140

[1]
[2]
[31
[4]
[s]
[6]
[7]
[8]
[9]

K. Goebel and W. A, Kirk

References

F. E. Browder, Nonexpansive nonlinear operators in a Banacl space, Proc.
Nat. Acad. Sci. USA 54 (1965), pp. 1041-1044.

J. A. Clarkson, Uniformly conves spaces, Trans, Amer. Math. Soe. 40 (1936),
pp. 396-414.

K. Goebel, An elementary proof of the fized point theorem of Browder and Kirk,
Michigan Math. J. 16 (1969), pp. 381-383.

— On the mintmal displacement of points under lipschiteian mappings, Pacific
J. Math. (to appear).

— and W. A. Kirk, A fized point theorem for asymptotically nonexpansive map
pings, Proe. Amer. Math. Soe. 35(1972), pp. 171-174.

D. Géhde, Zum prinzip der Lowiralkliven Abbildung, Math. Nachr. 30 (1965),
pp. 251-258.

W. A. Kirk, A fized point theorem for mappings which do not inerease distances,
Amer. Math., Monthly 72 (1965), pp. 1004-1006.

— A fized point theorem for mappings with ¢ non-expansive ilerate, Proc. Amer.
Math. Soc. 29 (1971), pp. 294-298.

Z. Opial, Lecture motes on momempansive and monotone mappings in Banach
spaces, Center for Dynamical Systems, Brown University, Providence, R.I.,
TUSA (1967).

Received April 20, 1972 (513}

STUDIA MATHEMATICA, T. XLVIL. (1973)

In general, Bernoulli convolutions have independent powers

by
GAVIN BROWN and WILLIAM MO R AN (Liverpool)

Abstract. For a sequence b = (b,) of non-negative real numbers such that

5‘ bh <1, lub »(b) bo the measure on the cirele T represented by the infinite con-
11’:’1

volution % %(6(—%) -+ 8(bp))- It is shown that for a residual set of such b’s, the
n

=]
closure in the o(Z*® (v(b)), Ll(v )) topology of the characters of T' contains all con-
stant funections with va,luoﬁ in [—1, 11. It follows that for these measures d(x)x » (b)" is
gingular to »(B)® unless 7 = s.

1. Introduction. Let T be the circle group R/Z and let M (T) denote
the convolution algebra of bounded regular Borel measures on 7. I‘urther
let B’ dcno‘ro the set of bequeneos (b,) of real numbers satistying b,

(n=1,2,3,...) and y
uul
write »(b) for the infinite convolution product

< 1. For each sequence b = (b,) in B, we

»(b) = n%lir(é( —by)+ 8(by))

where 8(x) is the positive measure of mass 1 concentrated at w<T. The
infinite convolution product converges in the weak* topology by ([10],
P. 127), so that we have defined a map »: B->M(T). Let # denote the
image of » (thus # is a set of symmetric Bernoulli convolutions). We
regard B3 as o subspace of the cumpaw’ﬂ space [0, 17%. As such B is a com-
pact Hausdorff space. Wo shall say that o subset @ of # is virtually oll
of @ it v~ (%) is vesidual in B (Le. BN\»~1(%) is of first category).

Let A(M(T)) denote the maximal ideal space of M(T') which we
regard as u topological subspace of [T{L®(u): peM (T)} where L™ (u) has
the o(L®(u), L1 (4))-topology (seo |9]). For ye/l(ll[(’l‘) and peM (T, %,
indicatos the u-coordinate of 5. The dual group T (s« Z) of T' is embedded
in /J(M (T)) in an obvious and natural way. Using this embedding, we
define a subset o7 of & to consist of all measures pe® hfwmg the following
property:
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for each @ in [—1,1], there exists y in the closure of T in A M (T))
such that yx,(f) = 2 (u a.e.).

' We can now state the main results of this paper.

THEOREM 1." o 4s virtually all of 2.

COROLLARY 1. For virtually all u in B, 6(d)xu" is singular to u° for
all deT unless r =s.

‘We paraphrase this property of a measure u by saying that it has
strongly independent powers. We say that p has independent powers if
4" is singular to u* unless r =s. 7

COROLLARY 2. For virtually all u in %, u has independent powers.

CoROLLARY 3. For virtually all 1 in B, p and all of its convolution
powers are singular to Lebesgue measure.

