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A fixed point theorem for transformations whose iterates have umiform

Lipschitz constant

by
K. GOEBEL (Lublin) and W. A. KIRK (Iowa City, Ia.)

Abstract. For every uniformly convex Banach space X there exists a con-
ghant p > 1 which has the following property: If K < X is nonempty, bounded,
closed and convex, and if I': J — K has the 'px'opmty that each of its iterates 1% is
lipsehitzian with Lipschitz constant o << p, then I has a fixed point in K. Some appli-
cations of this result are also discussed.

Let X be a Banach space and K a nonempty, bounded, closed and
convex. ﬂubqe‘l; of X. A mapping T: X — K i3 said to be nonexpansive
if |72 —Ty|| < o —y]| for all @, y < K. In 1965, F. B. Browder [1], D. Gohde
[6], and W. A. Kirk [7] I)rovod independently that if X is uniformly convex -
then T always has a fixed point in K. (Also see Goebel [3].) It was observed
at that time (cf. [7]) that if one only assumes Z' to be lipschitzian with
Lipschitz constant % > 1 then T need not have a fixed point, even it X
is a Hilbert space and % is arbitrarily near 1. However, there are classes
of transformations which lie between the nonexpansive transformations
and those with Lipschitz constant % > 1 for which fixed point theorems
do exist; in particular the asymptotically nonexpansive mappings of
Goebel-Kirk [5] form such a class. These are mappings T': K—K having
the property that 7% has Lipschitz constant k; with k1 as 4--oo.
The principal result of [5] states that nonexpansiveness of T in the theorem
of Browder—Gohde~Kirk cited above may be replaced by asymptotic
NONGXPANSIVENOss.

Our purpose here is to generalize the theorem of [5] by o sharpening
of the original argunent, thus obtaining a fixed point theorem for may PIngs
which are uniformly lipschitzian (see below) with Lipschitz constant I
sufficiently near 1 (but greater than 1), We direct several final remarks
to applications of thiy result.

* Rogearch supported by a Kodeiuszko Foundation while the author was at
the University of Towa.
** TRogearch supporbod by National Science Foundation grant GP-18045.
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The modulus of comvexity of a Banach space X is the function 4:
[0,2] - [0,1] defined as follows:

x4y
2

8(e) = inf[1— Lo, yeX, ol <1, gl <1, lo—yl > e].

In the theorem below we assume that X is uniformly convex [2], i.e., that
6(e) >0 if £> 0. In such a space it is easily verified that & is strictly
increasing and continuous, and moreover (cf. Opial [9]) the inequalities
el < dy Wl <d, lw—yl> e imply
@ .

L2t ] o (1 5[
| d

We say that a fransformation 7': K - K, K < X, is uniformly
k-lipschitzian if for each w,yeXK,

|Tfe —Tiyl| < Rlo—yl, 4=1,2,....

TueorREM 1. Let X be o uniformly convew Banach space. Then there
ewists o constant v > 1 such that if K is o nonemply, bounded, closed and
convex subset of X, and if T': K—K is uniformly k-lipschitzian for k < y,
then T has a fived point in K.

Proof. Wetake y to be the solution. of the equation ¥ (L— §(1L/fy)) =1
and assume 1<k <y, Le., assume % satisfies the inequality

(*) B(L—0(1fk)) < 1.
For el let d(z) = limsup|» —Tx|, and let S(w;s) denote the closed

1=»00 .
spherical ball centered at z with radius > 0. Fix z<K and let R consist
of those real numbers ¢ > 0 for which there exists an integer n such that

K () 8(T'; o)) #0.

A=Mn

Then B # @ (because R contains the diameter of K) so we can define
00 = 0o(®) = g.1.b. R. For each > 0 define

0, = U (O 8(Ti; o).

A=l =g

Then for each &> 0 the sets C, are nonempty and convex, so reflexivity
of X implies that

¢ =N{@, NEK) #0.

8>0
Let 2 = 2(x)eC. Notice that #z and 0o have the properties:

(i) for each &> 0, 8(2; go+¢) contains almost all terms of the se-
quence {T"x};
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(ii) given mel and ¢ < gy, the set {i ]]m-T"m\i> o} is infinite.
Now if go ==0 or if d(s) =0, then lim I"z =z ylelding T? = 2.
(]

We may therefore assume g, > 0, d(2) > 0. Let & > 0, e < d(2), and select ]
so that

' e —T2)| 2= d(2)—e.

‘IBy (i) there oxists an integer N such that if 4> N, then

flz — Tt < 0y e << (go+-¢).

