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Singular integrals in the spaces 4 (B, X)

. by
ALBERTO TORCHINSKY* (Ithaca, N. Y.)

Abstract. This article is concerned with a generalization of the spaces A (B, X)
introduced by A. P. Calderén, and with singular integral and multiplier operators
acting on them. It also containg examples for B = TP(R%) which illustrate the theory
developed and it shows how to obtain results concerning Lipschitz spaces of func-
tions and distributions in R™

1. Introductory remarks. This paper may be viewed as an elaboration
of paragraphs 14 and 34 of A, P. Calderén’s article “Intermediate spaces
and interpolation, the complex method”. Indeed, we introduce classes of
spaces, also denoted by A(B, X), and we describe their main features.
The insight we have gained in the process iy then used to consider the
action of suitable singular integral and multiplier operators on these
spaces and continuity properties are established.

The paper is divided into 8 sections. Section 2 deals with a one-param-
eter group of transformations introduced by de Guzmin. in [12]. We
notice that the infinitesimal generator P of the group must satisty the
coercive condition (Px, )= (¢, 2) (Lemma 2.3).

Section 3 deals with lattices of locally summable functions on (0, 1).
The concept of g-lattice iy introduced and the main properties are estab-
lished in Theorem 3.3. These lattices arise naturally in the theory "de-
veloped here and the properties of the r-lattices were studied in [13].

Section 4 introduces the spaces (B, X). The concept of Banach-

~gpace valued function is used and the pertinent facts needed may be

found in [15]. The spaces A(B, X) are analyzed by means of the repre-
semtation Theoremr 4.6 and the comvergence Theorem 4.8. The represen-
tation theorem is an abstraction of the simple fact that if a spherically

S =, o b
0 f 97('0{)9)(#]“;])11‘(’;(,‘”))._; —1,
Jn b
for @eR"—(0). The convergence theorem shows that the spaces 4 (B, X)
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are independent of the measure used to construct them. All these facts
become more familiar when in Section 5 we characterize the spaces for
P = diag(@y, ..., a,) With a;eZ, and in Section 6 we consider spaces
of functions and distributions in R" It turns out that Lipschitz spaces
such as those congidered by Taibleson [27] and B.F. Jones, Jr. [17]
are among the /A (B, X) for appropriate choices of B and X. The results
obtained may now be interpreted in terms of fractional integration (see [13];
[28], Chapter V; and [27]), Theorem 4.8, equivalence of norms for elements
of Lipschitz spaces if differences of high enough order are used to define
them' ([23], Chapter V; [27]), Corollary 4.11, and so on. We are also able
to consider the Lipschitz clagses in terms of the boundary behaviour of
functions and distributions in R™ without worrying too much whether
the functions are harmonic or temperatures for ¢ > 0. For these two
particular clagses it suffices to take approplmte derivatives of u, and
v, where f(iw) =e¢~'® and »(w) = ¢ and apply Corollary 4.11.
(See also [11] and [27] for this particular case.) We select two particular
properties, the extension of Young’s convolution theorem and Bern-
stein’s theorem, to show the simplicity of the approach developed. The
applications do not end here: indeed one may obtain related results
to those of [3] and [24] by employing similar techniques.

Sections 7 and 8 are motivated by this fact: singular integrals of
the form Ku(z) = a(@)u(@)+p.v. [k, s—y)u(y)dy, k(z, ) a homo-
geneous kernel, are known to preserve some classes of Holder continuous
functions and the complex intermediate (Sobolev) spaces [L?, I],,
1<p<oo,0<s<l (See [7] and [9].) In fact we show that even
under the more general conditions of Hérmander [16] and Benedek—
Calderén~Panzone [1] replacing homogeneity, the continuity of trans-
lation invariant singular integrals may be established for 4(RB, X) spaces.
The case described above is treated as a pseudo-differential operator
in 8.6. We also show multiplier theorems and they provide in some in-

stances a more convenient way to handle some of the operators which

interest us. In this context see also Petree [19].

The notation used is standard. The letters M, N will be reserved
for multi-indices of non-negative integers. Z, will denote the set of pos-
itive integers. P = diag(ay, ..., ,) will mean that the matrix P has
entries p; = ¢;and py = 0for¢ # j, 1 <4, j < n O will denote a positive
constant, not necessarily the same from one occurrence to the mnext.
Other notations will be defined or will be clear from the context.

Part of this work was presented as a Thesis to The Univergity of
Chicago, written under Professor A. P. Calderén with whom I had the
privilege of learning these and many other things. T would also like %o
thank Professor Max A. Jodeit, Jr. for his help throughout my graduate
studies.
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2. A group of transformations.

2.1. Let {4}, be a group of linear transformations of R” such
that A,4, = Ay (4, = I) and such that the mapping t--4, is con-
tinuous with vespect to the uniform operator topology. Denoting with
{the n xn real matrix) P the infinitesimal genmerator of the group we
obtain the representation

-At . el’]lxt - tP, >0

(see [15] for the justification), We ghall further assume that the group
sabistiosn
(2.2)
and in this ecase we have:

1) [#*=|}t is a non-decreasing function of 4.

2) For weR"—(0) there exists a unique value ¢, such that ¢Fze 8%

3) The function o(w) =1, for » 520 and g(0) = 0 satisfies o(t¥x)
= to(#) and o(@-+y) < ¢ (@) 0 (y). ,

Since for s< ¢ we have [s¥®| = |(s/)TtFw]| < (sfi)[t¥®|, 1) follows
and 2) ig an immediate consequence. In addition if o(t¥x) = s, then
(tjs)*mwe8™ " and ¢ = to(x). To complete 3) let us show that if Fa;+
ity = 1F @y, With |y = 1,0 =1, 2,38, then ¢, <#,+1,. Assume to the
contrary that g > 4, --£,, then

fws] = L < (b fta)T ] -+ |(fafta) | <

which is a contradiction.

The following lemma characterizes the groups for which the sufficient
condition to define o(x) holds.

2.8. Lomwma. [Fo| <tz for 0 <t<1, weR" if and only if (Pw, x)

> (o, ).

Proof. Let f(t) == [Pu|*~i2|z|2. By (2.2) and 1) we have f(f)<< 0
for 0<t<1,f(l) == () and f(#)=0 for ¢>1, thus we must have

2 >
f(t ) w1 52 0. Since »~|t‘“w[” w»(l’t”w 1) we obtain 0<——f(t ) 1

[Fa] < thol, 0<t<1,meR?,

S (b fh) |61) - (o fts) 1] < 1,

= (P(/Pm ) - 20(w, @) jy = 2(Pw, @) 2 (@, @).
, d
Jonversely, leb g(4) = [tPw|®. Then w—y(t = —(Pt”m Fo) = [t"’aol2

g(t). For 0« s=¢1 this inequality obtains

«~|re

1

f (1) /g (b) dt = 2Tm (1 )s),

&

)
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which implies In(g(1)/g(s)) = In(j2|2/ [s¥2[?) = In(1/s?), and so |s¥a| < s|o|
for 0 <s<<1.

The following remarks are immediate consequences of the lemma
just proved. If (P*z, ) = (», Py) = (Pw, x), then (Pw, @) > (, «) implies
that {¥'},., also satisties ,

ol <tlz|, 0<t<1, wek™, /

and it thus determines a function p*(#) with similar properties to those
of p(2). Also, since (Pz, 2) = (Sz, ) where § is the rveal symmetric matrix
(P+P")[2, (2.2) is equivalent to the fact that the smallest eigenvaluo
of § be =1.

2.4. For a Borel measure » with finite total mass ||| on RB" we define
a one-parameter family of dilations as follows: we set »(H) == »(t~F %)
for every »-measurable set B and ¢ > 0. Observe that if dv(2) = ¢(2)de,
peL'(R") and dz the ordinary Lebesgue measure on K" then dy(x)
=17t Fa)dr = ¢,(r)dz since [deti?| = 7,

2.5. To meR”, we assign the “polar coordinates” s—o(®), 0y, ...y Oy
where o()"Fa = 2’ and m1 = €080y ... CO80,_y, Ty = Cos0y ... 800, 1, ...

vy @y, = 8in 6;.

Then a compummon shows that do = ¢"F~*(Po', o')dx'de, where

da’ is the surface element on §"' = {|g| =1} = {o(#) = 1}. (Seo [21].)

3. Lattices of locally integrable functions.

3.1. A lattice, or Banach lattice, X of locally integrable functions
f(#) on (0, 1) is & linear class of functions such that there is a norm defined
on X with respect to which it is-complete, and if feX and [g] < |f| then
also geX with [lgllx < |flx-

3.2. Given a lattice X and a positive, monotone increasing (i the
wide sense) submultiplicative function g(t) deimed on (0, c0) we say

that X is a ¢-lattice if the mappings f— f F(S)p(Efs)(t]s) s_.,s_ and
8

ds
b f f(s)qn(t/s)(t/s)”? are continuous from X into itself for all &> 0.
£

We now prove some properties which will be needed in the secuel.
' 3.3. TurorEM. Let X be a gp-lattice, we then have:

1) If for some 6> 0 p(t)/f’ is increasing, p(t)y)eX. In partioular
p(t)1*eX for &> 0. ‘

' as |
f 90 p(t) | < Olglx-

Prooi. Let f(t) >0 be a non-vanishing element of X and let x(¢)
be the charaeterlsuc function of the 111telvwl 1/2,1.

2) If for some 6>0 @(t)p()fi° is increasing,
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For 0 <t 1/2 and d a8 in 1) we have

alt) = ff(«s)fn(t/ )(ts)’ — /‘P(”)tdff

1

g PO [ F6) 0 S = Opwrpto).

172

For 1/2 <t wo likewiso oblain

i 12

g s
b)) = [t 0190y e’ { f)e

and

(W) p(t) @ pE) [ < p(L)p(L) 2 ().

1) now follows from the observation thatb
g < 0L (h)+x(L—Da()eX.

To show 2) we start by assuining, as we may, that g(f) > 0. Then
1 1

g dt (&) (1) o 0 at

o) [ grp < [ gupts LOFD (2N S

8 s

d
<pp(1) [ gl s’ e,

8

Also,
8 8
dac OIONER I L
O FIOMIOR-E J e e e
0
d dt
<p(p() [ g0l e X.
0
Now the conclusion follows since by part 1), ¢(s)s ?¢ X and the elements

of X in the rght-handside of the inequalities h'wo norm < Cllgllx by (3.2).
Tor () =1, 0 « ¢ 0o, we simply Ch()()h() to cu,ll {-lattice an

r-lattice, »
3.4. Givon a lattice X and a positive J’ungtmn p(t) defined on 10 , 1)
we constiuct the lattice pX == {feLlg (0, 1)z 2 ()7 F(6) X}, Ifllx= v flix-

4. The spaces A (B, X),
4.1. Lot B == ¥* for a complex Banach space ¥ and for y <R let 7, be

“a representation of B into & group of uniformly bounded linear operators
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of B into itself, i.e. |lr,ullz << Cllullz, ¢ independent of ye<R* and weB
such that: .

i) For each weB,veV, (1,4, v) is a continuous, and bounded, func-
tion of 4.

il) The 7, are the adjoints of a family 7, acting continuously on 7,
ie., (v,u,0) = (u,7,) for ueB,veV.

For a finitely valued Borel measure » and u<B we define [z, udy(y)
a8 the element weB for which

(4.2) (w,) = [(z,u, v)dv(y)
for all veV. Similarly we define U(w, t)eB acting on veV as

f( Typythy, 0) Ay (y) = f(rmﬂl’wu, v)dy (y).

It is readily seen that the above assumptions imply that (=P, u,)
is a jointly continuous funection of the variables (y, ¢), and so the integral
(4.8) is well defined.

4.4. Given B as above and a lattice X as in 3, we denote by X(B)
= {F(t): F(t) is B-valued weakly measurable and |F|zeX}, |T| )
= li(I¥llp)llx. Finally we let
(4.5) A,B, X) = [ueB: [vudnly) X (B)).

Normed with |lull s, =llu]z+ || f7,u @,(9)|xm), 4,(B, X) becomes a Banach
Apace in which B is continuously embedded.

The description of the spaces ,(B, X) and the independence, up
to equivalence in norm, of the choice of the measure » may be achioved
by constructing a mapping § of the direct sum X (B)@B into 4,(B, X);
these will be done in the remaining of this section.

46 TerROREM. Leét B, 7, be as above. Let v satisfy

i) [le™]|dy(®)] = Op < o0 for all multi-indides M of non-negative
integers; and

i) (v) (@) = 9(t¥"z) £ 0 as a function of £> 0 for zeR™—(0).

There exist, then, functions ¢, pe S (R”) such that for all veV

*3) (U, 1),0) =

(@, 0) = [ (5,0, v)gl ﬁMHij MWwwi

In fact these functions may be chosem so that PeOP(R™ vanishes in a neigh-
bourhood of the origin and pe<CP(R™).

Proof. For zeR™ put

f BEa)s,  mez,.

1/m

e ®

icm
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Then ii) and a compactness argument obtain that there exist s> 0 and
meZ,. such that g, (@) > & for me ",

Let now 7(#) be a positive, CP(R") function vanishing near the
origin and infinity and so that y(x) =1 for 1jm < o*(z) < m.

We now introduce the function,

1IN (&) = j G )\zlj(tp'm)ﬂ.
b i
The change of variables ¢ -—¢/o*(@) shows that N (#) = N(2'), where
(@) m == e 8", Lo, N(w) is homogeneous of degree zero with
regpoct to the group ™.
Now wo are able to dofine the functions ¢ and yp in terms of their
Tourier transforms wag Lollows:

(@) = (@) @) N @),

wwa o,

P(0) =1.

‘We notice that for &> 0,
g it
(7" (@) = (o) = jpla)+ [ 9F0)5 (7 0) 7,
as the change of wvariables e-»¢ readily shows.
We now define u, acting on v¢V as

(m:)mfﬁwh me+jj D, ) n)dy 5 (3.

Since (z,%, v) is a continuous bounded function of yeR" and ¥ (y)is a C°
function with bounded derivatives of all orders, and tp,’tp,ely(R”), ’vfhe
interprotation of (*) in &' (R" by means of Parseval relation obtains

dt

(Uay D) = ((mytt, ), @(y)) -+ f((U(:l/: ), 9) V’t(?l))T
‘ . a
. ((""u"”'» 0)" p( =y ) f (( Uy, %) /o) » Pl “y))T

1

WWWmhw(y)jWWv)w(>w(m)

= ((Tw'”? 'U)A’ (?’u) ("‘"/)) ((Tyu ), @s(y ))
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Whence Lim (u,, v) = lm ((z,%, v), @.(%)) = (7,4, ©)]ymo = (¥, ¥) as it was
e~>0 >0

to be shown.

Remark. i) may be replaced by i’)
derivatives of all orders for @ # 0.

4.7. Tn. order to construct the mapping § alluded to we introduce
the notation A; for the class of integrable functions f(x) for which there
exists a “polynomial” of degree <%, mfzkaM(m)yM such that

i) az(@)el'(R™ and

i) [If(@—y)—3 ap@)y™|ds = O(ly") for yeR™

We may now state and prove the following theorem.

'4.8. THEOREM. Let keZ., and let u be a finite Borel measure such
that

i) fo™du(a) =0 for |M|<T and

i) [lol*ldp(@) < .

Further let X be a B-lattice and let y (8) be such that B(t)y (t)[i° inoreases
for some e>0 and B(&)y()/t*" decreases for some 6,0 < 6< k. Then
for fized fu'notwm ¢, pedy and (u, F(3))eB ®X(B) the integrals 8(u, F)

dt
= f T, up(y) dy -+ f f 7, (%) 1p,(y)y(t)d'y— converge absolutely (in the B-

P (@)eC® (BR"—(0)) with bounded

norm) and
18 (%, Bz < C{lells+ |1P||A(B)}J
O independent of w and T.
Proof. We begin by proving a lemma.
4.9. LEMMA. Let u be as in the Theorem and let f sAk, then |[fixply = O
(mm(l (s/t)’*))
Proof of the lemma. Put I(x)

I(@) = [t f(~Fa—(t]s)Fy)du(y)

= [ R o~ Ty~ 3 a0 (tfs) Py an(y)

= fi* uy(#), then

|M|<k
= jI(w7 ¥, 8, H)du(y).
Thus,
Ju@lae < [[i@,y,s,)ldwau@)| < [ |(tfs) Fyl*|auly)] < Clsjo)t
for s/t < 1. Since '
JT@]de < |flilul = 0),

the lemma now follows.

icm°®
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Let us return to the theorem. According to (4.5) we must show that
S(u, yeB and f 7y 8 (1w, T)dp,(y) e (pX)(B), with the desired norm ine-
qualities. We first notice that the integrals in the definition of § are
absolutely convergent in the B-norm: in the case of

[lyue lady < 0 [ ()| dy s

this is immediate and for
; at g : dt
[ [ imzown@isr o <o [ wwiay [ 1#@mn-
0 0

< Oflw(y)!dyﬂﬂ /

it is & consequence of Theorem 3.3. This shows that S(u, F)eB with the
desired bounds on its norm.
Let us now consider

f("z‘g(u: 7y, 'D)dt“s(z)

— [ (8, 1), %) du (o)

1
= [ ieavant+ [ [ [ 1m2 @), wolntnr O yau e &
0

== I1+Iz-

We first examine I,, the exchange of order of integration being justified
by Fubini’s theorem once the finiteness of the integral has been established.

; d
I, = (s (1), 0) 1 (W) (2) d?/—i A (2)
. 3
0

= fbff(fylﬂ(‘b)af’)f‘l’t(ﬂ*z)dm(z)dyy(i)%t_

and 8o
1

111 = Cloly | WP @l iy () o
< Ol Bl < o,

ginee |jp3¢ pglly == O(L) and Theorem 3.3 applies. Also we Im.ve

4 "y I
1L < Ol [ WEOlr )5 +0lplly f ol (3) 203

== Ly (8) 4Ty o(8)
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"It will be sufficient now to show that y(s)™'T,,(s) and y(s)7'I, ,(s)eX
to complete the consideration of this term. For ¢ > ¢ we have

y@) ()7 =y OBy ()T ()TN B ()T ()80

<pwpn(3) < pemom

and so
: i
P() Loa(s) < Ol [ IF Ol ls/0)(s[)7* e X
0
with
Iy (8) ™15 1 (8)llx << Ololly ) xz -
Likewise for ¢ > s we have
Oy ()P =y BTy (8)7 B (s) B () B (1) (s i)
< Bs/t)(sfr)

whence
; d
Y6 al6) < Ol [ 1P Oofs/t) s 17 5

with
v ()™ Iy 5 (8)llx < Ollllr 2] 2z
A gimilar but certainly less involved argument shows that

()7 [ ] (ry, 000y —4) iy (2) g < 018 ) xloly ul 5

and this completes the proof of the theorem.

4.10. COROLLARY. Leét the measure u of Theorem 4.8 satisfy the hypoth-
esis of Theorem 4.6 and let ¢ (z), w(x) be the functions constructed in Theorem
4.6. If v(t) =1, 8(u, F') maps B X (B) onto 4,(B, X).

Proof. Let F(t) = [v,udu(y), then Theorems 4.6 and 4.8 assert
that 8(u, F()) = u, for wed, (B, X). ‘

4.11 COROLLARY. Let the measures u # v sabisfy both the comditions
of Theorem 4.6 and 4.8. Then the corresponding spaces A,(B, X) and A,(B, X)
coincide algebraically and topologically (they have the same elements with
equivalent norms).

Proof. Since » satisfies the hypothesis of Theorem 4.6 we may
construet § so that §8(u, [v,uds(y)) = u, and by Theorem 4.8

X(B)) = O|ull4v(B, X).

1Ly m,20 < O Il + | = udlvy (9)
The converse inequality follows by exchanging the roles of » and u.

1
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4.12. Remark. From now on we shall denote the A, (B, X) plainly
with A(B, X) with the understanding that the measure » satisfies both
the conditions of Theorems 4.6 and 4.8.

4.13. CoroLrLARY. (Cf. [3], paragraph 6.1). Let p be a compactly
supported, integrable function and let X be an r-lattice O <r<1. Then
[ — [y upe(4) || e X implies ||w— e, ulpe X for any zeR™—(0).

Proof. Set »(x) = d(x)—p(2)dz and #(®) = 8(w)— S(e —au) where §
is the Dirac measure centered at the origin. Then » satisfies the hypothesis
of Theorem 4.6, indeed #(t"'2) = 1—p(t™"2) £ 0 since §(y)—0 as o*(y)
=rco, and u(®) those of Theorem 4.8, [du(w) = 0. The conelusion now
follows from 4.8.

5. The case I’ == diag(ay, ..., a,).

5.1. This section is devoted to the characterization of the spaces
A(B, X) for r-lattices X and diagonal matrices P — diag(ay, ..., a,) with
a = (ay, ey CD”)EZ’.:_.

We first introduce the measure » which will be used to define (4.2).
For heZ, and a fixed zeR"—(0) we set

14
T (k
v (y) =1 0(Y) = N (=1 8(y —ife).
) =5 0y) ;(3)( Yoy —i*2)
5.2, Remark. [(Py)¥dy(y) =0 for 0< (a-M)<k Notice that
P = (1", ..., 1%,), thus

I
[ a3 (%) -apigrape

fe=0
k 7
= (@) M (C) —~1)j(a-M) = 0
MZM( Yj(a-00)

for 0« (a-M) < % a8 an inductive argument shows.
3.3. With A4f,u we shall denote the expression

L
Ay mfrf,udw,(y) = E(;) (=1 vgyppu.

Jes

The theorem wo now state and prove is illustrated in 6.2 and 6.3.

0.4, Trinowrmm, Let the matriz P be as in the introduction. Let X be
an r-lattice, with ¢ == f—1-4s,0 < e <1, keZ,, and lot v and A7, be as
defimed above, for 1 < m.

a) For wed(B, X) and (a-M)<k—1 we have:

6 — Studia Mathematica XL VIL2
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1) (9)00) vlgmg e A(B, 17N X).
i) (0/02) 70 ]mge B and SUpT 47 (0/00) 7 pmg X (B) for (a- )

|#]=1

= k—1.

b) Conversely, if a) ii) holds, then wed(B, X).

In both cases the statements are accompanied by the corresponding
norm inequalities.

Proof. We first define Qv = (J/02) 1,1]pn . Since for weB, v,ueB
and the integrals in (4.6) are abgolutely convergent in the B-norm wo
have

1
. o Lot
T U = f 7y (T ) @ (y) dyy j f U (w*~!~y,t)w(y)dy~;[-
0

1
. ot
=fr1,wp(y—w)dy+J U(y,t)w;(yww)dy—p
(0]

whenee it follows that

(6/0m)Mrm¢o
M : £\ p—(a-2) M dt
= [mulojon*sly—a)ay+ [ [ Uy, 08 (@109 vy —2)dy -,
0

this being justified since the resulting integrals are absolutely convergent
m the B-norm. Setting # = 0 and applying (4.8) we obtain

(b.5)

which proves a) i). .

Also since B is continuously embedded in A (B, @ X), we infer
that the first half of a) ii) is also true. Moreover t~“MX is of type ¢ for
(a-N) = k—1 and so (4.8) implies that A7,Qyue(t™@NX)(B) or

1@ A7 Que X (B), and from (5.5) it follows thab

1@ pr vl 4z~ v 3nx) < Ollllags, x)0

Tzlll-?l ot A7 Q xWllom < Clullagm x)
with O independent of z: this last statement either follows from the deri-
vaticn of (5.5) or from the application of an appropriate version of the
uniform boundedness principle. Now that a) ii) has been proved we con-
gider b). We first notice that @7, = 7,Qx; this requires a small com-~
putation. Set

g@t) = t’“”lli&g [47.Qnullp g(#) e X

by assumption.

icm°
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Moreover, since & short computation shows that
A Q== Ay - Qnu (Where o(2) Tz = 2')
we have
ple—1 o Tl
15t AT O ully = (tQ(z))k o(z) ILH”A;TQL(z),z’QNu”B
< o(a) g fie(2)).