Remark 1. The problem of deciding the singularity or absolute
continuity of symmetric Bernoulli convolutions has been studied by
several authors. A survey of some of their results, together with proofg
of the sharpest of these results are to be found in a paper of Garsia [4],

Remark 2. We single out for special mention a result of Erdos [3]
which says that, in a special case, the “random” symmetric Bernoulli
convolution is absolutely continuous with respect to Lebesgue measure.
Precisely, if b, =d” (n =1,2,3,...), then for almost all « in [y, 1]
(0 <y <1) (with respect to Lebesgue measure), »(b) is absolutely con-
tinuous. We explain the relationship of our work to that of more recent
authors in this field in the next section.

Remark 3. Even the fact (Corollary 3) that “mogt” Bernoulli
convolutions are singular seems to be mew (cf. [4], p: 412).

Remark 4. The methods used here apply equally well if T is replaced
by R. Moreover, if B is replaced by

0,20 (n =1,2,3,...)}
and » by o where

w(b) = M*I%((F(O)-F@(bn))
we can prove that for virtually all ux in o (F), 4 belongs to the set # of
all the measures with the property that every complex constant of absolute
value not greater than 1 is in the ¢(L*(s), I*(4)) closure of T". From
this, the analogous results to Corollaries 1, 2 and 3 follow quickly. In
barticular, for virtually all w in o (F), p'5° | u?if unless ¢ = p and s =gq.

(% is the involute of u, i.e. &(B) = #(—B) for every Borel set B of T.)
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2. Preliminaries. Our first task is to find a critérion for a Bernoulli
convolution to belong to «, or equivalently, for a real constant function o
(@e[~1,1]) to belong to the o(L>(u), L*(p)) closure of the characters
of T. (Note that this is equivalent to & = y, for some y in the closure
of T" in A(M(T)), because 4(M(T)) is eompact). One possible choice
for this oriterion iy provided by a result of Hewitt and Kakutani ([5]
Theorem 3.1). Let D be the countable infinite product of copies of Z(2)
with the produet topology, so that a member & of D is an infinite sequence
(e,) where &, iy 0 or 1 for each #. Let 2 be the Haar measure of D, and let

u = »(b) where 3'b, <1 and beB. Then Hewitt and Kakufani’s result
o),

shows that  is in the o(L™(u), L'(4)) closure of T'"if and only if there
is a Ssequence (fn(ln)) of integers such that

o0
lim | exp (2 in (I) D (=1ymby) x()dA(e) = o [ 7(e)dd(e).
] Ml
for each character y of D. Using this result, Hewitt and Kakutani were
able to show that if b, = m'm;*... m;* where each m, is a positive

integer and 2 my; ! converges, then o (b) belongs to . The present authors
Rl

have shown in [2] (Theorem. 3.2) that in fact, o (b) belongs to # if and
only if supm, == co. Kaufman in [7] generalised the results of Hewitt

n

and Kakutani in a different direction — in particular he removed the
strong arithmetical constraint that the b, be reciprocal integers of the
special kind just mentioned. His most significant result for our present
purposes is that, given any b <P, then there is a dense ¥; set C in D such
that for all ¢ in. ¢, o ((b,¢,)) belongs to £. We shall make use of Kaufman’s
methods in proving our result. An alternative approach to deciding when
a constant function a belongs to the ¢(L®(u), L*(s)) closure of T~ can
be found in a paper of Johnson [6]. Eowever, Johnson proves the result
only in the special case which he requires. As some steps in the proof
do not obviously earry over to our situation, we prefer to give a proof
of this result.

Lumma 1. Let b be a member of B and y = »(b). Then x belongs to
the o (L% (u), L)) closure of T if there ewists & sequence (n(k)) of positive
integers suoch thal

(i) »(®) " (n(k)>w  as k-roo;

(i) exp (2rib,n(k)) -1 a8 k-»o0 for all m.

‘Proof. Let by be the sequence (by,i, Dyias-.-) and let D be the
subgroup of T generated by the members of the sequence b. A consequence
of the Three Series Theorem iy that there is an almost everywhere (with

4 — Studia Mathematica XLVIL2
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respect to 1) defined map ¢: D—T given by

ple) = D) (=1)™by,
m=1
and »(b) is the measure induced on T by 2 and this map according to the
formula

[ fav(v) = [ fopda

for all feQ(T). If geLt(v(b)), gop belongs to L'(4) and go can be approx-
imated (in L(4)) by linear combinations of characteristic functions of
open and closed sets of the form

{e: e =m; 4=1,2,...,N}.