Thus if 4—J 3= N,

[|1’fz -«.’1,“mil - Hl’lz-v~4-fl.'j.’l”"‘“‘j¢7(/'|| L 7”“'3 "-m,’['t"fv%‘H < k(0o -+ &).
P r .
Lotting m == LL;'ZW«, in view of the property of 4 we have
d{z)—e '
—T| < | L —~¢3(~,~—--~—~~—~—) k(oo 2)
I — ] ( Fere ) Bt

for iz N -j.
This implies (by (ii))
. Ay —e N\,
00 (1 -0 (’X@T““ 5 ))MOH &);

hence by continuity of 6,

(;1, ) (-‘1—@.)) .y
koo

This implies @() < ko~ (1 —1/k)g,. Furthermore, because of (il), we
have g4 = d(w) yielding
d(2) < ko™ (L—-1/k)d(x).

Therefore d(z) < ad(s) where a = kd™*(L—1/k), and «< 1 because &k
satistios (*). Also |je-- || = d(2) -+ 0o (@) < 2d (@),

To comploete the proof, fix w,cK and define the sequence {w,} by
By = 2(@), 0 == 0,1, ..., whore #{w,) is selected in the same manner .
a8 2(w). Tt for any n we have gy(w,) == 0 then W,y = By Otherwise
wo have

“%wvl - mn” = 2d (wy) 5 2a™d (i)

which implies {w,} is a Oauchy sequence. Thorefore ®,~+y el as n->oo.
Also
”?/ "'Ti?/H < H:’/ _mnu + Hmn ""Timnn -+ HTi‘wn "‘Ti'y”

< (LAB) ly — @l + ot =T @l
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This implies d(y) < (L-+k)|ly — o, +d{®,)>0 as n—>co yielding Ty = y.

We now list several consequences of Theorem 1.

1. Let K, be the unit ball in Hilbert space and §, its boundary.
Theorem 1 has a connection with the following problem which was raised
recently by K. Goebel [4]: If T: K, — K, satisfies a Lipschitz condition
| Te—Ty| < klle—vyl, #, yeK,, then is inf |z —Tz| = 0? The answer to

. zek]
this problem is unknown, but it has the following equivalent formulation:

THEOREM (Goebel [4]). The existence of a lipschitzian transformation

T: K,—~K, such that inf|e—Ta|> 0 is equivalent to ithe ewistence of
ze XK
o lipschitzian retraction of i{l onto Sy.

Theorem 1 implies that there exists a constant p > 1 such that for
any uniformly k-lipschitzian transformation 7': K,—K; with &k < y, we
have inf o —Tx| = 0. Letting y* denote the least upper bound of all

zeK,

1
numbers ¢ for which this is true, it is not known if y* < co. This problem
is also equivalent to the retraction problem:

THEOREM 2. y* < oo if and only if there exists a lipschitzian retraction
of K, onto 8;.

Proof. If there exists a wuniformly lipschitzian transformation
T: K,~K, with the property inf |s—Tu| >0 then according to the
weK:

1
result of Goebel cited above there is a lipschitzian retraction of K, onto

8;. On the other hand, if B is such a retraction then 7 = —R is easily .

seen to be uniformly lipschitzian. Moreover, inf |z —Tx| > 0 (see [4])
. ze K
jmplying 9* < co. '

2. Kirk has shown [8] that if 7 is a transformation of a bounded
closed convex set in a Banach space X such that |T8w—T'y| < ke -y,
i =1,...,n~1, and if " = J (the identity transformation on X), then
there exists y > 1 (independent of 7' but depending on =) such that if
k <y, then 7' has a fixed point. Theorem 1 implies that in a uniformly
convex space such a constant y may be chosen independently of #.

3. If T': K—~K is uniformly k-lipschitzian then T ig nonexpansive
 with respect to the metrie

*(@,y) = sup[| T —Tiyl: i =0,1,2,...], @,yK,

and this metric is equivalent to the norm metrie since
No—yll < r(@,9) < Blo—y].

On the other hand, if there is a metric s(» ,¥) on K such that

(**)

allm—y||<s(m,y)<\<_ﬁ}]m»-y“, 2, Yk,

icm®

Transformations whose dterafes have uniform Idpschite constant 139

and o transformation T': K-+K nonexpansive with respect to s(z,¥),
then for ¢ =1,2,...,

N
a

, 1 . B
| T —Thy|| <2 = s (T'w, T'y) <= s(@, ) < 'i;ll%yll-
[#

Therefore 1 is uniformly {;-llpschn‘,zmn and Theorem 1 implies:

TunoreM 3. Let X be uniformly conver and K < X closed bounded
and convew. Tf T: K-+IK is nonewpansive with vespect lo a metric s(w,y)
on I satisfying () where B < y for v as in Theorem L, then T' has a fiwed

’ o
point in K.

4. Suppose X is uniformly convex and K = X is a lipschitzian retract
of somo closed bounded convex subset H of X. Theorem 1 assures that
if the Lipschitz constant % of the retraction is sufficiently near 1 gbut
larger than 1) then every nonexpansive mapyping of IC into 11;se1f_ has a f{xed
point. Thus, fixed point theorems hold for nonexpansive MaPPIDES d‘efme:l’
- } . g . Lt (ot
on pon-convex domains provided these domains are sufficiently ‘‘nice
retracts of convex sots.

