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Added in proof. Theorem 1.1 can be generalized to the following
form:

TEEoREM 1.1a. Let X be o complemmted subspace of Z‘ . Then X

s fimite dimensional or X is isomorphic 1o Z’l for some subset {p%}};_1
Of the set {p'z =1 . 3
The details will appear elsewhere.
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Splitting quasinorms and metric approximation properties

by
8. SIMONS and T. J. LEIH* (Santa iSarbara, Calif.)

Abstract. In this paper we consider quasinorms on the class of operators of
finite rank between Banach spaces, the dual quasinorms that they define, and their
connections with the Persson-Pietsch duality theory, maximal ideals and the metric
approximation property.

INTRODUCTION

L stands for the class of all bounded operators between Banach
spaces and I, stands for the subclass of L consisting of all operators
of finite rank. In what follows, a is a quasinorm on I, (see Definition 3).

In Section 2 we consider three factorization conditions that can be
imposed on a, namely that o be left splitting, right splitting or splitting
(see Definition 7). (The second and third of these conditions were suggested
by some comments of A. Pietsch. In particular, “splitting” was suggested
by Pietsch’s “upper semicontinuity”.) We prove in Lemma 8 (¢) that
if o ig left splitting then o' (see Notation 4) is right splitting and in Theo-
rem 13 that if o is splitting then o' is splitting. We do not know whether
it o iy right splitting then o' is left splitting (see Problem 10).

In Section 3 we consider a general process by which splitting quasi-
norms on L, can be defined. In particular, we discuss the g, and d, norms
of Saphar (see Remark 19).

Sections 4 and b are devoted to some technical results.

Tn Sections 6 and 7 we define a function «”: L —#* and investigate

" some of ity properties. In Section 8 we investigate the class D, of operators

for which P < co. If « is reasonable (see Definition 38) then (D,, o P D,)
is & normed ideal (see Lemma 42) even if a fails to be a norm on L,. How-
ever, if a i3 a splitting norm on L, then we can prove a duality result
(Theorem 44) which seems to be at the base of the Persson-Pietsch duality

* The research of the first named author was supported in part by N'SF grz.mt
number 20632. The second author was supported by a NDEA traineeship during
this research and part of this paper will appear in his Ph. D dissertation.
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theory. In Section 14 we shall show that the theory of the objects (D,, oP(D,)
(where a is a splitting quasinorm on L,) generalizes the theory of maximal
_ideals introduced by Pietsch (see Remark 107).

In Section 9 we continue the discussion of special cases that we started
in Section 3. In particulatr (see Remark 56) the ideal of (7, s)-summing
operators appears as a special case of (D,, a®|D,). If « is a splitting norm
then « can be recovered from o”; however this fails if o is a splitting
quasinorm (see Remark 63).

In Sections 10 and 11 we give conditions under which o” (strictly
oP|L,) is splitting. It transpives from these that if o =g, or d, then «
and o are both splitting, i.e., o is totally splitting (see Definition 78).
We poin{; out that |-||? is splitting < every Banach spa,ce has the m.a.p.
(see Theorem 92).

In Section 12 we generalize the analysis of ([3]; § 5, No. 2) to metrie
approximation properties defined by totally splitting norms on I,. Speci-
fically, we define the a-m.a.p. in Definition 84. Theorem 83 generalizes
‘parts of ([3]; § 5, No. 2, Proposition 39). Theorem 85 is an analog of ([3];
§ 5, No. 2, Proposition 40). Theorem 86 gives some conditions for B’
to have the (¢')-m.a.p; even in the classical case (i.e., a = &' = g;) our
results seem to be new. In Section 15 we introduce the a-m.a.p. for a pair
(B, B'), extending the concept introduced by Schwartz and we gener-
alize [11] by proving that (¥, ') has the a-m.a.p. < E’ has the a-m.a.p.
(see Theorem 113). In Corollary 90 we generalize the main Lemma of the
Persson—Pietsch paper (see the discussion in Remark 93).

Section 13 is the only part of this paper in which we use any measure
theory. In particular, we define right p-integral maps (see Definition 101)
which bear the same relation to d, as the integral maps do to g,.

1. IDEALS OF OPERATORS AND QUASINORMS

1. NorarioN. We write o4 for the real or complex field and all linear
spaces will bé over the field #'. We write L for the class of all bounded
linear operators between Banach spaces. We use the symbols B, T, G
and H to represent Banach spaces. If 4 = L we write

A(H, F) = {T: Tis a bounded linear operator from ¥ into F and Ted}.
‘We write B, for {#: we E, |jz]| <1} and J5 for the canonical map from B
into B".

2. DerFINITION. Let A < L. We say that A is an ideal if
(a) whenever TcA(H,F) and Se L(F, ) then STe¢A(E, ),
(b) whenever T'e L(E, F) and ScA(F, d) then ST<A (B, &),
(c) whenever ac B and ye¢F then (-, ayyed(H,F),

(d) whenever 8 and T <A (B, F) then S+T <A (H, F).
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3. DEFINITION. Leb 4 be an ideal and a: 4 — %*. We say that a is
a quasinorm on A if, in (a) and (b) of Definition 2, a(8T) < ||8] a(T) and
a(8T) < «(8)||7']], respoctively.

4. NorarroN. If 4 < I we define a subclass 4’ of L by the rule:
i TeL(H, ) then Ted <« 1T eA(I’ B)..If A is an ideal then 4’ is
an ideal. If a: 4 —Z we define o': A" —Z by the rule o' (T) = a(T")
(Ted). If 4 is an ideal and a iy & quasinorm on 4 then o' is a quasinorm
on 4. '

2. QUASINORMS ON I,

5. NorATIioN. We write L, for the subclass of L consisting of all oper-
ators of finite rank. If Te L(H, F) and T ¢ Lo(F', B') then Te L,(E, F), -
that 155, Ly = Ly. Ly is an ideal.

6. NoraTioN. For the rest of this paper, unless otherwise stated,
o will be a quasinorm on L. ‘

7. DrpINIcIoN. We say that o is loft splitting if, for all Te Ly (B, F)

and &> (0 there exist ¢, PELO(F &) and Qe Ly(G, ') such that

a(@)Pl <

We sy that o is right splitting if, for all T e L, (H, 1’) and &> 0 there
exist G, Pe L, (B, and QeLy(G, F) such that

1) T=@P and" a(T +e

(2) T=@rP and |Qa(P)}<a(l)+e.

We say that o is splitting if o is both left splitting and right splitting

8. LmMMA. We suppose that o is left splitting.

(a) We can, in fact, specify in the definition of left splitting that P (E)
= @ (in which case G i finite dimensional).

(by For all TeLy, a(T")< a(T).

(e) o 48 right splitting.

Proofs, (0) It @, I and Q are a8 in (1) then so are G P and Q, where
G =P (), § = Q|P(H) and P is the eloment of L,(¥, P(H)) such that,
for all we H, P = Pa.

(b) Let T'e Ly(H, ') and ¢ > 0. We choose ¢, P and @ as in (1). ). Since
PeLy(B,H), there oxisty RcLo(E @) such that P'" = JzR and [|R|]

= |P"|| = |P|. Thus " Q”P” =Q"JgR = JyQR and so a(T")
< |l (@) IR] = a(Q)|P| < a(T)+ e The result follows since e is arbi-
Lra,ry
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(¢) We suppose that Te'L,,(E, F) and &> 0. Since a is left splitting,

there exist' @&, PeLy(F', G) and Q¢ Ly(G, E') such that 7' = QP and
(3) a(@IP| < a(T)+ & = o' (T)+s.
We write P for the element of L,(&, P'(&)) such that, for all ye&’,
Py =P'y. Then |P| = [P'| = |P|. From ([5]; Theorem 3.1) or ([10];
Theorem 6) there exists Ue L,(P'(&), F) such that U] <1+e and,
for all ye P (G') NI p(F), JpUy = y. Now, for all we H,

TpTe = T"Jgn = P'Q' Jpw = PQ Jpue P'(G') NI 5(F)

hence
JpT5 = Jp UPQ' J 0
from which
T = UPQ Jg.
However

1UP| (@ Tx) < (1+¢)[Plla' (@) Tzl
< (@ +9)Plla(@")
<1+ [Plla(@)  from (b)
<(1+e) (¢ (T)+¢) from (3).
The result follows since e is arbitrary.
9. LEMMA. We suppose that o is right s_pl@ttmg
(a) In the definition of right splitting we can, in fact, specify that G is
a fiwite dimensional subspace of F and that @ is the inclusion map of G into F.
(b) For all TeLy(B, F), a(T) = a(JpT).
(¢) For all TeLy, a(T)<a(T").
Proofs. (a) If &, P and @ are as in (2) then so are G Pand Q, where
G = Q(G), Q ig the inclusion map from Q(G ) into F and P is the element
of Iy(E, @(@)) such that, for all ze B, Py = QPs.
(b) Let > 0. From (a), there exists a finite dimensional subspace
H of F" and Re L,(B, H) such that JpT = IR and a(R) < a(JxT) +¢,
where Te L, (H, F'') is the inclusion map. From ([5]; Theorem 3.1) or
([10]; Theorem 6) there exists SeL,(H,F) such that |8 <1+s and,
for all ye H Nd x(F), Jz8y =y. Now, for all z¢H,

JpTw = Roe HNJ 5(F)
hence

JpTe = J 5S8R

Splitting quasinorms and metric approzimation properties 211

from which 7' = SR. Hence o(T)< [Sfa(R)< (1+2)(a(JpT)-+¢). The
result follows since & is arbitrary. (This result was suggested to us by
A. Pietsch.)