Correspondingly ¢ can be approximated in L!(»(b)) by linear combina-
tions of Radon—Nikodym derivatives of measures of the form 6(d)*»(by)
where deD is such that 8(d)*»(by) is absolutely continunous with respect
to »(b). Therefore, showing that (i) and (ii) together imply that x is in
the o(L*(g), L* () closure-of T amounts to finding & sequence of integers
(n (7)) such that (8(d)*»(by)) " (n(k))—w for each deD and positive integer
N. Moreover, since »(by)" (n) =»(by)” (—n), we may assume that the
integers n (k) are positive. Since 6(d)b(ow(k))~>1 for each deD according
to (ii), it suffices to show that

»(by) " (1 (k) .

To do this, we remark that
2V

) #(b) = D 5(di)*»(by)

for some d;eD (i = 1,2, ..., 2Y). Since »(b)(n(k))—>a and 8(d)(n(k)~1

a glance at (1) shows that v(bN){n(k))—w and the required result follows.
This result (or at least weaker forms of it) has been used by the
present authors in [1] to prove that certain measures u satisty Corollary 1.
In fact, we were able, in many cases, to describe the elements d T having
the property that, for some n, §(d)*u™ is not singular o u™
It will e clear to the reader that there exists a reformulation of
Lemma 1 along the lines of the Hewitt—Kakutani result quoted above.

3. Proofs of resulis. Recalling Kaufman’s results [7] for a moment,
we note that he used two facts:

(i) the set of independent power-measures in M (T) is a ¥, in the ‘

o(M(T), O(T)) topology; - R

e _®
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(ii) the map & — w((b,s,)) is continuous from B to M (%) with the
o(M (T, C(T)) topology.

Thus the obvious frontal attack on the proof of Corollary 2 would
use (i) together with a proof that b—w(b) is continuous. However, as
will be made clear, this map is not continuous so that the natural approach
breaks down and we have to resort to an indirect method. To do this,
we introduce an auxiliary space & which is the countable infinite product
of copies of N(={1,2,3,...}) with the product metric. Of course F
is a complete separable metric space homeomorphic to the irrationals.
We define a map y: B xHE-B by

"P(ba m) == (bum;;l)‘

It is clear that v is a continuous surjection. Moreover, we can obtain an
analogue of (i) above for the map m-—»(y(b, m)}, so that although » is
not continuous vow is continuous in the second variable. On the other
hand, » is Borel measurable. These two facts are basic to our approach
and we prove them together with some earlier assertions in the next
lemma. ‘
LeMMA 2. (i) B is @ compact subset of [0, 1T%.

(ii) Tor cach feC(T), b—v(b)(f) is Borel measurable on B, but not
continuous.

(iii) For each keZ, and cach beB, m—y(p(b, m))" (k) is continuous
on K.

Proof. (i) Let 5™ belong to B (k =1,2,3,...) and b®-b. Then,

for each N,
N

PRGOS

e

- N
so that letting & tend to infinity, ' b2 < 1. Since this is true, for all N,

n=

t follows that beB, so that B is closed and hence compact.

(il) Let

N

W (b) = %1 %(‘3( ~by,) + 6(’)7@))'

s
Then, for e@ch N, b->wy(b) is continuous on B and for each beB and
feO(',’[’),wN(b)(f)»«w(b)(f). Thus b->»(b)(f) is a limit of a sequence of
continuouy funetions and so is Borel measurable. On the other hand, let
beB and b, < 4 Tet ¢® he the member of B defined by

e |

k
o = b, 1<n<k,

o = by, kL < 0.
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Then c®—->b but »(e®) = v, (b)*»(b)—»(b)? in the weak* topology. -

Since, in general, »(b)? 5= »(b), b—»(b)(f) is not continuous.
(iii) Note that

»(p(b, m))" (k) = [ ] cos2mb,m; k.

a=1

Thus if m and m’ agree on the first N coordinates

@ I (®, m) (k) = (w(b, m")" (&)

0 00
<’ ” cos 2nb,, my ke — ” 0827, (M) " 1| .
-=N-+1 n= N1

However, for sufficiently large N,

o o0
(3) 01— cos2rb,mtk < — 2 log cos2mh, my ' e
n=N4-1 N=N+1 .
and.
[=<] o
4 — logcos2nb,m; k< D' (2mkb,)?
NEN+1 ne=N+1 .