5. Theorem 1 actually has a glightly more general formulation. If
7. K-+JC is continuous then one only need assume in Theorem_ L that T
is “eventually” uniformly k-lipschitzian, i.e., that theve exist an integer N
such that if @, y<K and i3z N, then

|7 —~Ty|| < kllo —y1l-

The proof carries over immediabely. '

6. Wo vemark that Theorem 1 is an explicit generalization of the
thoorem of Browder—Gohde-Kirk described in the 01)0ning paragraphb.
In fact, it 7' s nobexpansive then T' is uniformly 1-lips.(=hi1;z1.&n, and th?
inequality (*) in the proof of Theorem 1 obviously h(_)lds for It == 1 when X
is uniformly convex. Moreover, onoe can show (see [P]) 171_1@1;‘ for any werlf’:
the point z(s) as constructed in the proof of Theorem 1 is fixed under 1.

7. Tho fundamental open question raised by Theorem 1 ig, of course,
whether or not the solution of y(1—&(L ) r:_l is the lmjgesﬁ nulgbeli 4
for which the theorem. holds. We note that this num?_pr is only slightly

b
larger than 1; for example, in Hilbert space y = ——


GUEST


140

[1]
[2]
[31
[4]
[s]
[6]
[7]
[8]
[9]

K. Goebel and W. A, Kirk

References

F. E. Browder, Nonexpansive nonlinear operators in a Banacl space, Proc.
Nat. Acad. Sci. USA 54 (1965), pp. 1041-1044.

J. A. Clarkson, Uniformly conves spaces, Trans, Amer. Math. Soe. 40 (1936),
pp. 396-414.

K. Goebel, An elementary proof of the fized point theorem of Browder and Kirk,
Michigan Math. J. 16 (1969), pp. 381-383.

— On the mintmal displacement of points under lipschiteian mappings, Pacific
J. Math. (to appear).

— and W. A. Kirk, A fized point theorem for asymptotically nonexpansive map
pings, Proe. Amer. Math. Soe. 35(1972), pp. 171-174.

D. Géhde, Zum prinzip der Lowiralkliven Abbildung, Math. Nachr. 30 (1965),
pp. 251-258.

W. A. Kirk, A fized point theorem for mappings which do not inerease distances,
Amer. Math., Monthly 72 (1965), pp. 1004-1006.

— A fized point theorem for mappings with ¢ non-expansive ilerate, Proc. Amer.
Math. Soc. 29 (1971), pp. 294-298.

Z. Opial, Lecture motes on momempansive and monotone mappings in Banach
spaces, Center for Dynamical Systems, Brown University, Providence, R.I.,
TUSA (1967).

Received April 20, 1972 (513}

STUDIA MATHEMATICA, T. XLVIL. (1973)

In general, Bernoulli convolutions have independent powers

by
GAVIN BROWN and WILLIAM MO R AN (Liverpool)

Abstract. For a sequence b = (b,) of non-negative real numbers such that

5‘ bh <1, lub »(b) bo the measure on the cirele T represented by the infinite con-
11’:’1

volution % %(6(—%) -+ 8(bp))- It is shown that for a residual set of such b’s, the
n

=]
closure in the o(Z*® (v(b)), Ll(v )) topology of the characters of T' contains all con-
stant funections with va,luoﬁ in [—1, 11. It follows that for these measures d(x)x » (b)" is
gingular to »(B)® unless 7 = s.

1. Introduction. Let T be the circle group R/Z and let M (T) denote
the convolution algebra of bounded regular Borel measures on 7. I‘urther
let B’ dcno‘ro the set of bequeneos (b,) of real numbers satistying b,

(n=1,2,3,...) and y
uul
write »(b) for the infinite convolution product

< 1. For each sequence b = (b,) in B, we

»(b) = n%lir(é( —by)+ 8(by))

where 8(x) is the positive measure of mass 1 concentrated at w<T. The
infinite convolution product converges in the weak* topology by ([10],
P. 127), so that we have defined a map »: B->M(T). Let # denote the
image of » (thus # is a set of symmetric Bernoulli convolutions). We
regard B3 as o subspace of the cumpaw’ﬂ space [0, 17%. As such B is a com-
pact Hausdorff space. Wo shall say that o subset @ of # is virtually oll
of @ it v~ (%) is vesidual in B (Le. BN\»~1(%) is of first category).

Let A(M(T)) denote the maximal ideal space of M(T') which we
regard as u topological subspace of [T{L®(u): peM (T)} where L™ (u) has
the o(L®(u), L1 (4))-topology (seo |9]). For ye/l(ll[(’l‘) and peM (T, %,
indicatos the u-coordinate of 5. The dual group T (s« Z) of T' is embedded
in /J(M (T)) in an obvious and natural way. Using this embedding, we
define a subset o7 of & to consist of all measures pe® hfwmg the following
property:
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