We now construet o funetion # with the required properties for which
[wyung(y) dy < X (B), which together with ueB (setting M = (0,...,0) in
(5.5)) will complete the proof of b). ' ’

Let us bogin by considering a CF°(R") function 0(y) with support
contained in {g(y) = 1} and with vanishing moments of order < m. Then

”"7""1 f Aif%u(!N@LO(iV)dy\'H 34 f o(y)™" g (to(y))dy
{e(wy=<3}

(5.6)
f i
<€ [y Sex
0 8
by (3.2). Sob

m
2 hi
fit) = f A Quul(y)dy = f /_\J (Wf) (=LY 7gyp, Quub () dy
el MY

e
!LJ

- f Qn U in: (I";b) (=1 0,(y)dy -

Fl

= [ 21%) (s avunuinay

This last integral is successively integrated by parts to obtain

f0 = [ o X)(3) (= seny oy

Jeul
g j Ty U (Y) 4y
with

m
a) = )] (=ari- e g ot Ty,
Jenl '

Sineo 0(y) doos not vanigh identically neither does 5(y). Moreover 7 (y)
satisties the requived conditions for Corollary 4.11 to apply and since
[run(g)dy == 1" f(£)eX (B) by (8.6), the proof is completed.
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6. Lipschitz spaces of functions and distributions in Euclidean pace.
'We now consider the usual Lipschitz spaces, the Lipschitz spaces of
parabolic type and we show that they are among the A(B,X) spaces
for appropriate choices of B and X. We then illustrate the simplicity
of the method. of proof for the A(B, X) spaces by considering two ingtances
which often arise in dealing with function spaces: the extension of Young’s
convolution theorem and the properties of the Iourier transform. Ifrac-
tional integration (corresponding to Theorem 4.8 for r-lattices) and duality
are dealt with in [13].

6.1. Let B = &'(R" be a Banach spacoe such that & (K" « B con-
tinuously, B = V* for a complex Banach space V' and |z, ull; < Clul,
where (7,%,¢) = (u, p(-+y)) for pe. Wo may, for example, let B
= I?(R",1 < p< oo, 8o that the elemonts of B are functions wu(x) on
E* and w4 = u(e—y).

indeed is an r-lattice is shown in [13]), 1 = g =5 oo.

We now describe explicitly the spaces A (B, X) for particular choices
of P = diag(ay, ..., ay,).

6.2. Let P = diag(L, ...,

1) =1I; B=IP(R",1<p < o0, keZ, and

li13
X = (Fite e (0,1; ———) for 0 < &<, l«q< oo
Then A(B, X) = {uel?(R"):

(8/02Y ue I (B™) for |M| = k—1L and

di
15 7")

where u, is a derivative of u of order a, |a| = k—1}.
These are the spaces of Taibleson and others.

6.3. Let P = diag(l,...,1,2); B = IP(B", L < p <

&
Z(’?) (—-1)7uu(w—tjz)i I (0
J »

7=0

supt—®
l2|=1

oo; keZ, and
f—148 7q dat k=144 @
X =t I 0’1;7 IaY L"O,l;—-t— for 0<e,d<l and L<gq
< oo. For simplicity put % = 3. Then
A(B, X) = {ueL?(B"): (0]00) weLP(R") for M,-i... - My 20,

(2
:Z (j)(_l)ju“(wl"—((tj)laz)l’ AAA] mﬂml’"(([‘j)l]z)nmlv 7'")” )
P

=0
1
1 , o i
2 (j) (—1Y 10 (@1 eney Bp_y, 0, — (B)F z) e.[)“ (0, 1 f:t«) for ;...
j=0
F 0120, =2, 8= (21, ..y By, 0) 8" 2 = (07 2 0,1) a8,

These are the parabolic Lipschitz spaces of Jones and others.

<2 and (t““

41
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6.4. For the case I’ not diagonal we have the following complementary
result to (5.4). We are interested in operators ¢ such as the operators
Qu of Theorerm .4 which satisfy:
i) @, = 7,Q and
i) Qyy = 17" (Qw)y, ¢ > 0.
i) implies that (¢¢) (@) = ql@) p(
transforms in ii) we see that ¢(™w
= o*(m)°p (), where () == p(a’), with o* (@)~
prove:
LuMvA. If v 48 @ measure such that [y™dv(y) =0,t>0, | M| <k
and X is an r-lattice, v <<k, then |Qullp-- " (Qu*w) ||3(B) <._0Hu||,1m,x)

2), ge L™ (R™), and by taking Fourier
@) = t*'q(®). (We nmy get g(x) = o*
"¢ = @'.) We may thus

6.5 We now adopt the notation A[«;p, q] for the spaces A (L”(R"),

(0t
t“"]ﬂ(o,l;wt-«)) L<p<oo,l<qg< oo Ala;p,q] = A(a;p,q) in the

notation of Taibleson [27] only for P ==
We now prove an extension of Young’s convolution theorem. Notice
that (4.2) and (4.3) are the usual convolutions.

6.6. Yl‘Imo.lcluM A[a(,, Dos q‘,]*/l[al, pl, q:] = Alay; Psy g2), where ay
1
e

= Qg Gy, =

P P0

L= gy Quy Q25 0

Proof. Let u'ed[a; psy¢i], ¢ = 0,1 Young’s theorem for con-

volutions asserts that uo*ueL?2(R™). Lot v be the function defined in
(4.6), and sot #n = yiy. To complete the proof we now show that

11
172 0 gy, € L2 (0 1; i)

B [ ,___;“___ for 1< . oo and
171 7q2 0 qli Doy Pry Pa s

We have [lu®sub &nl,, < [[u* vy, lut *9l,, . The case ¢, = oo or
¢, = oo is readily seen to be true. 1*01- the remaining cases we have

- e byt Oge gL d dlt\ ez
[ e uon i)
0

b /gy

""" U (80 || % 1y )* "f") (f fwulllul*wum)ﬂ%i) ’

0 ]

by older’s inequality.
Notice that we have actually shown the norm inequality

1145 0] tgagi pguaq) S € 14l] gy mg.ag) 1Pl atess py,ann -

This theorem is still valid for p, or p; equal to 1, with the natural
definition of the spaces Ala;p,q] and the interpretation of (4.2) and
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(4.3) as (strongly convergent by Theorem 4.8) Riemann vector valued the resiviction of X to (0,1). Then A(B, X) = A(B, X), the spaces having
integrals. This justification is omitted here but made in order to give the same elements with equivalent norms. ~

the full range of validity of Theorems 6.6 (see the definition given in [3] Proof. As in [4] Wwe may show that f() = min(?, 9eX, p <r < g.
and [20]). Moreover, if (1) denotes the characteristic function. of the interval (1, o),

We now consider the Fourier transformation keeping in mind the
interesting results of [14], [11] and [27] extending Bernstein’s theorem
on absolutely convergent Fourier transforms.

6.7. THEOREM. For 2<<p < oo and 1< ¢< 2 we have Hf‘fu“d"t(?/)”l, — (1"‘X(t))Hf'ra/""‘d”t(y)HB“{‘X(t)”f?y”d"’z(y)”B

i) §: Aler P(1/g—1/p); p", ) >LA(E"),

i) §: L9 (R™—A[tr P(1)g ~1[p"); p, ¢']-

then since x(f) <f(t) also y()eX and |llg < |lfllg. Clearly A(B,X)
< A(B, X). Conversely,

== Iy (1) T, (2).

Proof. Since by results of BenedelcfPa.nzone on spaces of mixed Thus if weA(B, X), then I,(t)e % and since 1Lz < O”“”BHX”.&" the lemma
norms [1] we have that A[a;p, gI* = A[—a,p’,g'] for 1 <_p < oo and follows.
1< g < oo, if) will follow from i) by duality (see [13] and [27]). To complete this section we show some results related to [14].
We now prove i). Let e (E"), which is dense in A[a; p, q] (see [27]) For g(w)>0 we set Li(p, B") = {u: ([ ()]0 (2)0dr) 2 < o).
o« o
and let 5 (R"), with ¢(z) vanishing near zero and 0 < 0" < f |@ (17" w) 2 6.9 TuworEM. For 1 < 17:: 2, we have
i g i) §: Ala;p, 9117 (¢" BY.
T< o (see the introduction or Theorem 4.6). We them have iy §: Lp(()*u, Rn)__)(tuLp(O, 1; _di_)) (L” (_Rn))_

iii) §: L (BY)-~A[0;9", p].
Proof. To define the spaces A(B, X)we may choose p e (R") radial,

. PN - dt
[@la<c| [1f @epE ok
’ suppp = {L/2 < ¢"(#) < 4} and |(2)| > O > 0 for {I< g*(z)<2}. We

r-n
» dt

~ 5 o [ [ . (2mg) e
< 5 (1P o) [Pl )q (f ' 7=q dm) do so. )
S OJ\ (f |f (@) o (87 o) (4 lo( ) 1 Tet 'l,b*q’ite(t“]}‘z) (0, 1; di/t))(L”(.Rn)) = A. Then
Moreover a simple computation shows that (f ¢ (#7 )| dz)'r = O (1="F"), ' B o 0\
This fact together with the Haussdorf-Young inequality shows that llw*glg = f(t [l yll) ry
0
[ iftoeas)” < o [ 1o -rron-smy 21 : iy
z)fdr] < f * @yl - —-} : U L di\ e’
( [ o iy > ([ et ool 5
0
whence the proof would be completed if we could show that the expression .
on the right is dominated by the integral from 0 to 1. T PP o 1p
That this is the case is the content of the mext lemma, which also = f [ ()] f‘ (¢ @)l 5
explains the equivalence for P = I between the A(B, X) introduced ¢
in [4], and their present version. 2 (@) at -
6.8 LmmmA. Let X be an r-lattice om (0, co), i.e., > 0([ Vit ()| f i--ap;Tdm)
t o0 1e* ()
10 (10w amd i) [ 16 4o : w
0 s 3 $ = OU I (@)} ¢* (w)“’“’d“) E

are bounded linear mappings of X into dtself for p <r< q. Let X denote This proves a slightly more general statement than i).
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Likewise
2/e*(z) t
f (@) o (@) dw > O f i [
. 1je*(x)

>0 [ W@l [ 156 apee 5
0

: . p it
=0 j (1 (o) ()] P

r dt
>0 [ 4 i)

]

This proves ii) and iii) (setting a = 0).

7. Singular integrals. We shall now consider the continnity properties
of a suitable class of singular integrals acting omn the spaces A(B, X).
We begin by proving two lemmas.

7.1. LmmvA. Assume all the hypothesis of Theorem 4.8 hold, with the
exception of the choice of the funciions @ and vy, used to define the mapping 8
which will now be replaced by ¢ (x) and v () with the following properties:

¢(@) = prmh(e), ped;, and |ml|; <0,
and '

9 (@) = pant(@), ped;, and |, < 0.

Then S defines a continuous mapping from B@X(B) into A(B, yX).
Proof. We notice that it suffices to show that the equivalent to
Lemma 4.9 holds. Thus, we would like to prove

llyt% poll, = O(min(1, (sft)"))

and
Il # plly = O(s).
But by 4.9
I pall 5 << gl gy, = O (mim (1, (s /6)¥))
and

llp s rglls < Nlomlly g prglly == O (%),
and the proof is completed.

7.2. LEMMA. Lot peS (R be such that v = ¢ with peCP(R") and
suppp < {1/k < o] <k} for some keZ,. Then vy = nx{, where ne ¥ (R"),
LeCP (R amd. [{(2)dm = 0.

Proof. Let 0 5= 0(x)eCP(R") be a spherically symmetric function
with the additional properties that 6(x) and é(w) are real valued and
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fo(w)da = 0. An argument similar to that of Theorem 4.6 shows that
there exist 6 >0 and meZ, such that g, (z)> 6 for 1/2k < 0] < 2K,

where " .
- FA% v :
Im() :(J 0;*0t—t—) (@) = j 10(tm)|2_‘%ﬁ.

1jm 1/m

Now ¢,,eM because Jme0P and ¢ = (¢/¢,) g (Where p/g,, = 0 whenever
= 0).
v Thuy @ == @ == (/) *fm = %, With 9e&, [0y and [ = 0.

Having completed the prelitninaries we pass to the theory of singular
intograls.

7.3. Tunorwm. Let ke (B") be defined by (&, @) = p.v. [k(®)p(@)d,
where (@) coimeides with a locally integrable fumction away from the origin
and which satisfies:

i) For 0 <r<R,| [

(%) dm] < C and [ T(w)de converges

as 70, reo{z) <R r<efe)<1
i) For R>0, . [ p(w)|k(x) ds< C-R.
e(x) <R
i) [ |ke—y)—k@)de < O for yeR™
o) te(w)

Then the corvolution operator K: f—>Txf defined for feCy (B™) satisfies

a) |\Efly == C)\fllay and thus K con be extended to @ bounded operator
on L*(R™.

b) If suppf < {o(®) < 4} and [f(w)dw = 0, then Kf, is a 0° function
and |\Efl; < O (Ifly+[1fll), where O(2) = O(L+ 2P

Proof. a) is well known ([4], [12], [16], [21]).

b) Note that suppf; < {o(@) < 2}, Ifil = Ifll and |Iflls =¢"F2|flz,
for 1 > 0.
‘We then have
Kff = [ |Ef)do+ [ Efi(@)dw =T +I.
o(z)madaé o(z)>4At
By Hélder’s inequality and a) we see thatb

Lo [ 1Efmlrdn)” (@) < O (42)"" = OFFF|fll,.

o(w)udat
Likewise
L= [ |[k@-h)i|d
[JOETY
= [ |[(h@~y) —k@)fily)dy]do
o(@)>44f
< [ rwl [ e—y)—k@)|dedy < Ol

o(y) <At () > 4Al
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‘Whence
I1ES il < OFFR)ifle +CIflls < O A (ISl 1712) 5

a8 we wished to show.

Singular integrals. For k(«) as in Theorem 7.3 and ueA(B, X)
we define the singular integral Ku as follows

(7.4) (K, v) = p.v. [ (ryw, v)Io(y)dy
=lim [ (zu,0)ky)dy,

80+ p<o(y)<lfa

The next theorem iy better understood if we recall the following
remark dl}e to 'l‘a,iblesonA([27 1, page 928). The Riesz trangforms R, defined
})y (Bw)” (@) = (2;/|»])%(x) are not bounded mappings of A(a;p, o)
into itself for p =1, oo. .

7.5 THEOREM. Let A = U*, B = V* and 0 = W* be complex Banach
8paces such that V. OW 4s dense in both V and W and if ¢(y) is the function
defined in T]Leorem 4.6, then [r up(y)dy: B->C continuously. Turther
assume that v, is defined on U and V W with bounded adjoint =, acting
on 4,B and 0. If K: A>B continuously, then

1) Kz, = ©,K and (v,Ku, v) is a bounded function of # for ued,veV.

i) K: 4 nA(C, X)>BnA(C, X) continuously.

Proof. Observe that

for veV.

(K7, 0) = pv. [ (5,70, 0)k(y)dy = p.v. f(r,,u, T,0) b (y) dy
= (Ku, 7,0) = (v, Ku, v).
Since for ued, |Kulz < Ollul, we have

((zEu, 0)| < |z, Eullgllolly < O llul 4ol
This proves i).

To show ii) we apply the representation Theorem 4.6 to Ku eB, for wed
and veV NW, thus obtaining

1

(&, 0) = ([ m gy, o) +1im [ ([ [ (r e, V(e ) ay) 5

The inner integral of the second summand is absolutely convergent by i)
and thus inverting the order of integration we obtain

JJ Gers B, 0) i@ mw)dy = [ [ (Kryu, F0)uly) dyave).
Moreover
f(Kr,,u, 7,0) pi(y) dy = fp-V- f(rzu, 7,0)
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k(@ —y)dop@)dy = [ (., L0)pv. [T@—y)w(y) dyds
= [ (Tasatt, v)(Eyy) (@) ds
where now (Kw,)(®) is the operator defined in 7.3.
In view of Lemma 7.2, p = nx{ where nes, {07 (R™) and [{(x)dw
= 0. Also by Theorem 7.3
I << o2l +1Elle) = C.
Now since K (fxg) = fxKg whenever f, g and KgeL' we have that

Kpy = K (nx8) = nye KLy
Whence

. - d
(1w, o) = ([ v Kua(y)dg,o) +lim f [(ww, 0, oty

and Lemma 7.1 obtaing the desired conclusion.

In case the kernel & satisfies a homogeneity condition'in the genge
explained below the situation is more easily handled as shown by the
next theorem. :

7.6 TupoRmM. Let % (@) be a homogencous kernel of degree —irP, i.e.,
k(1F%) =t~ k(z) for meR"—(0) and >0, such thal

1) keLiy(R"—(0)), Te L1 (8™1) awinflk(m’)(Pw’, o) day' = 0.

1 e(w)>j;e(1/)

iil) %(w) coincides in RP—(0) with a O function for which k(™ )
= fi(®). . :

By regarding () as the distribution p.v. k(x) the convolution operator
K: f —kxf defined for functions f(w) with integrable Fourier tramsforms
may be writien :

k(% —y)—T(z)|do < O for yeR™

Ef(@) = [ ()F(2) de.

With K thus defined for fe& and Ku defined by (7.4) for ueA(C, X) we
hawve

a) If v is the fumction comstrucied in Theorem 4.6, them Ky, = 1,
with 7€,

1) For 4, B, O as in Theorem 7.5, K maps A nA(C, X) - BnA(C, X)
continuously.

Proof. Since b) follows readily from a), we only show a) by means
of this remark:

Ey(o) = [ e (2) 4 (17 2)de = 7 f e FA () 0 (2) de = 7,(w).

TFurthermore % since 77eCf.
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8. Multipliers. '

8.1. The theory developed in Section 7 may be viewed ag deseribing
the behaviour of an important class of singular integral operators K
which are translation invariant (i.e., Kr, = 7,K) if we seloct =, to De
the translations in R" defined in (6.1). In this section we shall develop
the theory of arbitrary translation invariant operators M, or mulliplier
operators, acting on the 4A(B, X) spaces of functions and distributions
on BPueclidean space. These results, together with those of Sections §
and 6 provide numerous interesting applications of the theory developed
in this paper.

In this section, then, we agsume that the situation described in
Section B holds: the spaces B are Banach gpaces of functions or digtri-
butions in Buclidean space and the =, are the tranglations.

8.2. A function m(z), continuous and bounded for meRP- (0), is
said to be a multiplier of type (4, B), 9 (R™ being dense in A, if the
mapping M defined by ’

(Mu)" (8) = m(z)@(z), wes,

satisfies | Mulz < O|ul, C independent of #, and it may thus be extended
to & bounded mapping M of A into B. Clearly My = 7,M.

The following theorem, although simple to prove, is indeed of in-
terest. .

8.5. TumoREM. Let A = U', B = V' < &' (R". Let M: A—B be
the adjoint of a continuous mapping M: V->T. If =, maps continuously
A into itself and B into itself, then M: A(4, X)>A(B, X) continuously.

Proof. Since MueB whenever wed it will suffice to show that

Jvy Muy,(y)dy « X (B) for ¥ as in Theorem 4.6 and wed (X, 4). For veV
we have

J@ 20, 0 @) dy = [ (M, o)y () dy

= [ Gy By (y)ay = (3 [ = updy)dy, v).
Thus

\f = Muvin ay|, = | | W)y |, < O|f wuny)dy | <X
and the proof is completed. ‘

To prove the next Theorem recall that Lemma 7.2 allowed ug to
factor ¢ = y*¢, with ne% and suppy < {1/k < ¢*(2) < k}. Also ¢ will
be the function defined in Theorem 4.6.

8.4 THEOREM. Let A, B be as in Theorem 8.3 and ¢ = W* c & ‘(B
be such ﬂmt* Jrup(y)dy: B0  continvously. Suppose further that
m(@)(F ) (F" ) = F(f (@), with Ifl <O for 0 <t <1. If & is donse
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in AN0 and VoW and m(z) i a multiplier of type (A, B), then m(x)
is « mudtiplier of type (4 NA(0, X), BnA(C, X))

Proof. Bince Mu B for ued, the representation Theorem 4.6 obtains,
for e and ves,

1
aw, 0) = ([ v 3rup )y, o) +1im [ [ [ 0,010, )y viwr g &
= Iy,
We have that
T << | [ v M () dy |, 1ol < 0| Muliz ol < ollulLa ol
Likewise for I, we have, )
[ ] il 0)dv (2 vely) dy = [ ()" ()5 (9) 5 (P y)p (e y) dy
= [l @y ™y (7Y @iy dy
= [ [ (s, )@ 55y (y) dy
and the result follows from Lemma 7.1.
Remark. Observe that the proof given above actually shows that if
m(@) 7 (7 @) = (f9" () with ¢"[f, <0 for 0<t<1,
then m(v) is a multiplier of type (4 NA(C, X), BNnA(C, " X)).
8.5. CororLARY. Let A, B, C be as in Theorem 8.4 and let m(x) be

' [—;L] -+1 continuously differentiable with

D Jiopa)YmET e e <0, =1,

wis[g]+ ¢
where £ = suppn. :
Then m(w) is a mulliplier of type (A NA(C, X), BnA(C, X))
Proof. The known facts that L' norms are invariant under di-

lations o' performed in the space of the Fourier transforms and

that a sufficient condition (a sharper, but more involved condition to
deseribe is Theorem 6.7 with ¢ =1) for g = f,fel*(R", is that

Y JI0m)¥ g(@)|2dw < O, applied to Theorem. 8.4 obtain the conclusion.
<[] 41

To finish this section and. this paper we give a simple but never-
theless interesting application of the results developed to the theory
of pseudo-differential operators as developed in [5]: this we do.to show
how to deal with non-translation invariant singular integral and other
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important classes of operators which are known to preserve Lipschitz
classes with P = I.

8.6 A pseudo-differential operator ¢ is an operator of the form

¥
Qu(z) = 2 f g (2, &) (2) de
J=1
where ue % and
i) The functions g;(z,z) are bounded.

ii) For |s]> 0, g;(#, #) coincides for each 2 with a homogeneous
function of degree —d;, 0 < d;<< d;yyy.

iif) |(0/0)*(0/0,)" g;(w, 2)| < Oz, for all multi-indices N and |M]|
< 2([d]+1) ~[d].

Since the general case will follow from addition (this is explained
in ([56], page 95) we restrict ourselves to the case

q(@; 2) = a(®) Y (2)p(2) 2|~
where

1
g at
pe) = [l [ o1, with peo™
0

a spherically symmetric function supported in 12<|2/<1 and
Y (2)eC*{R"—(0)) a homogeneous function of degree zero. This means

that ¢(z, 2) = a(m)fn(tz)td-— for y(2) = ¥ (2)p(2). (See [8], page 314).

Thug the operator @ in question has the form
. ‘
Qo) = ato) [# o —ouar, 5.

Now it d> 0 thls integral is absolutely convergent and setting % ()
f hy( — m)i — we finally obtain

Qu(@) = a(a) [ hlw—y)uly)dy,
the representation still being valid for d = 0 provided that f Y (2')ydo'

_10 and that the integral be interpreted in the sense of Oanchy 8 pmnolpal
value.

‘We have dlscussed the convolution operators which preserve the
4(B, X) spaces and since these gpaces have also been fully described
it is now possible to give sufficient conditions on a(x) so that multipli-
cation by it preserves the class in consideration. (See [25] for this lagh
remark in the setting of Sobolev spaces.) The case P = diag (as, ..., a,)
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may be treated similarly once the appropriate mixed homogeneity con-
ditions are required as in [10]. The details of this closing remark are
left for the reader to verify.
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Semigroup algebras having regular multiplication
by
N. J. YOUNG (Glasgow)

Absteact. 'Wo obtain both algebraic and topological characterizations of those
loeally compuet somi-topological semigroups whose measure algebras have regular
multiplication (in the sense of Arens). The condition obtained also characterizes
rogularity of multiplication in the I,-algebra of the semigroup.

A Banach algebra is said to have regular multiplication if the two
Arens products on its bidual coincide. It is well known from the work
of Day [2] that I;-algebras of suitable semigroups afford examples of
irregular multiplication; in fact it suffices to take any semigroup admitbing
two distinet invariant means. This is not the only way the multiplication
can be irregular: Civin and Yood [1] find wide classes of groups whose
algebras comprise further examples, and in [9] it is shown that the mul-
tiplication iy irregular in the Lt-algebra of any infinite locally compact
TFaugdorff group. Flowever, the Banach algebra M (S) of finite regular
Borel measures on. an infinite locally compact Hausdorff semigroup &
cam have regular multiplication, as is shown by trivial examples: take
@y =y for all #,y, or take the multiplication in § to be constant. In
the present note an algebraic characterization is given of those locally-
compact semigroups whose measure algebras have regular multiplication.
Some rolated results can be found in a paper of N. Macri [5]. ‘

‘We ave concerned throughout with semi-topological semigroups —that
is, semigroups in which multiplication is assumed only to be separately
continnous. Basic facts about measure algebras on semigroups can b9
found in [3]. We begin by giving the purely topological content of the
characterization. AX denotes the Stone-Cech compactification of the
completely regular space X,

1. An extension theorem. If X and ¥ are completely regular spaces
and Z is compact Hausdortf, in order that a separately continuous mapping
f: X xY—Z should admit a separately continuous extension f's pX x
XBY—~+Z it is necessary and sufficient that, for all pairs (@), (Y,n) Of
sequences in X, ¥ respectively, the double sequénce (F(ns Ym)) should
have a double cluster point in Z ([7], Theorem 1). Here weZ is called
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