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Y1y Yoy --- ¢ F such that 3 llallyl < oo and, for all Ve L(F, E), ¢(V)

=i>2; Vs, ap- =

“111. Remark. (B, B') is said to bave metric approzimaiion property
(see [9]; V. 4) if Iy is in the 7 -closure of {W: WeL,(E, E), W is
w (B, B)-continuous, W] < 1}. It has been proved in [11] that (B, B')
has the metric approximation property <- B has the metric approxima-
tion property. These considerations motivate Definition 112 and Theo-
rem 113.

112. DErNITION. Let a be a totally splitting norm on L,. We shall
say that (B,E') has the a-metric appromimation property (a-m.a.p.). if,
for all 7,

{W: WeLy(F, F), W is w(B', B)-continuous, «®(W) <1}
is' 7-dense in {DJE',F): a®<1}.

If o = g, = dy, this concept is equivalent to that defined in
Remark 111. ‘

113. THEOREM. (B, E') has the a-m.a.p. <= B' has the o-m.a.p.

Proof. (=) is trivial and (<) follows from Theorem 109 with areplac-
ed by o
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A local factorization of amalytic functions
and its applications

by
E, LIGOCKA (Warszawa)

Abstract. The following notion is introduced: The family (p;: B — Bp)iey of
lineax opimorphisms is called a basio sysiem for B iff the inverse images of neighbour-
hoods of zero in B; form the base of neighbourhoods of zero in E and the family I is
ordered in a suitable manner.

The local factorization, by some projection p;, of analytic mappings B> U A F,
where U is a domain in 7 and F is ‘a normed linear space, is proved and the following
consequences are obtained:

If B and By are complex and every B has the Baire property, then every G-
analytic mapping of a domain U < H, continuous at some point of U, is continuous
on the whole set 7.

The polynomial approximation property is studied in the case of locally convex
complex K and FE;. Some regults are also obtained in the case of real B and KE;.

INTRODUCTION

A. Hirschowitz hag proved in [4] that every analytic complex-valued
function on an open .subset of the Cartesian product of a family of linear
topological spaces can be locally factorized by the projection on a finite
number of coordinates. (See also [3] for the case of OV and [9] for the
case of C*.) An analogous fact was proved by L. Nachbin [7] for the
case of a loeally convex space B such that the canonical projections # — B,
are open. For the continuous seminorm g on I, B, denotes the space
B]q~"(0) with the norm induced by g.

The aim of this paper is to generalize this fact and to apply it to the
proof of some theorems about analytic function on linear topological
spaces. To obtain these results we introduce the notion of a basic system.
A topological vector space endowed with a basic system generalizes both
the Cartesian product of linear topological spacey and the locally convex
space with its gystem of seminorms and it is alio a special case of the
projective limit in the sense of [10]. )

In part I of this paper we prove some fundamental facts concerning
this notion and apply them to the proof of two theorems about the conti-
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nuity of G-analytic and weakly analytie functions. Theorem 1.1is a gener-
alization of Theorem 6.1 [1]. The proofs of Propositions 1.1 and 1.2 are
based on methods used by A. Hirschowitz in [3].

In part IT the results of part I are applied to the study of analytic
functions on locally eonvex spaces. There is proved a theorem about an
extension of an analytic function over an open set in the completion of
a locally convex space. Thig theorem was known in the case of a normed
space. Next we generalize the Oka—Weil theorem about a polynomial
approximation on polynomially convex compact sets on the large class
of locally convex complete gpaces containing all nuclear complete spaces.

Some results of part I are proved for the real cage in part IIL. Theo-
rem 3.2 is a generalization of the real analytic function extension theorem
due to A. Hirschowitz [3].

All the notions and facts concerning analytic functions which are
not defined here may be found in [1]. The notions concerning the function-
al analysis may De found in [10]. All spaces are agsumed. to be Hausdorff.
We now recall some standard notations: “neighbourhood of zero” stands
for “open, balanced neighbourhood of zero”, “subspace” stands for “vector
subspace”. The abbreviations t.v.s. and l.c.s. stand for “topological vector
space” and “locally convex space”, respectively. The completion of B
is always denoted by E and the complexification of B by B.

In the cage where F is not complete we shall call a function f with
values in F “an analytic function” iff it is analytic as a function with
values in F.

I would like to express my gratitude to Professor J. Siciak for his
guidance and valuable remarks.

I. BASIC SYSTEM AND ANALYTIC FUNCTIONS
ON TOPOLOGICAL VECTOR SPACES OVER C

DEFINITION 1.1. Let E be a t.v.s. and let {(F;, »,)};..; be a family
of t.v.8.’s H; and linear continuous mappings p; of F onto H,. We say
that {(B;, P;)}icr I8 a basic system for E if the following conditions are
satistied :

(1) I iz a directed set.

