\,\epsilon K_1$, then is $\inf_{x\in K_1}\|x-Tx\|=0$? The answer to this problem is unknown, but it has the following equivalent formulation:

THEOREM (Goebel [4]). The existence of a lipschitzian transformation $T\colon K_1 {\to} K_1$ such that $\inf_{x \in K_1} \|x - Tx\| > 0$ is equivalent to the existence of a lipschitzian retraction of K_1 onto S_1 .

Theorem 1 implies that there exists a constant $\gamma>1$ such that for any uniformly k-lipschitzian transformation $T\colon K_1\to K_1$ with $k<\gamma$, we have $\inf_{x\in K_1}\|x-Tx\|=0$. Letting γ^* denote the least upper bound of all numbers γ for which this is true, it is not known if $\gamma^*<\infty$. This problem is also equivalent to the retraction problem:

THEOREM 2. $\gamma^* < \infty$ if and only if there exists a lipschitzian retraction of K_1 onto S_1 .

Proof. If there exists a uniformly lipschitzian transformation $T\colon K_1{\to}K_1$ with the property $\inf_{x\in K_1}\|x-Tx\|>0$ then according to the result of Goebel cited above there is a lipschitzian retraction of K_1 onto S_1 . On the other hand, if R is such a retraction then T=-R is easily seen to be uniformly lipschitzian. Moreover, $\inf_{x\in K_1}\|x-Tx\|>0$ (see [4]) implying $\gamma^*<\infty$.

- **2.** Kirk has shown [8] that if T is a transformation of a bounded closed convex set in a Banach space X such that $\|T^ix-T^iy\| \leqslant k\|x-y\|$, $i=1,\ldots,n-1$, and if $T^n=\mathfrak{I}$ (the identity transformation on X), then there exists $\gamma>1$ (independent of T but depending on n) such that if $k<\gamma$, then T has a fixed point. Theorem 1 implies that in a uniformly convex space such a constant γ may be chosen independently of n.
- **3.** If $T: K \rightarrow K$ is uniformly k-lipschitzian then T is nonexpansive with respect to the metric

$$r(x, y) = \sup \{ ||T^i x - T^i y|| : i = 0, 1, 2, ... \}, x, y \in K,$$

and this metric is equivalent to the norm metric since

$$||x-y|| \leqslant r(x, y) \leqslant k||x-y||.$$

On the other hand, if there is a metric s(x, y) on K such that

$$\alpha \|x-y\| \leqslant s(x,y) \leqslant \beta \|x-y\|, \quad x, y \in K,$$

and a transformation $T: K \rightarrow K$ nonexpansive with respect to s(x, y), then for i = 1, 2, ...,

$$\|T^ix-T^iy\| \leqslant \frac{1}{a}s(T^ix,T^iy) \leqslant \frac{1}{a}s(x,y) \leqslant \frac{\beta}{a}\|x-y\|.$$

Therefore T is uniformly $\frac{\beta}{\alpha}$ -lipschitzian and Theorem 1 implies:

THEOREM 3. Let X be uniformly convex and $K \subset X$ closed bounded and convex. If $T \colon K \to K$ is nonexpansive with respect to a metric s(x, y) on K satisfying (**) where $\frac{\beta}{a} < \gamma$ for γ as in Theorem 1, then T has a fixed point in K.

- 4. Suppose X is uniformly convex and $K \subset X$ is a lipschitzian retract of some closed bounded convex subset H of X. Theorem 1 assures that if the Lipschitz constant k of the retraction is sufficiently near 1 (but larger than 1) then every nonexpansive mapping of K into itself has a fixed point. Thus, fixed point theorems hold for nonexpansive mappings defined on non-convex domains provided these domains are sufficiently "nice" retracts of convex sets.
- 5. Theorem 1 actually has a slightly more general formulation. If $T: K \rightarrow K$ is continuous then one only need assume in Theorem 1 that T is "eventually" uniformly k-lipschitzian, i.e., that there exist an integer N such that if $x, y \in K$ and $i \geq N$, then

$$\|T^ix-T^iy\|\leqslant k\,\|x-y\|\,.$$

The proof carries over immediately.