(¢) Te Ly(Z, F) then, from (b), a(T) = a(JpT) = a(T"'Ig) < a(T").

10. PROBLEM. If a s right splitting is o mnecessarily left splitting?

11. TeroREM. If o is splitting then o'’ = a.

Proof. Immediate from Lemma 8 (b) and Lemma 9 (e).

12. COROLLARY. We suppose that o is splitting.

(@) Let @y, .eey Qe B’y Y1,y Ype P and UeL(B, @) Write T
= 2, apyse Lo(B, F) and V = 3, Ua;dy.e Li(G, F). Then o(V)

7 7
< | Ulfe(T)- ‘

(b) Let TeLo(F, B'). Then a(T'JTz) = a(T).

Proof. (a) V' = UT' hence, from Theorem 11, a(¥) =a(V")
== a(T"U) (T T} = a(T)|T.

() (T'Jg)" =JpT hence, from Lemma 9(b) and Theorem 11,
a(T'Jg) = a((T'JTg)") = adpT).= a(T).

18. TEEOREM. If a is splitiing then o' is splitting.

Proof. We suppose that T'e Ly(¥, F) and &> 0. From Definition 7,
there exist @, H, Pe Ly(¥#', &), Qe Ly(G, H) and ReLy(H, B') such that
T = RQP and |R|a(@)||P| < a(T)+¢& = &' (T)+e. We define P and U
as in the proof of Lemma 8(c). Exactly as therein, T = UPQ R'Jy and,
further, [|UP|a'(Q")|R' Jgll< (L+¢)(a'(T)+¢). Since ¢ iz arbitrary, it
follows that o is splitting.

"14. Remark. If the solution to Problem 10 is “yes” then Theorem 13
is immediate from Lemma 3(c).

3. EXAMPLES OF SPLITTING QUASINORMS

15. LmvMA. Let m>=1 and N: A™ — R+ be a continuous function
such that, for all ie A and te ™, N (M) = 1Al IV (t).
(@) If Yy orns Yme T and G =Hn{y,, ..., ¥} = F then

SUPN (Y1) 0>5 - ooy Wmy B)) = SU-II}NK?/M DYy eens Yoy D)
ch’l belly

and

sup /N(<y17b1>7---’<ym7bm>) = fup lN(<'£117b1>7'-~’<?/m7 bm>).

b],...,bmeG‘l bl,...,bmeFl
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'(b) Let @yy ..., Oe B'. We define P: B —A™ by
P$=(<w7al>7~-~’<waam>) (ze B)

and write G = P(H) c A™ If ye@ we write [ly| = inf|P~'y|l — then ||
is a norm on Q. We write pry, ..., pry, for the projection maps: G — A
Then .

SUp N (<Y, 2710, -y <Y PPmy) = SUPN (KB, 4135 +ooy <2y W)
yeGy . . xe k) ‘

and
Sup N(Y1, 9705 vy WYms PTd) = SUP N1, 0050y LBy W)
Yol G LY sennsllyp €1 )
©) If tyy ey e B then
SUP NV ({@yy £y ooy Oy &) = SUPN (B, @13, .- ¢y (B, @)
ESE’I’ xeHy .
and
Sup Ny, &0y vey (s Ed) = SUD N (B, 605 vy By OnD)e
- Bpreenrtig By
Epeesbg B,

Proof. We first observe that the continuity of N ensures that all
the suprema above are finite. We shall prove the second equality in each
case and leave the proof of the first to the reader.

(a) “2"’ is trivial and “<” follows from the Hahn-Banach Theorem.

(b) Foralli =1, ..., m, a; = pr,oP. “="is immediate since ||P|| < 1.
Let 45y .ers YmeG: and e> 0. Choose 2y, ...,%,¢H such that, for all
t=1,...,m, Pz; =y; and gl <1+e Then

N( Y1y 2705 o5 Yoy PPe)) = (1+£)N(<£Ta, a1>’ "'1<i‘z‘_7|1“_7";: “m>)
<) SuD Ny )y ey Wy )

and “<” follows on taking the supremaum over ¥4y,..., Yy, and letting
e 0. i

(0) “=7 istrivial. Let &, ..., £, By . Then there exist nets g;, ..., ¢
in B, such that, for all ¢ =1, ..., m, Jyop, > & in w(B', B') and, by
passing to product nets, we can suppose that ¢y, ..., ¢, are indexed by
the same directed set. Then

(LP1y @)y ooy Py W) = ({85 EDy v ey <“m7fm>) in o™,

Since N is continuous,
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N(Kay, £, ..., Oy Epp) < suUp N K@y, @15 vy By, )

LYseensilyy €17
and “<” follows on taking the supremum over &, ..., £« B

16. THEOREM. We suppose that M, N: Uz ™ = Z* and, for all
m =1, M|A™ and N|A™ satisfy the conditions of Lemma 15. IfTe Ly(E, F)

we write
90,5 (T)
= inf{ sup ,M(<m1,al>,..., Py @) N (Y15 B); +ony Wy D)}
5 4
g, (T)
= inf{ sup M (w0, ..., <, W) N (KY1y DDy eeny Wy Bd)}
BB sl e By
82z, (T)
= inf{ sup M@y @335 ey By B) X

LY g0ens Ty €T DY s0nns Dy e Iy

XN (s 0135 o5 <Yrmy D)}
tun(T) =t sup M@, a;), .05 <8, amd) N (Y1y By, -y Yy BV}

weBybel

where, in each case, the “inf” is taken over all finite sets {@1y ooy Gy} < B

m
and {Y1s oo Ym} = F such that T =3¢, a>y;. Then
=1

() gae,ns Garovs Sarw and iy ave all splitting quasinorms on Ly,

(b) ary = A Arrw = Gov,or Shoar = S0z ond iy = Gy .

Proofs. (a) In all the cases the two inequalities of Definition 3 are
easily verified and the two inequalities of Definition 7 are established
using Lemma 15(a) and (b).

(b) It follows easily from Lemma 15(c) that, if T'e Ly, then dy 5 (T")
< P (1) and gy (T < Ay, (T). From the first of these relationships,
with ' veplaced by 7', @y, y(T"") < gazn(T'). Thus

Ay (T") < Gare (L) < iy, pe ().
Hence, from Lemma 9(c), gy y = dy.g The: other relationships are

proved with similar arguments.

17. Remark. We ghall continue the study of the above four gquasi-
norms in Theorem 48.

18. CoROLLARY. We suppose that 0 < p < co and 0 < ¢< oo, If
TeLy(ll, F) we write (with the usual comventions about the cases P = oo

2 — Studia Mathematica XLVIL3
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and q = o)

gMﬂ=MKZMMW§%;wMWWL
(T = inf {2}? ( 2 <, apl?)"( ;\ ",
8p,q(T) = inf {( leain”)”p ( ZH?HHG)M};

: I
ipgD) =int{ S (X<, apP)? (3 <y, 0319)].
zeEp,beFy g i
Then gp s Apgy Spg And Gy, are splitling quasinorms on Loy 9pgq = Qyps

Org = Japr Smg = Sgp O Gpg = lgp-
‘Proof. Immediate from Theorem 16 with M (f) = (2 [t,-]")l/l’ and
N@) = (D[99 (m =1, e ™). i
%
19. Remark. g, and d,, are identical with g, and d, as defined in
([81; Section 3) if we identify L,(E, F) with H'QF. One can easily see
that g, (L) = A (1) =inf{21]ai|[|]yi|l}. We shall continue the study

of the above four quasinorms in Lemma 51.

4. THE TRACE

20. DEvmNITION. T T'e Ly(B, B”) and T = 3<-, > & (a1, .-, tpe B’
and &, ..., £,¢ B') then 2 {a;, &, which is independent-of the represen-

tation of 7' chosen, is known as the irace of T and is written trT.

21. LevmmA. (a) If TeLy(B,¥F) and VeL(F,E) then trdgVID
=trd TV =trdpT V'

() If TeLy(F',B) and VeL(F,HB) then wdglV =l JgV
=trd g V' T

(¢) If TeLy(B",F) and VeL(F,B") then trJplV =tel' V'Jp.

(@AY If @yyeves Gpe B and Ygy...,YpeF we write T = >'{, apy,

N ‘ i
eLoy(B, T) and T = X <a;, >yic Ly(B", F). Then, for all Ve L(F, '),
. i

tr VI = tedzTV.

@) If @y .oy e B and gy, ..., mpe B we write T = 35 a1
< Ly(B, F"') and T = 3<a;, ynic Lo(B", B"). Then, for all Ve LT, F'),
VT =tV Jp °

Proofs. Immediate from Definition 20.
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5. AN APPROXIMATION RESULT

22. Lemua. We suppose that a 'is right  splitting, Ve L(F, B),

I}LG Lo(B, F"), a(T)>0 and > 0. Then there exists W e L,(E, F) such
that

) ted y WV — 62TV < &
and
(5) a(W) < o(T).

Proof. We choose 6 > 0 such that 25 [t TV]| < (14 8)e. From Lemma
9(a) there exist a finite dimensional subspace H of #”' and Re L,(®, H)
guch jﬁhat T =IR and a(R) < (L+6)a(T), where I<Ly(H,F") is the
inclusion map. Then there exist a,, vy e B and 2, ...,2,¢H such
that T = ;(-, @y %;- From ([10]; Corollary 7) (see also [7]; Lemma 6),

there exists Ue L,(H,F) such that 101<1 and
);’(V'aﬁ-, JFUzi*fo < £[2,
ie.,
trdp URV —tx TV < /2.
We write W = (14 6)"URe¢ Ly(E, F). Then .
!ﬁrJFWV—ﬁ'TVI <@L+ e dp URV — 2T V|4 §(1+ 8) [t TV] < ¢

and 8o (4) is true. On the other hand, a(W) < (1+ 8)"||Ulla(R) hence (5)
is true.

6. THE FUNCTION o?
23. DEFINITION. It Ve L(F, E) we write
aP(V) = sup{|teJ,TV|: TeLy(EB,F),a(T)<1}.
24. LEMMA. If o is vight splitting and Ve L(F, E) then
a®(V) = sup{[xTV|: TeLy(B, F"), a(T) <1}.

Proof. “<” is immediate and “>” follows from Lemma 22.
25. TEBOREM. If a is loft splitting then o'® = o',
) Proof. Let VeL(F,E). If TeLy(B,F) and o (T)<1l then
T'e Ly(F', B') and a(T') <1 hence, from Lemma 21(a)

[rdpTV| = [trd 5T V'| < (V') = a® (V)
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hence, taking the supremum over 7, o'P(V)< o« (V). If, on the other
hand, T'e Ly (F', B') and a(T) < 1 then, from Lemma 8 (b), T ge Ly (B, F')
and o (T'Jg) < 1. From Lemma 8(c), o is right splitting hence, from
Lemma 24 (with o replaced by o') and Lemma 21(b)

dP(VY= e Tz V] = eI pTV'].
Hence, taking the supremum over T,

dP(V) = o® (V') = oP(V).

. 26. Remark. The result of the following theorem should be compared
with that of Theorem 11.
27. TEHEOREM. If a is splitting then o = oP.
Proof. Since e is left splitting, from Theorem 25, o = o'?. From
Theorem 13, o is left splitting hence, from Theorem 25 again, a'?’ = o''P.
From Theorem 11, ¢'? = oP.

D

7. MORE APPROXIMATION RESULTS

28. LmmmA. We suppose that a is vight splitting, Ve L(F,B"), T
eLy(T', B, o(T")>0 and &> 0. Then there exists WeLy(H,F) such
that [ttVW —twd g TV Jg| < & and o(W) < o(T").

Proof. We proceed as in the proof of Lemma 22, choosing 8, H
and R with T replaced by T and B by B''. Then there exist @y, ..., a,, ¢ B
and %, ..., 2,c H such that 7' = Y {a;, ->2;. We then continue ag in

%

the proof of Lemma 22, choosing U with V' replaced by V'Jy. We can
then take W = (14 8)~ URJ .

29. LEMMA. We suppose that a is right splitting and Ve L(F, B').
Then )

o P (V' I ) < sup{{eVT|: TeLy(E, F), a(T) <1}
Proof. Immediate from Lemma 28 and the definition of a'D(T7 "I )
30. LimmwmA. We suppose that a is left splitting and Ve L(F, B"). Then
(V)< PV T ).
Proof. If Te Ly(B", F) and a(T) < 1 then T"e Ly(F', B'"') and, from
Lemma 8(b), o’ (T') < 1. Hence, from Lemma 21(e),
(V) = sup{ltrd z TV]: Te Ly(B", F), o(T) <1}
=sup{[teT' V'Jgl: TeL, (B, F), a(T) <1}
< sup{{tr TV Jpl: TeLy(F, B"), o' (T) <1}

icm
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From Lemma 8(c¢), o is right s_‘plittlng The result follows from Lemma 24
with a, B, F and V replaced by o', F', B and ¥V’ J g, respectively.

31. THEOREM. If a 4s splitting md VeL(F,E") then
(V) = sup{[ttVT|: Te L,(H, F), a(T) < 1}.

Proof. If Te Ly(B, F) and a(.’l’) 1 we define TeL o (B, F) ag in
Lemma 21(d) Then [txVT| = |trJ FTVl On the other hand, from Lemma
9(b), a(T) = a(JpT) = a(T") and, from Theorem 11, o(T") = a(T) < 1.
Hence a(_’l’) 1 and so [trVT| < o®(V). On taking the supremum over T,
we obtain “=". “<” is immediate from Lemma 29 and Lemma 30.

32. Remark. The result of Corollary 33 should be compared with
that of Lemma 9 (b).

D33 COROLLARY. If a is splitting and Ve L(F B) then oP(JgzV)
= a’ (V).

Proof. From Theorem 31, of(J5 V) = sup{|trd; VT|:
a(T) < 1}. The result follows from Lemma 21 (a).

34. Remark. The result of Corollary 35 should be compared with
that of Corollary 12 (b).

35. COROLLARY. If a is splitting and Ve L(E',F') then o®(V'Jp)
= o(V"). ,

Proof. From Theorem 3L with F and V replaced by F' and V7,
respectively,

TeLo(E, F),

aP(V') = sup {jtrV'T|: TeLy(B, F"), a(T) < 1}.
If Te Ly(B, F') and a(T) <1 we define Te Ly(B”, F") as in Lemma 21 (e).
Then [t V'T| = ]trTV Jpl. Arguing as in Theorem 31, a(T) 1. Hence

(V') < sup{|te TV JTpl: Te Ly(B", F"), a(T) < 1}.

Thus, from Lemma 24 with ¥ and V replaced by B and V'Jp, respect-

" ively, a®(V') < o®(V'Jy). The reverse inequality follows since a?(V'dJ )

< (V) gl

8. D,, REASONABLE QUASINORMS AND NORMS

36. DEFINITION. We write D, (F, B) = {V: Ve L(F, B), a®(V) < oo}.

37. THROREM. If a is left splitting then D, = D,. If a is splitting then
D) =D,.

Proof. Immediate from Theorem 25 and Theorem 27.

38. DerINITION. We say that a quasinorm a on an ideal 4 is reas-
onable if, in (¢) of Definition 2, a(<-, ad>y) = |la] |l¥].
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39. Levma. If a is a reasonable quasinorm on am ideal A them, for
all Ted, |T|< a(T). In particular, a(T) =0 =T = 0. Further, o' is
a reasonable quasinorm on A’.

Proof. We prove only the first assertion. (This proof was suggested
by some remarks of A. Pietsch.) Let Te A(H,F) and xe B. Define §
eL(A, B) by 8(A) = Az (Ae ). Then ||8|| = |jz||. Further, T'S(1) = A(Tx)
(Ae ). Hence a(T8) = ||T=|. Thus

[T#] = o(T8) < a(T) 18] = a(T) .

The result follows.

40. DEFINITION. We say that a quasinorm « on an ideal A is a norm
if o is reasonable and, further, in (d) of Definition 2, a(8-+T) < a(8)+
+a(T). If a is & norm on an ideal A then o' is a norm on A'.

41. Remark. We now return to the convention of Notation 6.

42. LEMMA. If a 98 reasonable then D, is an ideal and oP|D, is & norm
on D, (even if o fails to be a norm on L).

Proof. Let be F', e B and V = (-, bYae L(F, E). From Lemma 39,

o®(V) <sup{ltrdpTV|: Te Lo(B, F), |T]| < 1}

= sup{KTz, b)|: T« Lo(H, F) )2 I <13 < [l o]«

On the other hand, if ac By, y< F, and T = (-, ayye L(H, F) then, since
a(P)<1, (V)= ]trJFTV| [z, a) {y,b)| and so, taking the supre-
mum over & and y, a®(V) = o] |lb|. We leave the rest of the verlfleatlon
to the reader.

43. BRemark. If ¢ is a norm on L,, by abuse of notation we shall
write (Lo(Z, F), o) for the normed space (Lo(E, F), a|L,(H, ).

44. THEOREM. If o is a splitting norm and VeD (F,H'’) then th
map ¢ of Ly(E,F) into A defined by

(6) p(T) = VI (TeL,(H,F))

8 n ( ol B, F), a)' and, comversely, any element ® of (Ly(H, F), a) can
be put in the form (6) for a unique Ve D, (F, E"). Further ||p|| = o2 (V).
Proof. This is immediate from Theorem 31 and the usual techniques.

45. COROLLARY. Let a be a reasonable splitting quasinorm. Then o is
a norm < for all Te Ly(E, F),

) o(T) =sup{lx VI: Ve D (F, E"), oP(V) < 1}.

Proof. («) is immediate and (=) follows from Theorem 44 and the
Hahn-Banach Theorem.

icm
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9. CONTINUATION OF SECTION 3

46. DrriNITION. We suppose that m > 1 and M: ™ — #+. We say
that M is increasing if ¢, ue &™ and [ < |u| (ie., for all ¢ =1,...,m,
[t:] < |u;|) imply that M(¢) < M ().

47. LevmmA. We suppose that m > 1 and M: A™
and increasing. Then

—R* is continuous

sup M ({®y, a1, ...
wl,...,xmcEl ’
Proof. “<” follows since M is increasing and “>” since M is contin-
uous.
48. TumorEM. We suppose that M and N are as in Theorem 16. We
define M': \J A™ > &* by

m=1

? By @) = M ({laa; - llaml))-

m
=sup{’ | te A ME) <1} (m>1, we ™).
i=1
(a) Suppose that, for all m = 1, M|A™ is increasing and Ve L(F, H),
and write o = gy . Then Ve D (F,E) < there ewists o Bt such that
@ M EVyll, .. 17yl <e sulz' N Y1y B>y ooy Yy D))
bsFl
for all m =1 and y,, ...
and, further, o®(V) = inf{o: o &, (8) is satisfied).
(b) As in (a) with a =S8y but with (8) replaced by for all m=>1
ARA Yy o ory Ype I,

M1Vl -

) Yme I,

Vil <e sup N(<ya, b, ..o

bl,...,bmsFl )
(e) Suppose that, for all m =1, N|A™ is increasing and Ve L(F, H),
and write o = dgry. Then VeD,(F, B) < there ewists g B+ such that
©) UV al, ., IV anl) < e SHP LDy @)y ey 85 @)
| for all m=1 and ay, .
and, further, a®(V) = inf{o: o &*, (9) is satisfied}.
Proof. (a) Let geZ*. Then a®(V)< o <

1 LYmy bd) -

¢
sy Ope B

for all TeLy(#,F), [txdJpTV]|< ga(T)
or equwalently, using Lemma 47 for all m>1, ay,...,a,¢H and
vy Yme I )
| 2<Vyi,ai>| QM (gl - lloml) S (Y1582, - Yims 1)

i=1. beF1 ;
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or equivalently, for all m =1, ay,..., ape By, te ™ and ¥, ..., Y, F

| Zt CVysy @) | < @M (1) SaD N (<Y1, By o5 Uy DY)

beF

and this is equivalent to (8).

We leave to the reader the proof of (b), which is very similar to that
of (a).

(c) From Theorem 16 (a), Theorem 11, Theorem 27 and Theorem 25,
a®(V) = a®(V") = «?(V'). However, from Theorem 16(b), o' = gy y
The result -follows from (a) and Lemma 15(c).

49. PrOBLEM. Under suitable conditions, find an mmlog of Theorem 48
for a =iy .

50. TEEOREM. We suppose that M and N are as in Theorem 16,
MONA) =1 and, for oll m>1 and t,ue ™, M)V (u)> | f’ B0ty
If @ = gu,ws G,y Sar,y OF Sag,y them a s a reasonable splitiing qu:zslinorm
on Ly, D, is an z‘deql and aP|D, is a norm on D,.

Proof. If ac®', ye F and T = {, adye Ly(¥, F) then

al)< sup  M((w; ad) N (<y, b))

ey, bely

= llaf g1 X (1) N (1) = |lal 5.

On the other hand, if T = ' ¢-, a;>y; then
1=1

Izl = sup | <@, 6> <y b |

zeEpbeFy 1=1

< sup , MLy @ay ey <8y @) N ((Yy b5 .0, Ymsy D).

xeBbel

On taking the infimum, [T < iy 5 (T) < a(T). Thus a is reasonable. The
rest follows from Theorem 16(a) and Lemma 42,

1 1 1
51l. LeEMMA. We suppose that ~+— = ——> 0 and that a = g,,,
Dpgs Spg OF By (see Corollary 18). If ;S'eL E F) and Te Ly(B, T then
[a (8+I)T < [a(8)I+[a(D)T.

Proof. ‘We prove the result for the case a = s,, and leave the other
ones to the reader. Let ¢ > 0. There exist ay, ..., a,, i1y ey Ope B and
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Yiy ooes Yms Yma1s + ) Yne I suchthat 8 =¢21 <hapyy, T = i Zl<‘: W Ysy
= i=mt

m m n

DHla? < Ta(8) -]y 21‘ ly:ll* < [a(8)+ T, ) erl ladP<[a(T)+ 1"

Fesm ] 1= T=m

and Y llydl® << [a(T) +e]". Thus

Fragiief 1
[a(8+D)T < [a(8)+ el + [a(T) + ]
and the desired result follows since e is arbitrary.
52. TuroREM. We stppose that o = g, ., dpq; Sp,q OF ip 4
11
a) If —4—<1 then a =0.
(@) If P

(b) If a»}«a;‘a 1 then a 8 a reasonable splitting quasinorm on L.

D, is am ideal and oP|D, is & norm on D,.
(e) If £+ — = 1 then a i8 a splitting norm on L,.
D

1 1 1 1
Proof. (a) We define > 1 by;—l—q— == If 5= 0 then p =g
= oo and the result follows easily from (e.g.) the case where p = ¢ = 1
So we suppose tha.ti > 0. Let T L,. From Corollary 18 and Lemma 51,
r

u

K
[a(T)]"sgz[a(%—)] = 9""[g(T)T. The result follows since 27" < 1.

(b) is immediate from Theorem 50. (c) is immediate from (b) and Lemma B1.
53. ProBruM. To find cases other tham that of Theorem 52(c) where the
fumction a of Theorem 50 is a (splitting) norm on Lq.
B4. PropLEM. To find a splitting norm on Ly that is not equal to any

. 1.1 . . .
of Gpry o,y Sppr OF Ty (54— 7 = 1). We con?ectwe ﬂmt‘ 1L (which
is obviously o splitting norm on Lo) has the required properties.

1 1
55. TonoreM. We suppose that;—l——q—; 1 and VeL(F,E).

(a) Let p 21, }——l-i =1 am,d @ = gpq- Then VeD, < there ewisis
P’
oe &t such that for all m=1 and yi,..., Yme Iy
1
(317w} < e sup (3 1w, DI
i bsFl i

and o (V) = inf{p}.
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(b) Let g=1, —1——{—i =1 and a = d,, Then Ve D, < there emists

oe &t such that for all m=1and ayy ..., ape B,

4 AL » 1/p
(;’nv i)’ <o sup (§1<w,ai>|”)

and aD(V) = inf{e}.
() If 0<p<l and a =g, , then VeD, and o®(V) = |V].
() If 0< g<1 and a = d, 4 then VeD, and o®(V) = |V
Proofs. (a) and (b) are 1mmediate from Theorem 48(a) and (c).
() If m>=1 and ¥4, ..., Y,e ' then

sup ([ 7yl < 1V sup iy < V1] sup (3 1<y, b1
v * beFl 3
and it follows from Theorem 48(a) that Ve D, and o (V) < [|V]. On the
other hand, it follows from Theorem 52 (b) and Lemma 39 (with o and 4
replaced by o” and D,) that |[V]| < oP(V). The proof of (d) is similar
to that of (e). .
56. Remark. The result of Theorem 55(a) is known in the case

1 1
—+E =1 (see [8]; Theorem 3.2) and gives that ¥ be g-absolutely

»
summing. The result of Theorem 55(b) is also related to known results

1 1
in the case 54—; =1: here a =d, 4; we write § = g, ,. Then, from

Theorem 37 and Ootollary 18, D, = D, = (D)’ so (b) gives that V'
be p-absolutely summing (see [2]; Prop. 3.2.7, p. 5l).

In general, Theorem 55(a) gives that V be (»’, g)-absolutely summing
and Theorem 55 (b) that V' be (¢, p)-absolutely summing. It thus follows
from Theorem 27, Corollary 38 and Corollary 35 that if 8 is either the
(r, 8)-absolutely summing norm or its “'” then for all Ve L(¥, ),

B(V") = B(JxV) = B(V)
and for all Ve L(E', F),

(see [10]; Theorem 17},

BV) = B(V'Ty).

57. TamoreEM. We suj)pose that%
Then

1 1
+2=5>0 and TeLy(B,F).

Spo(T) =

int {( Z eyl )"}

iom
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Proof. If T = %:(-,m)'yt then, from Lemma 51,
2 39,(Cy 4OU)" < ; s
and “<” i imroediate. On tﬁo other hand, as‘is well known,
( %j ) ( Z,{lyiuﬂ)‘“‘ > P o )

and g0 “x=" also follows.

8y, (I <

11
58. CoroLIARY. If 54-; =1 then 854 = 1,0 = G,

Proof. It follows from Theorem 57 that if Te Ly,(H, ¥) then
= inf { " iy}
1

Tt ig easily seen that gy, (T) and d, . (T) are given by the same formula.
1 1
59. Trmormys. We suppose that p=1, ¢=>1 and 54— Fiai >1

8p,o(T)

1 1
and we write T for the identity map from ly onto [ (;+ 7 = 1). Then
810,(1(T) ==, ‘ | n
Proof. We guppose that T :4§<" a>Yi (G, -en
Then.

ﬁ la " = Z( 2 | 2 519"

T=1 el j=l
( 3 1ae et
5’(2 e 51" Wi,ﬂlr\)

Z 2 (2 ;41 l%,jl)r gince r <1

Jmml el

) e (33) =15 and

Yiy ey Ymelg)

m

> 3| el
J

=l el

= 3 <z, ¥

i=1
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where ¢, .
are the coordinate functionals on Ij. Hence

n

2 !l > 5’ =

and it follows from Theorem 57 that s,
from the standard representation of 7.

I = “<” iy immediate

S| =

60. CorOLLARY. We suppose that p > Lg=>1 and }-—l—EE =—>1
P

and we write U for the idewtity map from 1%, onto 1. Then S (T) = nih,
Proof. We write V for the identity map from I% onto I, and W

for the identity map from I} onto Zj;. Then the map T of Theorem 59 can

be written as WUV hence
M = 8p,0(L) = 8o (WUV) < |[W]ls, (V) < 8p,o(U)-

“< is immediate from the standard representation of U.

61. Remark. The result of Theorem 62 should be compared with
those of Theorem 55.

62. TemorEM. We suppose that p
VeL(F,R).

1 1
=1, ¢g=1 and1—0—~}—g>1 and
We write a =s,,. Then VeD,(F,B) and o«P(V) = ||V].

1
Proof. Since g\l

‘%]l—‘

1
=;, we have p’=>gq. Hence, for all

mz1land ¥y, ..., Y, el

(3 st < ( S 1vsaf <iv( 3 o

and it follows from Theorem 48(b) that VeD,(F, B) and o®(V) < ||V].
On the other hand, it follows from Theorem 52(b) and Lemma 39 (with «
and A replaced by o” and D,) that |V| < o®(V).

63. Remark. We have already observed in Corollary 45 that the
inversion formula (7) fails if o iy a reasonable splitting quasinorm but
not & norm. Corollary 60 and Theorem 62 give the even stronger result
that it is impossible to recapture o from o.

10. LIFTABLE QUASINORMS

64. DEFINITION. We say that a quasinorm a on I, is liftable if, when-
ever TeLy(H,F), I: H—F is an isometry (into) and ¢> 0 then there
exists Ue Ly(B, F) such that T = UI and a(U) < a(T)+e.

.., 6" are the usual basic elements of Iy and b, ... pe>

icm
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65. LeMMA. We suppose that M, N ave as in Theorem 48(a). Then

Gy, ol Sy are liftable. In particular, g, , and s, , are liftable.

Proof. These results are immediate from Lemma 47 and the Hahn-
Banach Theorem.

66. TurOREM. Let o be liftable, We L(F,H) and I: H -~ E be an
isometry. Then o (W) = o (IW).

Proof. Let ¢6> 0, TeL,(H,F) and o(T)< 1. Then there exists
UeLy(I, F) such that T = UI and o(U) <1+e Thus

ted pTW| = |trd  UTW| < a(U) e (IW) < (1+£) o (IW).

Taking the supremum over 7' and letting & —0, o?(W) << o®(IW). The
reverse inequality is trivial.

67. NoraTioN. By abuse of notation we write a® for a®|L,.

68. COROLLARY. If a is a reasonable liftable quasinorm on L, then o
18 @ right splitting norm on L. :

Proof. Immediate from Theorem 66 and Lemma 42.

69. TuEoREM. Let a be a right splitting reasonable liftable quasinorm
on Ly and B a splitting norm on Ly. Then (a) = (b) < (c) = (d).

(a) If N =1 and Te L,(IX, F) then o(T) = B2(T).

(b) If N =1 and Ve Ly(F, 1Y) then (V) = (V)

(e) If B is a L -space for all A>1 and Ve Ly (I, H) then P (V)
= (V).

(d) oP is splitting.

Proof. ((a) = (b)). If Ve Ly(F,1Y) then, from Lemma 24,

aP(V) = sup{{teTV|: Te L1, F"), «(T) < 1}
= sup{[trTV|: Te L(IX, F"), f7(T) <1}
= sup{[trTV|: TeD,(1%, F"), 2(T) < 1}.

(b) now follows from Corollary 45 (with o replaced by §). (We note, in
passing, that if « is a liftable splitting norm then (a) < (b).)

((b) = (c)). B is given to be right splitting and we know from Corol-
lary 68 that o® is also right splitting. It follows easily from the definition
of a Z_, ;space (see [B]; p. 326) that (b) = (c) and it is trivial thatb
() = (b).

((¢) = (d)). Let T<L,(E, F) and s> 0. There exists an isometry
I: F — H, where H is a C(K)-space and hence a %, ;-space for all 1> 1.
From Lemma 8(a), there exist @, a surjection Pe L (¥, @) and @ « Ly (G, H)
such that

(10) IT = QP

D

from (a)

and  B(Q)|IPll < B(IT) +e.
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We write S for the identity map from I(F) into H. Since @ (§) = QP(E)
= IT(B) < I(¥F), we can define QeLo(G, I(F)) so that @ = S@ Finally,
we define U< L{I(F), F) so that IU = S. Then IT = QP = 8QP = ITQP
hence T = UZ)P. Further

o (UQ)|IP| < a®(Q)|P].
From Theorem 66,
P (@) IP| = ®(8Q)IP]| = a®(@)IIP]
henee, using (¢) twice and (10),
a®(TUQ) 1P| < a®(Q)|P|| = (Q)|1P]
S BIT) + & = aP(IT)+ e < o?(T) +&.

Thus o is left splitting. Tt follows from Corollary 68 that o is splitting.
70. Remark. We shall apply Theorem 69 in Theorem 76.

11. A PROPERTY OF g,

71. LeMMA. Let @, ..., % B; @y, ..., 4,¢ B and p > 1. Then
)
( Xiop ad<( 3 lade)” sup ( 3 1<ay, apie)™.
X i acly 7
Proof. Immediate.
79. LEMMA. If Te Ly(B, F), V< Ly(F,Eyp=>1,9>1 and £+}— =1
r q
then
lti‘JE VTI < gﬂ,q(T)gg,_’p(V)-
Proof. Lebt ay, iy e B sy ooy Ype B, byy ooy boe B and oy, ..., 0,
€ B be such that T = 3¢, apy; and V = Y ¢, b;>w,;. Then
7 7
T pTVI=| 3 <y, a5 iy b))
o

< (.5; l<mj,7 ai>lp)l/p ( Z <y, bj>lq)1/!l’

from Lemma 71
<{ 3 )™ sup (37 1<a I (3] 1511) ' s ( 37 i¢ay, ay)”.
ot BeF, % i aely 3

The required result follows on taking the infimum.

Splitting quasinorms and metric approwimation properties 227

1 1
73. QOROLLARY. If Te Ly, p> 1, ¢> 1 and 17+—q_ 21 then
Iaro(T) < gp o (T)-
Proof. This is immediate from Lemma 72 and Definition 23.

1 1
74. TeEoREM. If Te LI, ), p=1, ¢=1 and ;—&—-q— =1 then

gq)ip(T) = gp,q(-T)-

Proof. We prove the case p < oo and leave the case p = oo to the
reader. From ([4]; Proposition 3.1) (or, alternatively, by using a minimax
theorem) there exist 6,,..., 0> 0 such that Y6, = (g2,(T))° and

. k

for alloe 1y, [Ta|?< D) 0 lml?-
k

In what follows, I runs over those ke {1, ..., N} for which 0, 0. For
each such I we write ¢® for the Ith unit vector of 7¥ and a® for the Ith
coordinate functional on Y. Clearly

T = 2 &, 0}/’%“)) gl—llpTg(l).
i
If be Iy and w1 then
| > 0 <e, by | = KKTw, by < Tl < ( ] Olol)™
1 1

If we take a, to be 6;7']¢Te®, b>|%? multiplied by a suitable complex
number of absolute value 1 we obtain that

(3 Ko re®, bye) < 1.
1

‘We have proved thab

sup ( 3] 1671, by1) < 1.
bEF’l i

On the other hand
(3 1 a®e)™ = ( 3 6)'" = a2o(T)-
i 1 .

Hence gy, ((T) < g2,(T). The result now follows from Corollary 73.
75. Remark. The result of Theorem 74 can be deduced easily from
([6]; Satz 46, [6]; Lemma 7 and [6]; Lemma 11). We have preferred to
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give an independent proof since we ghall be proving a stronger result
than ([6]; Lemma 7) and ([6]; Lemma 11) later. See Remark 93.

11 R e
76. THEOREM. If p =1, ¢> 1 and ;4——!1- =1 then g5, s a spliliing

norm o L.

Proof. This is immediate from Theorem 52 (¢), Lemma 65, Theorem 69
(With a =g,,and f =g,,) and Theorem 74.

. ProBLEMS.

(a) If r>= s is the restriction to L, of the (r,s)-absolutely summing
norm spmtwg“l (See the discussion in Remark 56 )

(b) To find cases other tham that of Theorem 176 where Theorem 69
can be applied.

12. TOTALLY SPLITTING NORMS AND THEIR METRIC
APPROXIMATION PROPERTIES

78. DEFINITION. We shall say that a norm a on L, is fotally splitiing
if both a and o are splitting.

79. LEMMA. If o is totally splitting then so is o'

Proof. Tmmediate from Theorem 13 and Thecrem 25.

1
80. TurorEM. If p =1, ¢= 1 and 54——;— =1 then g,, and d,, are

totally splitting norms on L.

Proof. The g, , case follows from Theorem 52(c) and Theorem 76.
The d, , case follows from Corollary 18 and Lemma 79.

81. NorarroN. We shall suppose for the rest of this section that o iy
a totally splitting norm on I,.

We write  for the topology of simple convergence on L(F, E).

82. LEMMA. If Te Ly(H, F) then the map ¢ of L(F, B) into A defined
by

(11) (V) =t TV (Ve L(T, B))

is a T -continuous linear functional on L(F, ) and, conversely, any T -con-
tinuwous linear functional ¢ on L(F E) can be put in the form (11) for
a unique T e Ly(H, F).

Proof. See [1]; § 2 No. 9 Prop. 11 p. 77.

83. THrOREM. The conditions (a)—(d) on F are equivalent.

(a) For all B, {L,(F, B): a® <1} is T-dense in {D, (T, B): <1}
(b) For all B, {Ly(F,E"): o < 1}is T-dense in {D (¥, L’"), D1k

’f\

icm
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(c) For all B and TeLy(B,T), o(T)< oPP(T).

(d) For oll B and TeLy(H"', F), a(T) < oaPP(T).

Proof. It is trivial that (a) = (b). If (b) is true then, from Lemma 82,
for all T'e L,(B", F)

sup{{trd pLV|: VeD (F,B"), a®(V) < 1}

< sup{[trJFTVl VeLy(F,E")
Hence, from Lemma 21(d), for all Te¢ L,(E, F)
sup{|tr VI|: Ve D (F, HB"), (V)< 1}
< sup{{trVI|: Ve Ly(F, B"), a®(V) <1}
and (c) follows from Oorollary 45 and Lemma 24 (with B, ' and o replaeed
by F, B and o, respectively). If (c) is true then, ﬁ"om Corollary 45 and
Definition 23 (with #, F and « again replaced by F, E and o, respect-
ively), for all Te L,(H, F),
sup{[ttVT|: VeD,(F, E"), P (V) <1}
< sup{|trJFTV] VeL,(F, B), «® (V)< 1}.
It VeL(F, B) then JzVeL(F,E") and, from Lemma 21(a), tr(J5 V)T
= trJpTV. Since a®(J5V)< (V)
(12) sup{|{trJpTV|: VeD,(F, B), (V) <1}
<sup{ltrdpTV|: Ve Lo(F, B), o®(V) < 1)
and (a) follows from Lemma 82 and the bipolar theorem. We have proved
that (a), (b) and (e) are equivalent. It is trivial that (c) = (d) and we
can prove that (d) = (b) by analogy with the proof already given that
(c) = (a).

84. DEFINITION. We say that a Banach space F' has the a-metric
approximation property (a-m.a.p.) if (a), (b), (¢) or (d) of Theorem 83
is satistied.

85. THROREM. If I has the a-m.a.p. then so does I

Proof. If TeL,(E, F) then, from Lemma 9(b) and Corollary 33
(with B, F and o replaced by F, E and o, respectively)

a(T) = a(J5T) < a®P(JpT) = oPP(T).

86. TumorEM. The conditions (a)-(d) on a Banach space ¥ are equi-
valent.

(a

(b

(e

(d

, (V) <1).

B’ has the o'-m.a.p.

For all By {Lo(B', F'): a'P < 1}is T-densein {D,(B', F): o'?
For all F and Te Ly(F', B, «'(T) < aPP (T).

For all ¥ and Te Ly(B, F), a(T) < «®2(T).

<1}

~— =

=
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Proof. It follows from (a) and (b) of Theorem 83 that (a) < (b),
and from conditions (c¢) and (d) of Theorem 83 that (a) < (¢). If (c) is
true and Te Ly(E, F) then o' (T') < o’PP(T") and () follows from Theo-
rem 11 and Theorem 25. If (d) is true and T'e L,(#", F') then, frpm (d)
(with F replaced by F''), a(T"Jg) < aPP(T'Jg). It follow§ from Corollary
12(b) (with F replaced by F’) and Theorem 25 that () is true.

87. TuEorREM. If B has the o'-m.a.p. then, for all F

{V': VeLy(P, B, ®(V)< 1} is T -dense in ‘
{V': VeD(F, ), a® (V)< 1}.
Proof. Let TeLy(F',B'). Then, from Lemma 21(b), Theorem 27,
Corollary 45, Theorem 86((a) = (c)), Theorem 25, Corollary 35 (with
E, F, « and V replaced by 7, B, «” and T, respectively), T]}eorem 31
(with B, F, « and V replaced by F, B, ¢® and T'Jy, respectively) and
Lemma 21 (b) (in that order)
sup{|trd m TV'|: Ve Do(F, B), ”(V)< 1}
= sup{{trd . V' 'T'|: Ve D (F,B), o® (V)< 1}
L sup{{tr VI'|: Ve D (F', B}, P (V)< 1}
='a(T) <aPP(T) = a”’(I') = aPP(T"Jp)
= sup{[trT Iz V|: VeL, (T, H), P(V)<1}
= sup{|trdm TV'|: VeL,(F, B, (V)< 1}.

The result follows from Lemma 82 and the bipolar theorem.

88. DEFINITION. F is said to have the metric approvimation property
(m.a.p.) if 1y is in the F-closure of {L,(F, F): |-|<1}. The m.a.p. is
equivalent to the ¢-m.a.p. where a = g; ,, = d, ;. (See [3]; Proposition 39,
p. 179.) (¢ = ||| by virtue of Theorem 55(c) and (d).)

89. TuroreM. If F has the m.a.p. then F has the a-m.a.p.

Proof. Let VeDy(F,B) and o® (V)< 1. It TeL,(E, ) then TV
e Ly(¥, F) hence, from Definition 88 and Lemma 82

e p(TV )1l < sup{[trdm(TV)Ul: Ue Ly(F, F), |U|| < 1}
hence )
e pTV| < sup{ltrd zgTW|: We L,(F, B), " (W) < 1}.
‘We have established inequality (12) and the result follows from the proof
of Theorem 83.

90. COROLLARY. If E' or F has the m.a.p. them, for all Te L (B, F),
a(T) = oP2(T).
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Proof. Immedjate from Lemma 79, Theorem 89, Theorem 83 and
Theorem 86.

91. COROLLARY. If B has the m.a.p. then
{V': Ve L,(F, B), a®(V)< 1} s 7 -dense in
{V': VeDy (T, B), ®(V) < 1}.

Proof. Immediate from Lemma 79, Theorem 89 and Theorem 87.
92. TerorEM. The following conditions on a are equivalent.

(a) Bvery Bamnach space has the a-m.a.p.

(b) PP is splitting.

(¢) aP? 45 right splitting.

(@) aP? is left splitting.

Proof. If (a) is true then, from condition (e) of Theorem 83, o = a®?
(on L,) hence o? is splitting, i.e., (b) is true. It is trivial that (b) = (e)
and (b) = (d).

If (c) is true, Te Ly(B, F) and ¢> 0 then, from Lemma 9(a), there
exists a finite dimensional subspace H of F and Re L,(E, H) such that
T =IR and a”(R) < o”P(T)+¢, where IeL,(H,F) is the inclusion
map. Since H is finite dimensional, from Theorem 83 ((a) =(e)), a(R)
< o«”P(R). Thus «(T) = o(IR) < a(R) < a®P(R) < oPP(T) +e. Since & is
arbitrary, we have established condition (e) of Theorem 83. Hence (a)
is true. : o

If (d) is true, T'e Ly(H, F) and ¢> 0 then, from Lemma 8(a), there
exists a finite dimensional space @, Pe Ly (¥, ) and Qe Ly(G, F) such
that T' = QP and o”P(Q)||P|| < «PP(T)+ &. Since @ is finite dimensional,
from Theorem 86 ((b) = (d)), a(@)< «”?(Q). Hence a(T) = a(QP)
< a(@) 1P < aPP(Q)1P)| < aPP(T) o Since & is arbitrary, we have
again established condition (¢) of Theotem 83. Hence (a) is true.

93. Remarks. If we take a = g, in Corollary 90 (where 1 < p < o)
we obtain: if B’ or F has the m.a.p. then, for all Te L (&, F), .

gﬂ,p’('T) = gp,p'DD(T) .

We shall see in Corollary 96 that, in the notation of [6], (13) can be rewrit-
ten

(13)

Ip.0 (L) = 1,(JpT)

thus this case of Corollary 90 generalizes ([6]; Lemmas 7 and 11) in which
it is proved that

g:p,jz‘(T) < "p(T) .
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If we take a = ¢, ., in Corollary 91 we obtain: if E' bhas the m.a.p.
then

(V': Ve Lo(F, B), [V <1} is #-dense in {V': Ve (¥, B), V| <1}.

This generalizes the footnote on ([6]; p. 38) in which F = F and the
density is applied at Iy = Ige L(H', B').

Theorem 92 shows that it is not entirely trivial to decide whether
91,072 = |[IP is splitting. It is, however, not hard to prove that g, "7
and d,,”P are splifting.

Fma]lv, in all the “density” conditions in. this section we can replace
7 by the topology of compact convergence. (See [3]; § 5, No. 2, Lemma 20,
p. 178.)

13. CONNECTIONS WITH p-INTEGRAL MAPS
AND RIGHT p-INTEGRAL MAPS

94. TarorEM. We suppose that the notation is as in Theorem 69 and
that condition (c) therein is satisfied. Let F be a dual Bamach space and
TeL(B,T). Then TeD p(H, F) < there ewists Qe Dy(C(H,), F) such that
T = QP, where Pe L(E O(B,)) is the canonical map. Further, for any
such factorization aPP(T) < BP(Q) and there exists such a factorization for
which «PP(T) = pP(Q).

Proof. It follows from condition (¢) of Theorem 69 thatif @ is a £, ,
-gpace for all 1> 1 then, for all Qe L(@, F), aP?(Q) = 2(Q). Thus if
T =QP, where P and @ are as in the sta,tement then T'eD p(H, F)
and PP (T) < |Pla®P(Q) = |P|B2(Q) = 2(Q). Conversely, we suppose
that .’[’eD o&EF). From Definition 23 (with B, I and « replaced by F, B
and o7, respectlvely) the map ¢ of L (¥, F) into o defined by

o(V) = ted5 VT  (VeILo(F, B)

is in (Ly(F, B), «®) and |¢| = a®2(T). From Theorem 66 and condi-
tion (c) of Theorem 69, the map V — PV is an isometry of (L,(F, H), a®)
into (L (F, 0( D)5 ﬂ}. From the Hahn-Banach Theorem, there exists
pe Ly((F, C()), ) such that || = (¢l and, for all VeLo(F, B), H(PV)
= (V). From Theorem 44 (wmh B, F and « replaced by Z, O(Dl) and. f,
respectively), there exists T'e Dﬁ(O (), F") such that g2(T) = ¢ and,
for all We Ly(F, C(B)), (W) = teLT'W. Thus, for all Ve Ly(F, B)

I pTV =trdz VI = (V) = p(PV) = tr TPV

Hence JzT = T'P. Since Fis a dual Banach space, there exists U< L(F", F)
such that [|U)} <1 and UJyp = 1. Hence T = UTP and the result follows
since f2(UT) < 2(T) = lIp]l = llgll = o®2(T).

icm°®
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95. THEOREM. Let 1 < p < co and o = Gp,pr» L6t F be a dual Banach
space and T'e L(B, F). Then (with I, and ¢, as in ([6]; Sections 3 and 9)

TeDp(B, F) < TcL,(B,F) and then a®2(T) = 4,(T).]

Proof. The result is immediate from Theorem 74, Theorem 69,
Theorem 94, Theorem 55 (a) and ([5]; Satz 46).

96. COROLLARY. Let 1 < p < oo and a = g, ». Let F be any Banach
(B, F) < JpTel,(B,F") and then

aPP(I) = (I 5T).

Proof. This result is immediate from Corollary 33 (with B, F and o
replaced by ¥, F and o, respectively) and Theorem 95.

97. Remarks. Corollary 96 justifies the comments made aboub
Corollary 90 in Remark 93.

It seems to be an open question whether TeL(®,F) and JzT
eI (B, F") = Tel, (B, F)(p +#2)

The proof of Theorem 94 is a generalization of that of ([6]; Satz 53).
Both ([6]; Satz 53) and ([3]; Proposition 27, p. 124) can be deduced from
Theorem: 44 and Theorem 95.

98. DEFINITION. In what follows (2, «#, x) will stand for a measure
space such that 0 < u(f2) < co and, if 1< ¢< p < oo, 8, , for the canon-
ical map L,(R, &/, u) — L,(2, o, u).

‘We suppose that Te L(H, F). I 1< p < oo, a loft p-setup for T is
a quintuple (2, &7, u, P,Q) where PeL(E,L,), Qe L(L,, F) and T
= Q8 P- A left co-setup for T is a triple (&, P, Q) where G = C(K)
for some compact Hausdortf K, Pec L(¥, @), Qe L(G, F) and T = QP.
If 1 <p < oo a right p-setup for T is a quintuple (2, «, u, P, @) where
PeL(B, Ly), Qe L(Ly, F) and T = @8, P. A right oo-setup for T 1is
a triple (&, P, @) where @ is a L, space (for a nonzero but not necessarily
finite measure), Pe L(H, @), Qe L(G, F) and T = QP.

99. LeMMA. Let Te L(E, F).

(a) If 1< p < oo and (2, o, 4, P, Q) is a left p-setup for JpT then
(@, A,y 1, Q' Iy, P'd ) is a vight p-setup for T' e L(E', H').

W) If1<p < coand (2, &, u, P, Q) is a right p-setup for JzT then
(2, o, u,Q Iy, P Jr,) s a left p-setup for T'< LT, H').

(c) If (G, P, Q) is a left (resp. right) oo-setup for JpT then (¢, Q" Jz,
P'Yis a right (resp. left) co-setup for T' < L(F', B').

Proofs. (a) and (b) follow from the Riesz representation theorem
and (c) from Kakutani’s results that the dual of a C(K) space is an L,
space and vice versa.

100. Remark. We can prove, with only minor modifications to the
proof given in ([6]; Satz 18), that, if 1<p < o and Te L(#, F) then -
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TeI,(E,F) <« there exists a left p-setup for T and then ,(T)
= inf {||Q[| ISl IPll: all left p-setups for I}. The corresponding, result
for p = oo is stated explicitly in ([6]; Section 9). These considerations
motivate us to make the following definition

101. DEFINITION. We suppose that 1 <p < oo and Te L(E, F). We
shall sayy that T is right-p-integral if there exists a right p-setup for 7.
I T is right-p-integral we write

0p(T) = Inf{QU ISyl IP]]: )l right p-sebups for T} (1< p < o0),
0o (T) = Inf {JQ|||P|]: all right oco-getups for T}.

We write R,(E,F) for the family of all right-p-integral maps from H
into F. It can be proved easily that (R,, g,) is a normed ideal. (Cf. [6];
Section 3.) .

102. TEmorEM. (a) Let 1< p < co and a =d, . Let F be a dual
Banach space and T < L(E, F). Then

TeD (B, F) < TecRyB, F) and then a®>(T) = o,(T).

(b) Let 1<p< o and a =dy,. Let F be any Banach space and
TeL(B,F). Then TeD p(E,F) = JpTeR,(B,F") and then oP?(T)
= gp(IpT).

(e) Let LK p < oo. If B or F has the m.a.p. then, for all Te Ly(H, F)
dp',g‘;(T) = Qp(JFT)

Proofs. We shall prove (a). (b) and (c) then follow exactly as in the
“left” cases we have already established.

We write f = g,,. From Corollary 18, a = . Hence D p(B, )
= D;D(E, F). (from Theorem 25) = D_p(H, ) (from Theorem 76 and The-
orem 37) = D (B, F). Further, it Te D _,(E, F) then o”’(T) = f'PP(T)
= PP(1"). Hence, from Thecrem 95,

TeD (B, F) and o??(T) < 4 < T'e¢ I,(F, B') and 4,(T") < A.

If this latter condition is satisfied then there exists a left p-setup for T
such t}m’n {. .,.,} <,f1‘ From Lemma 99 (a) or (¢), there exists a right p-setup
for "¢ L(E", F") such that {..} < 4, ie, T"c R,(B", F") and ¢,(T")
< . Binee F'is a dual Banach space, there exists Ue L(F", F) such that
[UI<1 and UJp = 15. Hence

T = UJpl = UT"' Jge Ry(B, F) and o,(T) < | U] o (L") W gl < A
It follows that

“it TeD p(H, F) then TeR,(H, F) and g,(T) < a®?(T).

icm
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The reverse implication and inequality are somewhat simpler and use
Lemma 99(b) or (c). We leave the details to the reader.

103. PrOBLEM. Is it true that Te L(B, F) and JpT< R, (E, F') = T
<R,(E, F)? (Cf. Remark 97.)

14. CONNECTIONS WITH MAXIMAL IDEALS

104. Remark. If B is an ideal and 8 is a norm on B then the pair
(B, B) is said to be perfect or mamimal (see [7]; Section 4) if the following
is true:

If Ve L(F, B) and sup {f (PVQ): dim@G < oo, dimH < co,Pe Ly(H, @)
Qe Ly(H, 1), |PI <1, [Q <1} = A < oo then Ve B(F, E) and p(U) < 4.

‘We shall show in this section that the theory of maximal normed
ideals is equivalent to the theory of the normed ideals (D, aP|D,) (see
Lemma 42) where a is a reasonable splitting quasinorm on L,. This dis-
cussion will be continued in Remark 107.

105. LEMMA. (a) Let y: Ly — &7. If Te Ly(E, F) we write

(14)  ¥S(T) = int{|Qlly(1)|P|: dim@ < oo, imH < o0, Pe Ly(H, &),
Te Ly(G, H), Qe Ly(H, F) and T = QTP}.