Sinece the right hand side of (4) does not depend on m, and tends to zero
as N — oo, these statements combined. with (2) give the continuity we
require.

Now let {V,: r =1,2,3,...} be a countable base for the topology
of the real interval [—1,1], and define

B{l,r) :ICJ {beB : »(b)" (k)eV,

and |1 —exp2nikbj| < h7Y, 1<j <}
and -
W(b; by r) = {mel: p(b, m)eB(h, r)}.

Let A = M B(h,r).

Ry r=1
Lumva 3. (i) A is a Borel set contained in v~ (of);

(ii) hﬂl W(bs h,7)is a 9, subset of B contained in {mel: »(p(b, m))

=
est}, for each beB.

Proof. (i) 4 is a Borel set since b->»(b)” (k) is Borel measurable
and the inclusion is an immediate consequence of Lemma 1.

(i} The inclusion follows as in. (i), and the %, property is a con-
sequence of the continuity of m.—»(p(b, m))" (k).
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Let
X ={b: (" W(b, h,r) is dense in B}.

hyr=1

The next lemma, although not difficult to prove, is the crucial
step in our indirect approach. Here we show how the original problem
can first be replaced by omne of proving that a certain subset of B xXI
is residual. This in turn can be reduced to proving that X is residual
in B. Then, in Lemmas 5, 6 and 7, we will give a direct proof that this
is indeed the case.

LuMMA 4. If X is residual, then A (and hence v~'(&f)) is residual.

Proof. Since A is a Borel set, w~'(A) is also a Borel set and so has
the property of Baire ([8], p. 56). Moreover, for each beX, the section
of y~1(4) over b, : -

N Wd;h,7)
‘h,rml

is residual in . Under the stated hypothesis we can apply the Kura-
towski~Ulam theorem ([8], pp. 222-224) to show that »~*(4) is residual.

Thus 4 (B\A) is of first category. Suppose, to obtain a contra-
dietion, that B\A is of second category. Using the fact that BN\A is
a Borel set, we can express it as a symmetric difference U AD where U
is a non-empty open set and D is a first category set (see [8], p. 54).
Therefore y»~*(B\A) = v~ (U)Ap~*(D) where »~*(U) is a non-empty
open set. Thus a contradiction will be obtained if we can show that v~ (D)
is of firgt category. This will be effected by showing that y~*(0) is nowhere
dense for every closed nowhere dense set C' in B.

Suppose that w~(0) is not nowhere dense. Then there is included
in 71(0) a bagic open set of B xE of the form

V = {(b,m): byeUy, byeUp, ..., byeUy; iy = My, mg = M,, ...,

my = My}

where U,, ..., Uy are open subsets of [0, 1] and M,, ..., M,y are positivé
integers. But now,

02 p(V) = {b: byeMi Uy, byeM; Uy, ..., bye M5 Uy}

which, ay each M7 U, == {M;'w: wel,;} is open, is open in B. Thig con-
tradicts the fact that ¢ is nowhere dense, and the proof is complete.
Remark 5. Note that it would not be sufficient in our present.
context to use D in place of ¥, as Kaufman did. For let 0: B xD-»B
defined by 6(b, s) = (b,e,), and let K be the subset of B consisting of
all b with b, == 0. Clearly K is cloged and nowhere dense, however, 07" (K)
containg {(b, 8): ¢, == 0} which iz an open and closed subset of B x.D.


GUEST


148 Gavin Brown and William Moran

Our next lemma is a little unusual as category arguments go — before
proving that the phenomenon under discussion holds virtually everywhere,
we check first, by direct contruction, that it happens somewhere,

LuMMA 5. 7 (&) is non-empty.

Proof. For any p in & write §(u) for the set of (necessarily real)
numbers #, such that the constant function 2 is in the o(L®(u), L*(u)}-
closure of T in A(M(T)). S(u) is clearly a semigroup under the usual
multiplication.

Now take a sequence (m,) of positive integers not less than 2, write

o0
, and demand that 2d = ' ¢, < L.

N ]

By Theorem 3.2 of [2], w(e)eF, where ¢ = (¢n). In other words for each
#eC, [¢] <1, there is a sequence (n (%)) of infegers such that exp (2win (k)
— 2 in the U(L“(w(c)), Ll(co(c)))— topology. Now write & = (4¢,) 50 that

6, = (My My~ ... om) Y forn =1,2,...

v(a) = 6(—d)* o(c).

(Recall that we work modulo one.)
By passing to a subsequence if necessary, we can assume that

exp (2min (k) (—d)) ~=#, with [ey] =1, ag k-—>oco.

Now 2z;¢8(v(@)); hence 2z, = -L 2], and because

S{v(a)) is a semigroup
this shows that

[0,11< S’(v‘(a)).

The required conclusion is that [—1, 1] is contained in § (v(a)) and we
will achieve this by making a special choice of (m,) to ensure that
——1sS(( ). In fact take m, = 3" Y =1,2,..., and write (k)
=3k 1,9, ... It follows from Lemma 1 of [1], or from the
version of Theorem 3.1 of [5] quoted in § 2, that, for these choices,

oxp (2min(k)t) =1 o(L*(w(c)), L*(w(c))).
A simple direct verification shows that
(k) 22"3“"2—>% (modulo one) as k—oo

B=1

ie. that exp (2min(k)( —~d))->—1. This completes the proot.

For yeR, |ly|| will denote the distance from Y to the nearest integer.
For each positive integer n, let x, be the projection. from B to R defined
by 7, (b) =b,, so that =,(B) =[0,1]. Now fix &k yMyp,q,7, 8 in N
and define X (r 8) to be the set of strietly increaging nmps o: {1,2,...,8}
—~NN{1,2,...,7}.

Vim, &, q) = (weR: [|m~kal| < ¢~*}
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and

U, p, q,m) = {weR: [lko—pa,| < ¢7'}

where @ is some fixed member of ). Further, lot

8 r
Ao, 71,85 k,m,p,q) = q W(T(:»)(U(k:?a q, '”’)) N ﬂlm‘f(V(’m, k, Q))
== n=

‘and finally,

o ) ®©

= ) U U A(e,r,s5%,m,p,9).
MyP=1 =1 geml feal ogeX(1,8)

Since V(m, k,q) and U(k,p,q,n) are open, A(e,r,s;k,m,p;q) is
also open, and hence G is a %,.

LeMMA 6. G is contained in X.

Proof. Fix b in @. In view of Lemma 3 (ii), we have to prove that
for each h,r in. N, W(b; &, r) is deuse in B. Accordingly, we choose h, r
and ¢ in N with ¢z h, and m,eN for 1< n <. It is enough to fmd )
in N and m, (n> t) guch that if m = (m,),

(5) L —exp (2mimy b, k) < B (L <n<t)
and.
(6) ©w(p(b, m)) (k) eV,

In particular, we can (and do) assume that kb = i. Now choose xeV, and
8> 0 so that the open. interval of length 26 about z is in V,. Also fix
p,7,8eN such that r ==1 and

M | ‘ﬂ cosana@—-mk Ol4.

This is possible since @ is in »~*(wf). Finally, fix m and ¢ such that m

== My My ...y and
q > 8mé max(mr, 8).
According to the definition of &, we can find % in N and o in Z(r, s) cor-

J*Mpondmg to the choice of m, p, ¢, r, s, For such k, b,,e Vim, L, q) ‘when,
1<im=g b =1, 80 that.

)m'm, ll

|1 —exp (2mimy b, ) )| = 11— (exp(zmm-lb k)

< 2mmmg g™t < WY,
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which establishes (3). Similarly,

i i
(8) 11 — Heoszwlznm;lk < )_7 I 1 —cos2xb,m; %k
=1 =1
i
<y y 1 — exp (2mib,m; ) \

-

=

< 2mmitg™ < /4.
At this point, we define m, for # >t as follows:

m, =1 if # belongs to the image of o;

My, = 2"([47kd~']+1) otherwise

([ ] denotes integer part.)
TFurther, let
4

a= ”cosZwm;lbnk,
n=1

B =[] coszmmz v,k
neime

y = n cos2nm; b, k,

nfimo
a>i

so that »(yp(b, m))" (k) = afy. By the definition of m,

8

9 ( B— ﬁ cos2r:pa,nl < ‘cosznba(n)k— cos2npa,
n=1 1

N

<Zs:27:“ kb,(n) —pa, ” < 6/4,
n=1 '

and
(10) jy~1} <) ‘1—;3082nbnm;170|<22'“"‘ 5 < 8/4.
. neimo A=y t
n>r

Combining (7), (8), (9) and (10), we obtain
[r{w(b, m))" (k) —a| < Ja—1|+ |f—a] + |y —1| <

which implies (6). This completes the proof.
To complete the proof of Theorem 1, we need. to show that ¢ is dense
in B. This is accomplished by the next lemma.

Lemma 7. If beB is such that b, is a stritly positive rational number
for each n, then be@.

icm
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Proof. Let b, = p,q;" where p, and g, are positive integers with

no common factor. Fix.m,p,q,7,s in N and let o(1) be any integer
greater than », such that ¢7'-q,,, is strictly greater than M1 G -Gy -
(Note that o(1) exists since g,—oco as n-—>co.) Having defined o(1), a(2),
.5 0(f) (for j < 8), we choose o(j+1) > o(j) such that 4 Gogg gy 18 strietly
greater than m-q,-¢q,- ..
inductively. Because of the construction of o, there exist positive integers
p; (L< i< ) such that

@ oy oy -+ “Qey- This defines oeX(r, s)

(11) Piby== pibyy, = 0 (modm)

for L=in < r and (1 < j < ), and the denominator of p;bam (in its lowest
terms) is strictly greater than ¢. Now we choose &, ¢, ..
80 that

-y tyin Ninduetively

(12) b1+ oy - - A+ 1Diboy — pagl| < g
for 1 <4< s. Define k = t,p]+tops+... +1,ps.

Now it follows from (11) and (12) that
bed(o, 7,85k, m,p,q)

80 that be@.

The proof of Lemma 7 is based on Kaufman’s “Technical Lemma?”

in [7].

Proot of Corollaries. Clearly Corollary 1 implies Corollary 2.

By Theorem. 1, there is a positive generalised character y such. that I = @
(¢ a.e.) where 0 < @ < 1. For deT and any positive integer n

(13) Zo@un(®) = a®  (8(d)*p" ace.).

To prove Corollary 1, we note that if 1 is absolutely continuous with
respect both &(d)*u" and u™, then using (13), a” = y,(t) = @™ (A a.e.)
80 that # = m. For Corollary 3, we use the fact that if 0 # AL (T) and
iz absolutely continuous with respect to u", then yx, is either equal to
a character of T' or is 0 (4 a.e.). Neither of these possibilities can occur
it Z,n 18 a8 described in (13). This contradiction proves the result.
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A characterization of » by block extemsions
by
ED DUBINSKY (Potsdam, N, Y.) and W. B. ROBINSON (Potsdam, N. Y.)

Absteact. The following characterization of the gpace o is given: A nuclear Fréchob
space is isomorphic to @ if and only if it has a basis such that every block bagic
gequence of every permutation of that basis has a bloek extension. In fact it is
shown that it suffices to consider only blocks of length < 2.

In studying nuclear Fréchet spaces it is natural to try to investigate
sittations which are familiar in Banach space theory and to see if results
can be carried over. It iy particularly interesting to see a situation in
which a simple imitation is & priori impossible. This is exactly what
occurs if one comgiders extensions of block basic sequences (see below
for definitions). In order to point this out we mentlon the fo].lowmg two
well-known. results.

THROREM OF ZIPPIN [6]. In a Bamch space, every block basw sequence
has a block ewtension.

THEOREM OF LINDENSTRAUSS AND TZAFRIRI [3]. 4  Banach space
is isomorphic to 1,(1 < p < o0) or ¢, iff 4t has an unconditional basis such,
that every block basic sequence of every permutation of this basis generates
@ complemented subspace.

Since every basic sequence which can be extended to an unconditional
bagis in a Fréchet space generates a complemented subspace, the second
theorem provides many examples in which the first theorem cannot be
improved to assert the existence of an unconditional extension when,
say, the original basis is unconditional. Actually, the fivst specific example
of thiy situation was given by Pelezyrhski [4].

On. the other hand, since every basis in a nuclear Fréchet space
is unconditional, it follows.that at least one of the above two theorems
must be falge in this context. Indeed, the second author [5] has shown
that it is Zippin’s theorem which does not carry over. He also pointed
out that it does hold for the space o and asked if Zippin’s theorem. ch(mr-
acterizes w among the nuclear Tréchet spaces.

It is our purpose in this paper to answer that question in the affirm.-
ative. Specifically, we prove,
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