- **6.** We remark that Theorem 1 is an explicit generalization of the theorem of Browder-Göhde-Kirk described in the opening paragraph. In fact, if T is nonexpansive then T is uniformly 1-lipschitzian, and the inequality (*) in the proof of Theorem 1 obviously holds for k=1 when X is uniformly convex. Moreover, one can show (see [5]) that for any $x \in K$ the point z(x) as constructed in the proof of Theorem 1 is fixed under T.
- 7. The fundamental open question raised by Theorem 1 is, of course, whether or not the solution of $\gamma(1-\delta(1/\gamma))=1$ is the largest number γ for which the theorem holds. We note that this number is only slightly $\sqrt{5}$

larger than 1; for example, in Hilbert space $\gamma = \frac{\sqrt{5}}{2}$.

STUDIA MATHEMATICA, T. XLVII. (1973)

References

- F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA 54 (1965), pp. 1041-1044.
- [2] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), pp. 396-414.
- [3] K. Goebel, An elementary proof of the fixed point theorem of Browder and Kirk, Michigan Math. J. 16 (1969), pp. 381-383.
- [4] On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. (to appear).
- [5] and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), pp. 171-174.
- [6] D. Göhde, Zum prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), pp. 251-258.
- [7] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), pp. 1004-1006.
- [8] A fixed point theorem for mappings with a non-expansive iterate, Proc. Amer. Math. Soc. 29 (1971), pp. 294-298.
- [9] Z. Opial, Lecture notes on nonexpansive and monotone mappings in Banach spaces, Center for Dynamical Systems, Brown University, Providence, R. I., USA (1967).

In general, Bernoulli convolutions have independent powers

by

GAVIN BROWN and WILLIAM MORAN (Liverpool)

Abstract. For a sequence $\boldsymbol{b}=(b_n)$ of non-negative real numbers such that $\sum_{n=1}^{\infty}b_n^2<1$, let $v(\boldsymbol{b})$ be the measure on the circle \boldsymbol{T} represented by the infinite convolution $\underset{n=1}{\overset{\infty}{\times}}\frac{1}{2}(\delta(-b_n)+\delta(b_n))$. It is shown that for a residual set of such \boldsymbol{b} 's, the closure in the $\sigma(L^{\infty}(v(\boldsymbol{b})), L^1(v(\boldsymbol{b}))$ topology of the characters of \boldsymbol{T} contains all constant functions with values in [-1,1]. It follows that for these measures $\delta(x)\times v(\boldsymbol{b})^r$ is singular to $v(\boldsymbol{b})^s$ unless r=s.

1. Introduction. Let T be the circle group R/Z and let M(T) denote the convolution algebra of bounded regular Borel measures on T. Further, let B denote the set of sequences (b_n) of real numbers satisfying $b_n \ge 0$ (n = 1, 2, 3, ...) and $\sum_{n=1}^{\infty} b_n^2 \le 1$. For each sequence $b = (b_n)$ in B, we write r(b) for the infinite convolution product

$$\nu(\boldsymbol{b}) = \underset{n=1}{\overset{\infty}{\times}} \frac{1}{2} (\delta(-b_n) + \delta(b_n))$$

where $\delta(x)$ is the positive measure of mass 1 concentrated at $x \in T$. The infinite convolution product converges in the weak* topology by ([10], p. 127), so that we have defined a map $v \colon B \to M(T)$. Let $\mathscr B$ denote the image of v (thus $\mathscr B$ is a set of symmetric Bernoulli convolutions). We regard B as a subspace of the compact space $[0, 1]^{\aleph_0}$. As such B is a compact Hausdorff space. We shall say that a subset $\mathscr C$ of $\mathscr B$ is virtually all of $\mathscr B$ if $v^{-1}(\mathscr C)$ is residual in B (i.e. $B \setminus v^{-1}(\mathscr C)$) is of first category).

Let A(M(T)) denote the maximal ideal space of M(T) which we regard as a topological subspace of $\prod \{L^{\infty}(\mu): \mu \in M(T)\}$ where $L^{\infty}(\mu)$ has the $\sigma(L^{\infty}(\mu), L^{1}(\mu))$ -topology (see [9]). For $\chi \in A(M(T))$ and $\mu \in M(T), \chi_{\mu}$ indicates the μ -coordinate of χ . The dual group $T^{\wedge}(\cong Z)$ of T is embedded in A(M(T)) in an obvious and natural way. Using this embedding, we define a subset $\mathscr A$ of $\mathscr B$ to consist of all measures $\mu \in \mathscr B$ having the following property: