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Operators associated with representations of amenable groups
singular integrals induced by ergodic flows,
the rotation method and multipliers

P by

RONALD R. COIFPMAN and GUIDO WEISS (8t. Louis, Mo.)

Abstract. Supposo G is an amenable locally compact group, keZ*(G) has com-
pact support, and R, is a upiformly bounded representation of @ acting on IL? (IN).
It is shown that the operator

#HR). = b[ k(W) B,y du

has LP (I)-operator norm not exceeding the L? (@)-operator norm of the convolution
operator defined by %. From this one can obtain ajp extension of the rotation method
for singular integrals on. R% to Lie groups. Moreover, results of Calderén, on com-
mutator operators, de Leeuw and Fife, on multlphersi, are generalized.

§ 1. Introduction. In their work on Slngular Integrals, OCalderén and
Zygmund observed that properties of those Singular Integrals having odd
kernels could be derived easily from properties of the Hilbert transform

ff@—t

The approach they used, called by them the method of rotation, can be
described in the following way. An odd kernel has the form k(y) = Q(»)/ly",

mmmijmﬂ

o TC
e T

n R .
where § = (g, Yay <o Yn) B ly| = (3 y))"* and 2'is' an odd function
)

‘which. is hamogcnoous of degree 0 and whose restriction to the surface
of the unit gphere &, ; == {yeR": |y| = 1} is integrable. Let us fix a point
¥ of %,_;; we then consider the one-parameter group {Uh}; —oo <t < oo,
of transformations of R" defined by

(1.1) Uho = oty
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for each @« R™ For each 4’ ¢ XZ,_, we can then form the “truncated” Hilbert
transform of the function ¢%(t) = f(Ul®)
kg
@y = [ T
et <8

and evaluate it at s = 0. The two principal features of the method of
rotations are: : '

(1) the observation that the “truncated” singular integral with
kernel % is & mean of these truncated Hilbert transforms, evaluated at 0,
taken over Z,_,; that is,

(1.2) 2 [ fo—pkdy = [ (Hgp0) Qy)dy',
e |U|<8 g1 .
where dy’ is the element of Lebesgue measure on X, ;.
(2) Bach of the operators (Hj.f)(m) = sup|(High) ()| satisties the
inequality . . 58>0
(1.3) ( [ 1 @) dn)™ < 4, 1f1,
R
for 1 < p < oo, where the constant A, is independent of y’ and f<L”(R").
An easy application of Minkowski’s integral inequality then gives
us the existence of the singular integral operator

(Kf)(@) = lim [ fla—y)k@)dy =P.V. [f@—y)by)dy
e,0~1=0 SRS nn
for almost every z<R" and its boundedness in I?(R"). For details of this
see [5] and [12].

Cotlar [7] has shown that the Hilbert transform, as well as many
of its properties, can be generalized and put in the framework of ergodic
theory. These results have been considerably simplified and extended by
Calderén [4]. Briefly, the latter obtains a generalization of inequality
(1.3) in the sense that, instead of R", the functions f are defined on a general
o-finite measure space M on which acts a one parameter group {U%,
—oco < t < oo, of measure preserving transformations. Moreover, ingtead
of taking the supremum of the collection of truncated Iilbert transforms
he ‘considers the supremum of a more general family of operators on
I7(R) which' commute with translations of the line. On the other hand,
only a single one-parameter group {U} is involved; consequently, neither
Cotlar nor Calderén obtain “generalized” singular integral operators
arising from taking means over an appropriate indexing family of one-
parametér groups, as is done in (1.2). : : o

In the case of a general Lie group @ this can be done by“co’risidering
operators having the form
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(1.4) [ owfev. [ o) a
et et}
where we have identified the Lio algebra of ¢ with R”, feL? (@) and Q
is an odd funetion whose restriction to Z,_, iy integrable (observe that
(1.4) makes sense, but is 0, when. & is even). Even though most examples
we shall consider are essentially of this form, it turns out that it is more
convenient to study operators having somewhat different forms which
il allow us to wpply these ideas. To illustrate this point let us examine
a Riosz tramsform on G = SU(2).
The only specific knowledge about SU(2) we need is the form that
Haar measure assumes for central funchions, Any

