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A characterization of » by block extemsions
by
ED DUBINSKY (Potsdam, N, Y.) and W. B. ROBINSON (Potsdam, N. Y.)

Absteact. The following characterization of the gpace o is given: A nuclear Fréchob
space is isomorphic to @ if and only if it has a basis such that every block bagic
gequence of every permutation of that basis has a bloek extension. In fact it is
shown that it suffices to consider only blocks of length < 2.

In studying nuclear Fréchet spaces it is natural to try to investigate
sittations which are familiar in Banach space theory and to see if results
can be carried over. It iy particularly interesting to see a situation in
which a simple imitation is & priori impossible. This is exactly what
occurs if one comgiders extensions of block basic sequences (see below
for definitions). In order to point this out we mentlon the fo].lowmg two
well-known. results.

THROREM OF ZIPPIN [6]. In a Bamch space, every block basw sequence
has a block ewtension.

THEOREM OF LINDENSTRAUSS AND TZAFRIRI [3]. 4  Banach space
is isomorphic to 1,(1 < p < o0) or ¢, iff 4t has an unconditional basis such,
that every block basic sequence of every permutation of this basis generates
@ complemented subspace.

Since every basic sequence which can be extended to an unconditional
bagis in a Fréchet space generates a complemented subspace, the second
theorem provides many examples in which the first theorem cannot be
improved to assert the existence of an unconditional extension when,
say, the original basis is unconditional. Actually, the fivst specific example
of thiy situation was given by Pelezyrhski [4].

On. the other hand, since every basis in a nuclear Fréchet space
is unconditional, it follows.that at least one of the above two theorems
must be falge in this context. Indeed, the second author [5] has shown
that it is Zippin’s theorem which does not carry over. He also pointed
out that it does hold for the space o and asked if Zippin’s theorem. ch(mr-
acterizes w among the nuclear Tréchet spaces.

It is our purpose in this paper to answer that question in the affirm.-
ative. Specifically, we prove,
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THEOREM. A nuclear Fréchet space is isomorphic to o iff it has a basis
such that every block basic sequence, with blocks of length < 2, of every
permutation of that basis has a block ewtension.

1t should be observed that this theorem is only vaguely analogous
to the Lindenstrauss-Tzafriri theorem. It is “better” thamn that regult
in that one obtains the block basic sequence -with very small blocks,
but it is “worse” in that block extensions (in nuclear Fréchet spaces)
are very special compared to complemented subspaees. It would be nice
to.have an analog of this result for nuclear Fréchet spaces but the first
difficulty is that it is unclear what spaces to choose for the role of I,.
It seems that finite type power series spaces will not work, but other
than that, nothing seems to be known.

Definitions and preliminary results. Let N be the set of positive
integers. The term basis will always mean Schauder basis. The term sequence
will indicate an infinite sequence of scalars (real or complex numbers).

If (e,,) is a basis in a Fréchet space, I, 0 = p, < p; < ... i8 a sequence
of indices amnd (¢,) is a sequence such thab

DPn

D e #0,

i=Pp—1+1

Yy = . neN 5

then it is easy to see that (y,) is a basis for the subspace it generates.
We call (y,) a block basic sequence of the basis (e,). The number p,—p,..
is the length of the mth block. If (y,) is a subset of a basis (z;) then we
call (z;) an emtension of (y,). If, in addition, Zp, = Yn a0d 2; i an element
of the subspace generated by e,  .i1)...;6,, 0T py_y <i< Py, neN,
then we say that (z;) is a block emtension of (y,).

Let &, be sequences and 4, B sets of sequences. We write

e = (Enln)ny
£-A ={fn: ped},
A-B ={&n: £cd, neB},

}5. - (_;L) , provided £, %0 V neN,
nin
A* = {£~ Zlfn'”n] < OOV"‘A})

neN
~D(4,B) ={& £neBVned}.
The set A is called the Kithe dual of 4. The set D(4, B) is called

the set of diagonal transformations or multipliers from A to B. We say
that A iy perfect if 4 = A**. If 4, B are closed under coordinate addition

icm
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and scalar multiplication and if they are perfect, then it is well known
and easy to check that
‘ D(A, B) == (A-B*)*.

If NV, is a subsequence of N and ¢ = (3,),.x i8 & sequence, then we
write fy, = (ly)yen, for the restriction of ¢ to N, and Ay, = {’N1= ted}.

‘We denote by w the nuclear Fréchet space of all sequences, equipped
with the usual produet topology.

It (a®) = (aF) is an infinite matrix of scalars with 0 < G < 0F << ...,

then it determines an echelon space of order 1 given by A = M —-l-—-ll.
k
Under the seminorms p; keN, where p,(£) is the I,-norm of a*- £, the
space A is a Fréchet space. It is a nuelear Fréchet space iff V ke NHjeN
such that a®ca’-1,. An echelon space is always perfect and we have
= U a*-1,.
keN
For other properties and generalizations of echelon spaces, see [2].
‘We now formulate the result from [5] which we shall use. All of
the notation will be adhered to in the next section. Let A be an echelon

space of order 1. It is easy to see that the coordinate sequences ¢”, neN

form. a basis for 1. Let I = (4,), J = (§,) be two disjoint subsequences
of N, let §, = t,e"-+e™ o 0,neN and let’ N, = {n: t, = 0}

According to our definition, (§,) is not a block basic sequence of (")
but we can use it to construct a block basic sequence (v,,) of a permutation
of (¢") consisting of the vectors . :

Fnr  MeN
¢'n,  neN~N,
ey, keN~(TUd).

It is then clear that these vectors can be reordered to form a block
basic sequence of a permutation of (¢") with blocks of length < 2. If
necessary, 'we could be more specific about the ordering, but since we
will consider only nuclear spaces and hence unconditional bases, this
bocomes unnecessary.

Now, using exactly the same methods as in [5], Section 3 (we need
only use a slightly more genoeral notation and keep track of the blocks
of length 1), we may ostablish the following

BxiwaNew Tunorsm. The block basic sequence (1) has a block exien-
siow iff we can find a decomposilion Ny = N,ON, where N,NAN, =
and

(1) VEkeN TmeN
such that

and M >0
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1 a’”

(@) —— 0] am <M, neN,
Al
k

(b) {tl - < M, neN,.

In,

Proof of theorem. We begin by translating the conclusion of the
existence theorem into a slightly more convenient notation. Congider
the echelon spaces 4, v determined by the matrices (b%), (¢f) respectively,
where b% = of % o= af . From elementary set ‘uheorem properties of
sequence spaces and their Kothe duals it follows that (1a) is equivalent to

1 v, 1
N U= b= 5t = Uszl Mwl
tNI ko om ONy 13 aNl

= (MN{%J%\_& Teo) = (uay i) = (D (1, 9))x,
Using a similar argument for (1b) we conelude that (1) is equivalent to
1 ‘
W D)y, and (D, ),
Ny

The first step in the proof of our theorem is to show that I and J
can always be chosen so that the above spaces of diagonal ’rlfuﬂformaltmm
have a particularly convenient form.

Lemyma 1. Suppose that the matric (af) sabisfies the conditions that

a, =n,neN and for each keN,
ak <
SUp B —s- < 0o,
neN aZ_H

Then I and J can be chosen such that D(u,v) =9 and D(v, u) = »*.

Proof. Take 4, =2n—1, neNand let j, be any even integer such
that 7, >j,_, and a;n> ai , weN. Then for any keN,
Ic

neN aljn

Hence for any m, keN it follows from our hypotheses that

Ml Ic m l
@,
CL a’ aju Ln,

n
SUP -ttt < up % SUP i
neN a}ni—l neN a neN az‘;“

We may then compute,

1 x 1 x
D00 = 6w = (05 1) U b’“'lw) ~(v(0 ?’))

< 00,

me
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~.,

On the other hand, since of > a; =i,>1, we have,

-D(va/") n U ]nn oo="">‘<'
% m

For the second equation,

D, ) = (uv)* = U —

m 1
-0ulE. e ol

i
I aj,
NS l=»
= m by =Y,
I 6"
and

1
uev* = (C\ m 'll) ‘(ng o™ 1o)
l ®
- Uﬁ‘m'(ﬂ 7]1% 'Zx) = U (—7”— Ub’“~lm)
m k &

—UY s —ung

m Ie

~um( ) o UN @k

m I in
= U m—z)'ﬂ. 0 == Vx?