(2) The sets p;'(V,), where 4¢ I and V, is a neighbourhood of zero
in #;, form the base of neighbourhoods of zero in E.

(3) If 4y > 4,, then for every neighbourhood of zero V,, = K, there
exigts a neighbourhood of zero V,; < E; such that p{ll(Vﬁ) < p;zl(Viz).

Examere 1.1. Let E be an lc.s. and let E be a family of seminorms
on E, corresponding to some fixed base of neighbourhoods of zero in H.
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We shall name such a family “a basic system of seminorms”. Denoting
by E, the space B/q~*(0) with the norm ¢ and by p, the canonical projec-
tion p,: B ~ B, we obtain the basic system {(#,, py)}serm for B.

Exavpie 1.2, Let B = P H, be a Cartesian product of t.v.8.s E,.
aed

Let I be the set of finite subsets of 4 ordered by inclusion. Denote by E;
the product B, x...x By tor i = {ay, ..., ay;} and by p, the projection
of B on E,. The family {(&;, p;)}:r i8 a basic system for H.

Bxampre 1.3. For every t.v.s. I/ there exigts a trivial basic system,
where I = {ip}, By = E and p; = Idp.

Remark 1.1. Let B be a t.v.s. with a basic system {(&;, p;)}icr-
Let 7 be a subspace of . Then the family {(p;(F), plp)}.r is a basic
system for I

Remark 1.2. Let # be a t.v.s. with a basic system {(#;, »;)}ier-
The following statements hold:

1. If 4y 2> 45, then kerp; < kerp,,.

2. Let Vi be an open set in B; . Then for every i1, the set

V = pi(05 (V)
is open in E,.
Proof.
Ad 1. It follows from the condition 2 of Definition 1.1, that

kerp;, = p@p;;’(U) > 7pral(ﬂ = kerp,,

where %, ¥ are the bases of neighbourhoods of zero in B; and H;, res-
pectively. .

Ad 2. Bince kerp, o kerp,, the mapping b= Pi,0p7 " is well-defined
and linear. Condition 2 of Definition 1.1 implies that % is continuous at
zero, and so it is continuous. Hence V = h"‘(Vio) iz open.

The following two results on factorization will be essential in the
sequel.

ProPo8ITION 1.1. Let B be a t.0.8. over C with o basic system {(B;, P;)}icr-
Let f be am analytic function on an open set U < B into a normed
space F. Then for every e U there exist ie I and a neighbourhood of zevo
V, = B,; such that z+p7 (V) = U and fle-+p7Y(V,) = fiop;, where f;
is an analytic function on p,(x)-+V,; into F.

Proof. Let xe U, then there exist ie I and & neighbourhood V; = E;
such that @+p;(V,) « U and the set f{z-+p;'(V,)) is bounded in F.
Take o' ex+p7*(V;) and put fy(m) = f(z' +m) for mekerp;,. The fune-
tion f, is analytic and bounded on kerp,, and so by the Liouville theorem
it is constant. This implies that the function f;(y) = f(z"), where #’ ¢ p;* (%),
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is well-defined for y py(#) +V;. Now, let 4, y.e p;(x) +V,; and z, e p; ' (y,)
@pe P77 (Y): The function ¢(t) = fi(y,+ty,) = f(w,+iw,), te C, is analytic
in a neighbourhood of ¢ = 0, and so f; is G-analytic. Since f; is bounded
on p;()+ V., it is analytic on this set. We have f = f,op, on & -+p;7(V,).

Prorosrrion 1.2. Let B be al.0.s. over C with a basic system {(B;, 19)}ier-

Let f be a G-analytic function on an open conmnected set U < I into a normed

space F. :
Assume that f is continuous at a point x,c U. We can then select some
tel such that for every we U there ewist neighbourhoods V,(x) and V()
of zero in B for which:

1) oV (2)+Vyz) = U.

2) For every w'en+V,(a) and for every meVq(w) nkerp,

f@ +m) = fa').

Proof. Sinee ¥ is normed, there exists a neighbourhood U, of x,
such that f(T,) is bounded in F. By Proposition 1.1 there exist i¢ I and
a neighbourhood V of #, for which f(2) = f(z+m) if veV and me kerp,;.
‘We denote by D the set of all #¢ U for which there exist neighbourhoods
V() and V,(x) satistying conditions 1) and 2). It is clear that D is open.
and non-empty. It is enough to show that D is closed in U. Let #'¢ U be
an accumulation point of D. Let V,(2') be a neighbourhood of zero in B
such that «'+V,(z)+Vi(@')c U and let a'e (' +Vy (@) nD. Pus
Val@") = Vi(a') nV,(2") and fix me V,(a') Nkerp,. We define the function
hon o' +V,(2') as follows () = f(x) —f(x+m). This function is G-ana-
Iytic and vanishes on the set (1" + V(")) N@"+ V. (&), and so it is
equal to zero on the whole set @' +7V,(2'). Hence f(®) = f(o+m) for
wen'+Vi(2') and meV, (') Nkerp,, and so &' D. :

THEOREM 1.1. Let B be a t.0.5. over C with & basic systemy {(B;y i} )icr-
Suppose that every B, is a Baire space. Let f be a G-amalytic function on an
open and connected set U < E into an l.o.s. F, continuous ot o Ppoitnt Bye U.
Then f is analytic on the whole set U.

Prooif. The mapping f into a lc.s. F is continuous iff for every
ge I'(I'), the composition pof is continuous. We ean hence assume without
loss of generality, that F is normed. Let D denote the set of all z« U such
that f is continuous at 4. The set D is non-empty. Since f is @-analytic
and F is normed, D is open. It ig enough to show that D is closed in U.
Let #’ be an accumulation point of D, #'e U. Take 1< I and Vi(z') as in
Proposition 1.2, and select 3, 2> and a neighbourhood V,, of zero in I
s‘ueh that p7*(V;) = Vi(«'). We choose o'’ ¢ (m'+p;11(V,-1)) ND and take
49> 4, and a neighbourhood V, of zero in E;, such that &' + pfol(V,-o)c

K]

< Dnia +93,'(Vy)), and f is bounded on &’ +051(V;,)- From Remark 1.2
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and Proposition 1.2 we obtain:
@) o Pi @)+ 24 (0571 (V4))  is open in ;.
@) flat+m) =f(a) if sea’+pg'(V;) and mekerp, .

Condition (2) is satisfied, since the function k(m) = f(x-+m) is con-
stant on Vy(a') Nkerp, and s+kerp, = U.

Hence f = fop, on o' -l—p,-‘ll(Vil), where f is a G-analytic function
on pio(m’)—}—pio(p;i](Vﬁ)). We have

Doy @) Vg & D3 () 24 (93 (V) -

The function f is bounded on Pi,(®)+V,,. Hence f is continuous on this
set. Since H; is a Baire space, this implies by Theorem 6.1 [1] that f is
continuous on the whole set p; (¢') 4, {p;; (V). Hence f is continuous
on z' + pal(Vil) a8 a composition of continuous mappings and z’< D. So,
D = U. Every G-analytic and continuousg function is analytic, and so f
is analytic on U.

ExsmpLe 1. Every subspace of C* satisfies assumptions of Theo-
rem 1.1. Particularly, Theorem 1.1 holds for every l.c.s. with a weak
topology.

ExamrLE 2. Let B = P E,, where for every a, F,is a complete metric
aed
linear space. Let H be the subspace of E containing all those elements

of F which have only finitely many coordinates different from zero. Theo-
rem 1.1 holds for H.

Exavrre 3. Let X be a T,-topological space. Let C(X) denote the
space of complex-valued continuous functions on X, with seminorms
gz (f) = sup|f(z)|, where K is a compact set in X. Tt follows from the

e K

Tietze—-Urysohn theorem that C(X) /Q_l(ﬂ)
: 4

C(K) is a Banach space for every compact K, Theorem 1.1 holds for € (X).

Remark 1.3. Theorem 1.1 remains true if the Baire property of E;
is replaced by the following property (B):

The t.v.s. B has the property (B) iff, for. every open, connected set
U = F and for every G-analytic function f defined on U, the continuity
of f on a non-empty open subset U, = U implies the continuity of f on the
whole set U. (Hence f is analytic on the whole set U.)

It is easy to check that the property (B) is equivalent to the following
property: For every open, connected set U < E and each @-analytic
function f defined on U, if f is continuous at some point zy¢ U then f is
analytic on the whole set U.

‘We can say that property (B) is an invariant of basic systems (If
every F; has the property (B) then ¥ also has this property too.) For the
application of this property see [5].

is isomorphie to C(K). Since
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The examples 1 and 2 given above show that (B) is essentially weaker
than the Baire property. .

Remark 1.4. Theorem 1.1 can be false without the assumption that
all B, have property (B). A suitable example, due to A. Hirschowitz,
can be found in the preprint of [1] published by I. H. E. 8. 1970.

THEOREM 1.2. Let B be a t.v.s. over C with o basic system {(B;, D)} ier-
Assume that every B, is metrizable and every p, is open. Let f be a wealkly
analytic function on an open and connected set U = E into a l.c.s. T, con-
tinuous af a point xye U. Then f is analytic on oll U.

Proof. We can assume, as above, without loss of generality, that F
is & normed space. The weak analyticity of f implies that f is G-analytic.
Let we U. Take iy¢ I and the neighbourhood V,(w) of zero as in Proposi-
tion 1.2. Choose % = i, and the neighbourhood V; of zero in E; such that
p7UV,) = Vi(w). We infer from Remark 1.2 and Proposition 1.2 that
f@) =fl@'+m) if v'ex+p;'(V,) and mekerp; Hence f = fop; on
2+p7}(V;), where fis a G-analytic function on p,(z)+7V;. For every
we F' the composition uof = wofop, is continuous on #-+p;*(V,). Since p,
is open, this implies, that uof is continuous on p;(#)+V; and therefore f
is weakly analytic. Since F; is metrizable, we infer by Theorem 6.3 [1]

that f is analytic. This implies that f is analytic on o+ p;7*(V,). This ends

the proof.

CoRrROLLARY 1.1. Suppose that Theorem 1.2 holds for H. Let U be an
open and connected subset of E and let f be an analytic function on an open
subset V of U into a l.c.s. F such thdat for every we F’ the funciion wof can
be ewtended to the amalytic function f,, on U. It follows from Theorem 1 of [5]
that f can be emtended to a G-analytic function f on U into 7. Then, by Theo-
rem 1.2, this extension is analytic.

ExAMPpLE. Theorem 1.2 holds if # = P B, where every X, is a metriz-
able t.v.. acd

For examples of 1.c.s. ¥ such that the canonical projections B — H,,
ge I'(H) are open see Nachbin [7].

Finally we give a proposition which is partially a converse of Theo-
rem 1.1.

ProrositaoN 1.3. Let F be a t.v.s. with a basic system {(H;, 2)}ier-
Suppose that E has property (B) (see Remark 1.3) and every p; is open.
Then every E; has the property (B).

Proof. Assume that there exists an i< such that #; does not have
property (B). Then we can find an open connected set U; < H;, a G-analyt-
ic funection f; on U, into a normed space F, an open subset V, of U, and
a point @,e U,\V,; such that f; is continuous on ¥, and not continuous
at @,. Take U = p7'(Uy), V = 07" (Vy), f = fiop; and choose 4,c 7 (w,):

B
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It is clear that U is open and connected, V is open and f is G-analytic
on U and continuous on V. Tt remains to show that f i8 not continuous
at yo. We shall prove that for every open neighbourhood W of Y, the
function. f is not bounded on W. Since p; is open, p;(W) is an open neigh-
bourhood of #,. The function f; is not continuous at ®,, and so it is not
bounded on p,(W). Hence f = Jiop; is not bounded on W. This implies
that f is not continuous at Yo- We obtain a contradiction of property (B).

COROLLARY 1.2. A Cartesian product of t.v.s.’s E,, H=PH, has
. aed
property (B) iff every Cartesian product of a finste number of spaces E, has
this property.

II. ANALYTIC FUNCTIONS ON LOCALLY CONVEX SPACES OVER C

THEOREM 2.1. Let U be an open set in a L.c.s. B over C and let f map U
analytically into a Banach space F. Then there exist an open set U Uin
the completion i of B and an analytic extension f: U—-F of f.

Proof. We can treat ¥ as a subspace of the cartesian product &

= £E) Eq where B, is the completion of B, and I'(B) is a basic system
qe.

of seminorms on F (see Example 1.1). By the uniqueness of completion
(see [10] p. 158) the completion  of ¥ is the closure of ¥ in G Take ze U.
By Proposition 1.1 there exist g« I'(E) and » > 0 such that o+ 27 HE(0, )
= U and f = fop,, where f is an analytic function on Pg(@)+E(0, 7).
(K (0, r) denotes the ball with centre zero and radins 7 in E,). Take the

Taylor series of f at p,(x), f(py(#)+2) = 3 fu(2). Let f, denote the sym-
n=0

metric #-linear mapping corresponding to f,. We prove that f, maps
Cauchy sequences in ¥, onto Cauchy sequences in F. Let {a,} bea Oauchy
sequence in F,. Clearly, there exists an M > 0 such that g(a;) < M for
every 4. We have

(@) = Fu(@)l* = 1fa(@) —fnlast+a;—ay)]

~ | S06) ATty

k times n—k times

< (1) Il (e — ap)e-2am*.

Therefore {f,(a,)} is a Oauchy sequence in ¥. Hence f, can be extended

to the n-homogeneous polynomial f, on B,. The norm of fn is the same
a8 the norm of f, and therefore if 7 < r is less than the radius of conver-

4 — Studia Mathematica XLVIIL3
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gence of i‘ f, in E,, then the series 3 fﬂ, converges normally on the
=0

=0

ball (0,7 in B,. Putting flp,(@)+2) = 3 fu(e) for 2cK(0,7) we

ne=() N
obtain the well defined analytic function on p,(a)4- K (0, r') such that
f =7 on p,(w)+K(0,r). Denote by B, the projection of ¢ onto H,. We
haive p, = p,on. B. The et V, = (n + DMK (0, r’)}) N is a neighbourhood
of # in B. The function f, = fo Py is analytic on V, and fol VN B = f.

Hence the function f (y) defined on the open in I set U = {J V, by the

walll n
formula f (%) = f.(y) for y eV, is the required extension of f over U. (Since
V,.nU is dense in V, for every =, the above formula determines uniquely
this extension.)

ExampLre 2.1. Theorem 2.1 can be false if F' is not normed. I’h. Nover-
raz [8] gave an example of a Banach space B and its dense subspace 1
such that for every ae B\ there exists an entire funetion Jo: B> C
which cannot be extended onto any mneighbourhood of a. We take the
function ¢: ¥ - P C,, C, = C, defined as follows

weBNE
dj(m) = {fa(m)}mﬁ\fﬂ'

It is ‘obvious that @ is analytic and cannot be continued on any open
set in 7.

We now recall some known notions. Let K be a compact subset of
an lLes. B. The polynomially convex envelope K of K is the set of all
@< B such that, for every continuous complex-valued polynomial P on %,
1P (@) < sup |P(2)l. T B is complete then K is compact.

ze

Now, let I’ be a Banach space. We can define the polynomially con-
vex envelope K of K as the set of all e B such that, for every continuous
Dolynomial P on B with values in F, |P(2)] < sup |P(2)]. It is easy to

gel

check that for every Banach space ' and each compact K « H, R =K -
An open set U < F ig polynomially convex if for every compact subset K
of U, K is contained in U. A compact set K < F is polynomially convex
it K =K.

DEriNrTIoN 2.1. Let # be a l.c.s. over € and let 7 bo a Banach space.
We say that F has the polynomial appromimation proporty for I iff for every
polynomially convex compact set K < F and for every analytic function
J with values in F' defined on an open neighbourhood of K there exists
a sequence of polynomials {P,} which converges. to f uniformly on K.

DeriNITION 2.2. Let' B and F be the same as above. We sary that B
has the strong polynomial approzimation properdy for I iff for every poly-
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nomially convex open set U « ¥ and for every analytic funetion fon U
into F there exists a sequence of polynomialy {P,} which converges to f
uniformly on each compact set contained in U.

‘We now apply the method used by C. B. Rickart in the case of F = CX
[9] to prove some facts conecerning these notions.

Lzvma 2.1. Let B bo a complete Lo.s. over C with a basic system of l.c.s.’s
{(Byy p)}ier- Let IC be a polynomially convem compact subset of B. Denote
by K, the polynomially comvex envelope of p,(K) in 17%- Then

1) IC; is contained in B, for every ieT.

2) K = QPI](KD Sor every ¢'¢ 1.

it

3) If i =1 then pi*(Ky) < pit(Ky).

4) Tor overy open set U in B containing K and each i’ < I there ewists
an iel, 124, such that X, < p,(U).

Proof. Ad 1). Let Dy denote the balanced, convex and closed enve-
lope of K. Since B is complete, Dy is compact. The set p;(Dy) is balanced,
convex and compact in #,;. It follows from the Hahn—Banach theorem
that K; < p;(Dg), because p;(K) = p,(Dx). Hence K, = H,.

Ad 2). It is obvious that K < ") p;*K,. If o¢ K then there exists

=1

& continuous polynomial P on X for which |P(x)] > sup |P(e)]. It follows
2K

from Proposition 1.1 that there exist ¢4’ and a continuous polynomial
P on H; such that P = Pop,. We can extend P, by Theorem 2.1, to the
continuous polynomial P on Ei. We have |I3(pi(m))[ > sup |P(2)], so
pi(#) = K;. Hence K = () p;*(K,). epy(i)
i

Ad 3). If w¢ p;i*(K;) then there exists a continuous polynomial P

on E, such that [P (i (@))] > . iux()K)lP(z)l. Now, let p; . denotes
€ 'i”

the mapping p,.0p;". This mapping is well defined, linear and continuous
by the condition 2 of Definition 1.L. We have p; . (Po(®)) = Dy ().
Taking @ = Popy, i we obtain | (p, ()| > au(]i:) |@(2)], and 50 p; (@) ¢ K.
Bepyr(d
Ad 4). We infer from 2) that (De\NU) O () pit(Ky) = @. Sinee D\ U
igei’
ig compact, there exists a finite family of indices ¢y, ..., 4, such that
D npi (Ky) n... npp (K ) = U. Taking ¢ 24y, j =1, ...,n we obtain
by 8) Dy npi*(K;) < U. Honce 2i(Dg) NK; < p,(U) and 80 K; < p,(U).
Prorosiuron 2.1. Let K be o polynomially comves compact subset of
a complete 1.o.s. B and let U be an open set in B containing K. Then there
eaists a polynomially comvew open set U, such that K « U, = U.

Proof. First we suppose that Z is a Banach space. Let P be a contin-
uous complex-valued polynomial on JB. Denote by Vp the set of all
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@< B such that | P (z)| < 1. It is easy to check that X is equal to the intersec-
tion of all Vp for which K < {we H: |[P(#)| <1} == Up. Let Dy denote
the closed, balanced and convex envelope of K. We have (Dx\U) N (MVp
=@, because K = (\Vp = U. Since D \U is compact, there exists
a finite family of polynomials Py, ..., P, such that DNV py N eee Vg,
< U. We denote by Dx(s) the open z-envelope of Dg. It is a CONVoX,
balanced and open set in B. Now, we prove that there exists an ¢, > 0
sueh that Dx(e) NVp, N... NVp, = U.

Suppose that this is not true. Then there exists a sequence s, - 0,
&, > 0 such that for every n there exists an a,e Dy (z,) NVp, N... NVp, N
N(E\T). For every a, there exists a point b, ¢ Dy such that [|a, — b, < .
Sinece Dy is compact, we can choose a subsequence {bnk}, buy, == by, The
corresponding sequence {ank} converges also to by. We have bye Dyn
AVp,0...nVp . Since D NVp N... NVp, is compact and contained in U
and a,, « B\ U for every k, we obtain a contradiction. The set I, = Dx(e)n
NUp...N Up, is open and polynomially convex. We have K < U, = U.

Now, let B be a complete Lc.s. We can treat I as a subspace of the

Cartesian product ¢ = P E’q, where I'(E) is a bagic system of seminorms
. aen®) N

in #. Denote by p, the projection of G on L. Since F iy complete, it is

closed in @ Let K be a polynomially convex compact set in 7 and let U

be an open set in B containing K. Then, by condition 4 of Lemma 2.1,

there exist a ge I'(¥) and an open set. V < X, such that

@) EcU =p;*(V)=U,
2) K,=V.

Take for every eV the ball I%(w, 7) in 15(_, such that K(z,r) = If(w, )N
NE,c V.PutV = | K(=z,r). We have V nE, = V. The set K, is a poly-
zeyV

nomially compact set contained in V. Since E’,l is a Banach space, there
exists a polynomially convex open set V, in B, such that K, = V, = 7.
The sej; 271 (V) is a polynomially convex open. set in G. Hence the set
Uy = p;' (Vo) N B is open and polynomially convex in H. ‘We have K < U,
< U.

CoROLLARY 2.1. If a complete l.c.s. B has the strong polynomial appromi-
mation property for F, then I has the polynomial approvimation property
for I.

THEOREM 2.2. Let F be a Banach space over C and lot T be a complete
Les. over C with a basic system of L.o.8.’s {(H;, D)}ier SUCh that Sfor every
ieI either B, or E; has the polynomial approximation property for I'. Then B
has ihe polynomial approwimation property for .

Proof. Let K be a polynomially convex compact set in H and let f
be an analytic function on an open neighbourhood U of K into . By
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Proposition 1.1 there exist an 4'< I and an open set Vs < B, such that
K c Uy =p;"(Vy) = U and f|U, = fo P, where f is an analytie function
on V,. It follows from Lemma 2.1 that there exists an i34 such that
K; = p,(U,). The set p,(U,) is open in B; by Remark 1.2. We have f1T,
= [0 Py Where fo = fop; ; is analytic on p,(U,). It X, hag the polynomial
approximation property for ¥, then there exists a sequence of contintous
polynomials {P,} on K, into & converging to f, uniformly on X,. Hence
the sequenco of polynomials @, = P,0p, converges uniformly to f on K.
Now, let H; bave the polynomial approximation. property for . By
Theorem 2.1, f, can be extended over an open in B, set W 20Uy = W
to the analytic function f,. Since K; = p,(U,), there oxists a sequence
of polynomials {F,} on Z, such that 13,,—>f0 uniformly on K,;. Hence the
sequence of polynomialy @, = ,Pno p; converges uniformly on XK to f.

Question. Is it true that if B has the Dpolynomial approximation prop-
erty for I then B also has this property?

C. Matyszezyk has proved in [6] that if 7 is a B,-space with bounded
approximation property, I is a Byspace and f is an analytic function
on an open and polynomially convex subset U of %, then for every locally
bounded subset M of U there exists a sequence of polynomials {P,} which
converges uniformly on compact subsets of M to f. Thus implies that
overy Banach space with a Schauder base has the strong polynomial
approximation property for each Banach space. Using this result, Corol-
lary 2.1 and Theorem 2.2, we obtain the following

COROLLARY 2.2. If T is a complete l.c.s. with a basic system of seminorms
L'(B) such that for every gqe I'(H), ]ﬁ,l is & Bamach space with a Schauder
base, then B has the polynomial approwimation property for each Banach
spaoe I This implies immediately that every complete nuclear space has this
property.

Remark. Ph. Noverraz has proved in [8] that every Banach space
with a Sehauder bage has the polynomial approximation property for C.
(See also 8. Dineen. [2].) Ho announced also the following result: If B is
a les. having the “strong approximation property”, then E has the
polyromial approximation property for . Particularly, O(K), I* (u) and
overy nuclear space possesses this property (see the author's review of [8]
in Zentralblatt fir Math. 216 p. 409).

1. ANALYTIC FUNCTIONS
ON LINEAR TOPOLOGICAL SPACES OVER R
Durrnirroxn 3.1. Let B be a t.v.8. over R and let U be an open subset
of B. 'We say that a function f defined on U with values in an le.s. J is
strongly analytic iff it can be extended analytically over an open subset
U > U of the complexification B of B.
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PROPOSITION 3.1. Suppose that B is o t.0.5. over R with a basic system
{( By D5)ieg- Then the family {(El, Do) }ier forms the basic system for .

The proofs of the following two propositions will be omitted, since
Proposition 3.2 follows immediately from Propositions 3.1 and 1.1 and
Proposition 3.3 can be proved similarly to Proposition 1.2 in the complex
case.

PROPOSITION 3.2. Let B be at.0.5. over R with a basio system {(Hy;, D;)}eer-
Let f be a strongly analytic funclion on the open set U < I into & normod

space F. Then for every we U there exist an ie I and a neighbourhood of zero .

V, < B; such that a+p7(V,) < U and flo+p7 (V) = fop;, where f; s
a strongly analytic function on p;(x)+V,; into F.

PROPOSITION 3.3. Let B be at.0.5. over R with a basie ls"ysw'm, {( By 2D }eer

Assume that f is a function defined on an open connected set U < B with values
in @ normed space F, analytic on affine lines and stromgly analytio on some
open set Uy = U. Then there ewists an i I such that for every we U there
exist neighbourhoods of zero Vi(x), Vy(x) in I for which:

1) 2+Vi(@)+V,y(z) = U.

2} For every o'e 2+V(2) and for every meVy(z) nkerp,

f@' +m) = f(a').

TuroREM 3.1. Let F be a t.0.5. over B with a basic sysiem {(B;, p:)}ier-
Assume that every I; is melrizable Baire space and every p; is open. Let f be
& weakly- analytic function from an open connected set U = H into o Banach
space I'. Suppose that f is strongly enalytic on an open set U, = U. Then f
s strongly analytic on the whole set U.

Outline of the proof. It follows from Lemma 7.1 [1] that f is
analytic on affine lines and hence f satisties the assumptions of Proposi-
tion 3.3. It can be proved in the some way as in the proof of Theoren 1.2
(by using Theorem 7.5 [1]) that f is locally representable in the form
f =fi pi, where f, is a weakly analytic function on an open set in ¥,.
By Theorem 7.4 [1] f; is analytic. It follows from Remark 7.1 [1], that f;
is strongly amnalytic. Hence f iy strongly analytic.

ExAaMPLE 1. Theorem 8.1 holds for every subspace of R¥, since every
continuous linear mapping onto a finite-dimensional t.v.s. is open.

ExAMpre 2. Theorem 3.1 holds if ¥ is a Cartesian product of completo
linear metric spaces. Since such a product is always a Baire space, strong
analyticity is in this case equivalent to analyticity in the usual sense [1].

TemorEM 3.2. Let B be a t.v.s. over R with a basic system {{(B;, D) }ier-
Let U be an open connected set in B and let S be a closed set in T such that

1) UNS is conmected.
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Liveal factorization of analylic functions 2561

2) For every xe Un S there ewist a neighbourhood V, of @ and an ige I
such that. if 1> 1y and o'V, 8, then the set (@' +kerp,) N(UNS) is non-
empty and connected.

Then every strongly analytic function from UNS into a normed space ¥
can be extended to a strongly analytic function on the whole set U.

Proof. Let we UNnS and let f be a strongly analytic function on
UNS. Take 4, as in Proposition 3.3 and 'z‘ > 4y, § = 0,1 such that there
exists o V, < M, for which ze W, (Vfw) c V For i1, and
a'e W, the sot (' -[ kerp,) n(UNS) is conneoted, since if (2’ +kerp,) NS
vontmns some @, then the set (@' +-kerpy) N(UNS) == (y-+kerp,) Nn(TN\S)
is nov-empty and connected by the condition 2. It follows from. Proposi-
tion 3.3 that the function f|(a’ --kerp,) n(UNS) is locally constant, and
go it is constant. Select for ye W,NS a point Fe (y-+kerp,) n(TNS)
and put [,(y) = f(#). For ye W,\8 we pub f,(y) = f(y). Since S is closed,
there exists a neighbourhood V, of 4 such that V) = W, \8 and y —7+
Vo = W,. For overy y'ey—F-+TV, we have f,(y') =f(y' —y-+4) and
hence f, is strongly analytic on some neighbourhood of ¥, and so it is
a gtrongly analytic continuation of f over W, Observe that if ye W,N W
then, for &> ty, b fir(y) =F(§) = for(9), Where §e(y+ketp,) n(UNB).
1’1117_/ y) = Jo(y) for ye W, and f(y) = f(y) for ye U\ U W,. The func-
tion f iy the required continuation of f over U. weUnS