Then S is a splitting quasinorm on L.

(b) If y is a reasonable quasinorm on L, then yS is a reasonable splitting
quasinorm on L.

Proof. (a) We leave to the reader the details of the proof that »S
is a quasinorm on'ZL,. Clearly, if ¥ and F are finite dimensional and
TeLy(E, F) then y5(T) < y(T) from which for all Te L (E, F),

Y(T) = mt{QyS(DIPIl: ...}

and it follows easily from this that »® is splitting.

(b) Let ae B'N\{0}, ye {0} and T =, a>yeLy(8,F). Then
¥3(T) = y(T) = |lall|lyl. On the other hand, we can write T = QTP, where
G=A, H=AycF, P=acLyB,&), QcL,(H,F) is the inclusion
map and TeL,(G, H) is defined by T3 = dy (Le@ = o). Hence »5(T)
<Ry (D) IP] = lall iyl

106. THEOREM. (a) If a is a reasonable splitiing quasinorm on L, then
(Dy, &®|D,) is @ mazimal normed idedl.

(b) If (B, B) is & mamimal normed ideal and g% Ly —> & is as in
([7]; Section 3) we write a = f*. Then ais a reasonabls splitting quasinorm
on Ly and (B, f) = (D, a|Dy)- :
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Proof. (a) We suppose that V< L(¥, E) and that sup{a®(PVQ): ...}
=A< oo. Let 6> 0 and TeL,(Z, F) be such that a(T) < 1. Arguing

ag in Lemma 8(a) and Lemma 9 (a), there exist finite dimensional ¢ and H,

PeLy(B, @), QecLy(H,F), TeLy(@, H) suwch that |P|<1, [QI<L,
a(TY<14¢eand T = QTP. Then

I pTV| = [trd pQTPYV| = ltrJ 5 TPVQ| < a(T)a?(PVQ) < (1 -+ ¢)A.

On. taking the supremum over 7' and letting ¢->0 it follows that
VeD,(F,FE) and P (V)<< A

(b) Tt follows from Lemma 105 that o is a reasonable splitting quasi-
norm on L.

‘We suppose first that Ve B(F, E). Let Te Ly(H, F) and o(T) < 1.

For all £ > 0 there exist &, H, P, T and @ as in (14) such that ||Q||ﬂ*(f’) 1P
< 1-e Then )
[trdzTV| = |trd zQTPV| = |spurTPVQ| < p**(V) p*(T) |P) Q]

S L+ (V)< (1+2) (V)
from ([7]; T.emma 1 and Satz 2). On taking the supremum over T ahd
letting & — 0, it follows that Ve D, (F, B) and oP(V) < B(V).
We next suppose that VeD,(F, E). Let dimG < oo, dimH < oo,

Pe Ly(E,G), TGLO(G,H) and Qe L,(H, F). From ([7]; Lemma 1 and
Satz 2) again,
lspurPPYQ| = [T pQIPYVI < a(QIP)a®(V) < [Qlla(d) [P (V)
< aP(V)8+(D) 21 IQI
hence B**(V)< a®(V). Since (B, p) is perfect, VeB(F,E) and §(V)
< aP(V).

107. Remark. Let (B, f) be a maximal ideal and a be a reasonable
splitting quasinorm on L,. We shall say that (B, 8) is determined by o if
(B, B) = (D,, ¢”|D,). (We observe from Remark 63 that (B, ) may be
determined by many different o’s.) The following results are then imme-
diate from Theorem 25, Theorem 27, Corollary 33, Corollary 35 and
Theorem 106(b): we suppose that (B, ) is determined by a.

(a) (B, B)" is maximal and determined by a: (See [7]; Satz 11.)

(b) (B, B = (B, B). (See [7]; Satz 10.)

(¢) I VeL(F,B) and JgzVeB then VeB and §(V) = p(J5V).

(@) E.VeL(B,F) and V'JgeB then V'eB and B(V') = (V' Jyp).

Our Tesults are more general, in that we do not assume that a be
reagonable. .

icm
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15. (B, B') METRIC APPROXIMATION PROPERTIES

108. LemMA. We suppose that a is a splitiing quasinorm on L,
VeL(P, B, TeLyB',F), a(T)>0 and > 0. Then there emists W
< Ly(B'y F), W w(B, B)-continuous, such thai

[t g VW —trd VT < ¢ and a(W)< a(T).

Proof. We choose 6> 0 such that 28|trdzVT| < (L+68)e. From
Lemma 8 (¢), Lemma 9 (a) and Theorem 11, there exists a finite dimengional
subspace H of B and Re Ly (F',H) such that 7' = IR and o (R)
< @A+08)a (T = (L+8)a(T), where IeL,(H,E') is the inclusion map.
Since 7" is w (¥, F)-continuous, the same is true of R hence there exist
Yyy ooy Yme F and 2y, ..., 2,¢ H such that B = Z{’(yi, Seze Ly(F', H). It

follows from this that T = }'{-, 2,>yse Ly(E’, F). From ([10]; Corollary 7)
(see also [7]; Llemma 6) there exists Ue Ly(H , F) such that ||[U]| < 1 and

'2 VY, IgUs;—2;| < ef2.
7

‘We write

W = (14087 X (Usy Syse Lo(B', ).
i
W is clearly w(B’, B)-continuous. We can show exactly as in the proof
of Lemma 22 that |Jgz VW —trdzVT| < & Finally (cf. Corollary 12(a)),
W' = (1+6)"'Jz UR hence, from Theorem 11,

a(W) =o' (W) < (1+68)7" ' (R) < a(T).
109. THEOREM. If a is a splitting quasinorm on L, then .
{W: WeLy(B',F), W is w(E, B)-continuous, a(W) <1}
is T-dense in {T: Te Ly(H, F), a(T)< 1}.

Proof. This is immediate from Lemma 82, Lemma 108 and the bipolar
theorem.

110. Remark. The result corresponding to that of Theorem 109 with 7
replaced by the topology of compact convergence is also true. If a is
reagonable this is immediate from Lemma 39 and ([3]; § 5, No. 2, Lemma 20,
p. 178). If a is not reasonable we can proceed as in Theorem 109, except
replacing Lemma 82 by the fact (see [3]; Corollaire, p. 111] (essentially))
that if ¢ is a linear funetional on L(F, H), continuous with respect to the
topology of compact convergence, then there exist a;, a,,...¢H and
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Y1y Yoy --- ¢ F such that 3 llallyl < oo and, for all Ve L(F, E), ¢(V)

=i>2; Vs, ap- =

“111. Remark. (B, B') is said to bave metric approzimaiion property
(see [9]; V. 4) if Iy is in the 7 -closure of {W: WeL,(E, E), W is
w (B, B)-continuous, W] < 1}. It has been proved in [11] that (B, B')
has the metric approximation property <- B has the metric approxima-
tion property. These considerations motivate Definition 112 and Theo-
rem 113.

112. DErNITION. Let a be a totally splitting norm on L,. We shall
say that (B,E') has the a-metric appromimation property (a-m.a.p.). if,
for all 7,

{W: WeLy(F, F), W is w(B', B)-continuous, «®(W) <1}
is' 7-dense in {DJE',F): a®<1}.

If o = g, = dy, this concept is equivalent to that defined in
Remark 111. ‘

113. THEOREM. (B, E') has the a-m.a.p. <= B' has the o-m.a.p.

Proof. (=) is trivial and (<) follows from Theorem 109 with areplac-
ed by o
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A local factorization of amalytic functions
and its applications

by
E, LIGOCKA (Warszawa)

Abstract. The following notion is introduced: The family (p;: B — Bp)iey of
lineax opimorphisms is called a basio sysiem for B iff the inverse images of neighbour-
hoods of zero in B; form the base of neighbourhoods of zero in E and the family I is
ordered in a suitable manner.

The local factorization, by some projection p;, of analytic mappings B> U A F,
where U is a domain in 7 and F is ‘a normed linear space, is proved and the following
consequences are obtained:

If B and By are complex and every B has the Baire property, then every G-
analytic mapping of a domain U < H, continuous at some point of U, is continuous
on the whole set 7.

The polynomial approximation property is studied in the case of locally convex
complex K and FE;. Some regults are also obtained in the case of real B and KE;.

INTRODUCTION

A. Hirschowitz hag proved in [4] that every analytic complex-valued
function on an open .subset of the Cartesian product of a family of linear
topological spaces can be locally factorized by the projection on a finite
number of coordinates. (See also [3] for the case of OV and [9] for the
case of C*.) An analogous fact was proved by L. Nachbin [7] for the
case of a loeally convex space B such that the canonical projections # — B,
are open. For the continuous seminorm g on I, B, denotes the space
B]q~"(0) with the norm induced by g.

The aim of this paper is to generalize this fact and to apply it to the
proof of some theorems about analytic function on linear topological
spaces. To obtain these results we introduce the notion of a basic system.
A topological vector space endowed with a basic system generalizes both
the Cartesian product of linear topological spacey and the locally convex
space with its gystem of seminorms and it is alio a special case of the
projective limit in the sense of [10]. )

In part I of this paper we prove some fundamental facts concerning
this notion and apply them to the proof of two theorems about the conti-
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