80 D(pe;7) = (p-v™)" = 9" =,
Next we show that when the spaces of diagonal transformations
have ' this special form, then the required decomposition is not always

possible. ;

R
LeMMA 2. If we assume that ¢, > 1,neN and llnlﬁl— = 0, keN,

L
then there ewists a sequence & = (£,)ncn, of positive numbers such that for
any decomposition N, = NyUN,, NyNN, = @ it is nol the case that both
1 .
ey, and by, evx,. '
.Nl . M . . .
Proof. For each neN, we construct a strictly increaging function
Jui [0, 0©) = [0, co) such that
() ful0) =0,

(M) full) =~y 130,

0]

(ifi) fo(cf) = k41, KeN.
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Indeed we can use (iii) to define f, at the points 1 <'¢) < X <...
and then connect these points with line segments and finally complete
the function by (i), (ii). It is clear that f, is a bijection.

Now suppose that £ev* and &,> 0, neN. Then for some keN and
M >0 we have, for n sufficiently large,

6}0
£, << Mck = M;,ﬂ-l— ol ot
n
80 f,(&,) < k2. This implies that (f,(£,)),els-

On the other hand suppose that &ev and &, 0, neN,. Suppose

1 o ae s
that we had keN such that f,(&,) = ) for infinitely many % eN. Then
for these » we would have
1 1
|—] = ——— < k41
i) = ey

so by applying f;' we would obtain

1 N
— < k1) = ok,

£,
8o that &,¢f > 1 for infinitely many ». But this contradicts the fact that
1
Eev =M ‘;;;ll- Hence we may conclude that (f,(&,)),<0-
k

Finally, let 7 = (7,),. N, be some enumeration of the positive rationals
and set &, = f(1,) neN,. If we had a decomposition as required, then

frour the foregoing it would follow that 7’1—50“ and ny,el,. That is, 5
N,

would have been decomposed into two sublsequenees, one of which con-

verges to infinity and the other is bounded. This is clearly imposgible.
‘We are now able to prove the most important case of our theorem.
PROPOSITION. Let B be a nuclear Fréchet space on which there ewists

a continuous norm and let (e,) be a basis. Then there is a permutation of

this basis which has a block basic sequence with blocks of length <2 that

has no block extension.

Proof. From the muclearity and the existence of a norm we can
represent # as an echelon space of order 1. Using a result of Bessaga
and Pelezyfiski ([1], p. 310) we can rearrange the basis and choose a fun-
damental system of norms such that the second condition of Lemma 1
is satisfied. The first condition is then. easily achieved by an appropriate
diagonal transformation. The requirements of Lemma 2 are then & con-
sequence of the fact that ¢ = af . We obtain the desired result by putting
together the existence theorem and Lemmas 1, 2. .
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Finally we prove the main theorem. If ¥ is isomorphic to « then
every block basic sequence has a block extension (see [5] for a detailed
proof). Conversely, if # has a basis such that every block basic sequence
with blocks of length < 2 of every permutation of the basis has a block
extension, then we must show that E is isomorphic to o. If not, then
applying [2], Theorem 7, we can write 7 as a direct sum I, ® L, where
a subset of the original basis is a basis for B, and its complement is a basis
for B, and #, admits a continuous norm. We then apply the proposition
to H; to obtain a block basie sequence in X, with blocks of length < 2
and having no block extension in #,. Next we alternate these blocks
with blocks having length 1 and consisting of the elements of the basis
for B,. It is then clear that this gives a block basic sequence of a per-
mutation of the basis for B with blocks of length = 2 and baving no
block extension in ¥. This is a contradiction so the theorem is proved.

Remark. We do not know if the same characterization can be
made without using a permutation. of the basis. '

References

[1] C. Bessaga, Some vemarks on Dragilev’s theorem, Studia Math,, 31 (1968),
. 307-318.

[21 IJ)EP Dubinsky, Perfect Fréchet spaces, Math. Ann., 174 (1967), pp. 186-194.

[8] J. Lindenstrauss, and L. Tzafriri, On the complemented subspaces problem,
(to appear).

[4] A. Peleaytiski, Universal bases, Studia Math., 32 (1969), pp. 247-268.

[6] W.B. Robinson, Hutensions of basic sequences in Fréchet spaces, Studia Math.,
45 (1973), pp. 1-14.

(61 M. Zippin, A remark on bases and reflemivity in Banach spaces, Isvael J. Math.,
6 (1968), pp. 74-79.

CLARKSON COLLEGHE OF TECHNOLOGY

Received May 5, 1972 (518)


GUEST