COROLLARY 3.1. Suppose that B is a t.0.s. over B with a basic system
{(Byy D) }ser such that for every te I kerp, # {0}. Let U be an open connected
set in B and let K be o compact sct in T, Then each strongly analytic funciion
on UNK with values in o normed space F can be extended over the whole
set U.

Proof. First we prove that for every iel dimkerp,; == oo. Let ¢ 1.
Take a # 0, «e<Xkerp,. Since I is a Hausdorff space, there exists, by
conditions 2 and 3 of Definition 1.1, an 4, > ¢ such that a¢ kerp, . Choose
ay # 0, ayekerp, , and take an 4, > 4, such that a,¢kerp,. Confinuing
this procedum we can construet a sequence {4,} such that ¢, >4, > ¢
and. kerp, . § kerp, . This implies thati dimkerp; = oco. Now, if U is
an opoen connected subset of an infinite-dimensional t.v.s. and X is a com-
pact gubget of this t.v.s, then UNK is connected. It implies imme-
diately that the assumptions of Theorem 3.2 are satisfied. This ends
the proof.

The agsumptions of Corollary 3.1 ave satisfied for many t.v.s.’s Tar-
ticulaxly, if B is a Oartesian product of infinitely many t.v.s.’s if # is
the gpace of real continuous functions on a non-compact Ty, space with
a compact-open topology and if H is the space of functions of class %
on the real line with a sequence of seminorms [f|, = sup (l fla)] -

e
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Added inproof. 8. Dineen introduced in his paper Fonctions analyti-
ques dams les espaces vectoriels topologiques localement convexwes (C. R. Acad.
Sei. Paris 274 (1972), Ab44—A546) the notion of N-projective limits being
essentially the basic systems with open projections and studied the poly-
nomial convexity and pseudoconvexity in locally convex spaces with
such systems.

Theorem 2.1 holds for every t.v.s. I (not necessarily locally convex).
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On a functional representation of the lattice
of projections on a Hilbert space

by
M. J. MACZYNSKI (WARSZAWA)

Absteaet, Lot (I, <, ’) Do a o-orthocomplemented partially ordered set with
a full sot of states M. The dual M’ of M is defined as the set of functions &: M — [0, 1],
ae L, where &(m) == m(a) for all meM. It is shown that M’ iy isomorphic to L, and
necessary and sufficient eonditions are given in order that a set of funetions M < [0, 11¥
be the dual of some full set of states on a ¢-orthocomplemented poset. If (I, <, )
is tho o-orthocomplementod lattice of projections on a Hilbert space H and M the
set of pure statos induced by unit functionals in H*, M = {y(u): we H*, lul = 1},
then for each geM’ there is a unique continuous antilinear map p,: H* — H** guch
that gy (u) = gy () (w) for all we H*, Jul = 1.

Let L (H) be the set of orthogonal projections on a Hilbert space H.
L (H) ig an orthomodular lattice with respect to the natural order (P, < P,
if and only if R(P,) = B(P,) where R(P) denotes the range of P) with
the orthogonal complementation P —P' (wheve R(P') = R(P)'). This
lattice belongs to a more general clags of o-orthocomplemented partially
ordered sets which admit a full set of probability measures. Before we
state a theorem about I () we shall discuss some properties of this clags
of partially ordered sets.

Let (L, =) be a partially o'rdered get (abbreviated to poset) with
% one-to-one map @ -~ & of L onto L. (L, <, ') is said to be a g-orthocom-
plemented posel provided
(a) o' == a for all aeL.
(b) a= b implies b’ = o',
(¢) If @y, ag, ... I8 & sequence of members of L where a; < a; for 4 # j,
then the leagt upper bound ay Wa, V... exists in L.
(d) e’ ==p Ul for all @ and b in L. (We denote a Ua' by 1.)

A o-orthocomplemented poset is said to be orthomodular (see [6]) if
(e) a<< b implies b = a V(Y Va)'.

Let L be a o-orthocomplemented poset. A map m: L —[0,1] is
said to be a state om L if m.is a probability measure, i.e. if m (1) =1 and
mayVa,U...) = m{ay) +mas)-+... whenever ;< a; for ¢  j.
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