Uy, Hyn
W=
Uy, Uy,

in QU (2) i conjugate to a wmatrix of the form

60
6(A) = (O 0”1)

(the general element of a maximal torus). It f ig central and w is conjugate
to e¢(4) then, by definition, f(u) == fle(a)); in this case,
x 1of .
(1.5) Fain =~ [ flo(z)sintaa2
ST T
(se6 (67, page 32). Kince f(w) o )f flvwo~*)do is central whenever fis
o SU@)

integrable, (1.5) gives us the general formula

kid
f Fluydu = = f { f Flvo(2)o™) sin’ldl} .
. ™ .
ST@ . SO - ‘
A nateal distance on SU(2) is given by d(u, v) = I —wll, where the
last expression denotes the Hilbert—Schmidt norm of u~—wv. The operator
in question iy given by convolution wi1:11 the kpmel

(1.6)

s Uy
K00 = i
where ¢ == ¢(0) is the identity alement (1). The fun.ctioafl || —e||] 18
obviously contral and, therefore, it suffices to evaluate it when u = ¢(4)

: . A » L
and wo obtain [||u-—e[[] = 2v2 sin»~2«~\. A simple calculation. now

) This opéerator differs from lie Riesz transform studied in 6] by & conyolq—
tion with an integrablo kermel (sec page 127).
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gives us
4

A
gin—1 3
I

K (ve(—2)v™Y) = vy, 0;,8in /32

thus, using (1.6)

P.YV. K (w)f(wu™) du
ST
- f {P'V' f K(vt?(—l)v‘l)f(uwe(z)w)sinudz} v
T st 2 ’ /
i ([ sin®a -
= 52n f ”“”ﬂ{fﬁ—f(ww(ﬂ)w 1)%] .
8SU(2) | gin—
2
. i A sina . : o
Letting k() = - cotE - and Ulw = woe(l)o~!, the inner in-

tegral above takes the form : '

(1.7) (H,f)(w) =P.V. fk(ﬂ.)f(Uﬁw)dl *.

It is an immediate consequence of the classical M. Riesz inequality for
the conjugate function on the circle (convolution with cot -;) that H,is

a bounded operator on IL?(SU(2)), 1< p < oo, with operator norm
independent of ». In fact, since, for each v, the transformations of the

one parameter group {U%} are measure preserving (on SU(2) with Haar
meagure), we have

(EH P = [ (B Tw)Pdw
sT) U0
1 ™
T om f { f l(Huf)(U’;w)P’dy} dw
8U@Q) —m
1 ~ T,
=5 [{[]pv [rorwirna) ) o
ST n o
1 4 .
< E‘:‘ST}{;){% _‘[ 1f( Uﬁw)]i’dl} dw = _gﬂ;’; “f“ﬁ(wm).

7 - .
() In view of the identity P.V. ff(m—_t) cot—;— dt =c¢ P.V. ff(:o-—t)-%-{ for
= —_T

T
periodic f, the integral in .(1.7) is really of the same form as the inner integral in (1.4).
In both cages one is averaging over a collection of one-parameter subgroups of &
= 8U2).
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‘We now obtain. the boundedness of the Riesz transform by an immediate
applieation of Minkowski’s integral inequality to
( [ |19.v. [ E@)fou)du \” dw)"”
SU@) SUE)
=( [ ] [ outn(Ef ) a0l dw)™.
8U(2) SUEQ)

Tt is evident that this argument extends to general compact Lie
groups @ with a maximal toruy I™ playing the role of {¢(1)} and a singular

. integral replacing the conjugate function operator. In fact, the Riesz
* transform we have just considered is induced by a keérnel which is a coeffi-

clent of matrix-valued functions having the form

T(uw)—I
KW =t

whete 7' ig a finite dimensional unitary representation of the compact
group &, p is & centiral function “measuring the distance” from the identity (®)
and N ig the dimension of ¢. Writing

2020 1))

e 17 -1 -), . et e e
(Exf)(w) =T (v ){1 v &f o
and taking into aceount the fact that T iy unitary leads us to consider
operators of the following type

) A (u) —A (v)

(1.8) I.V.G W}TWV“ flu)dw,
where A4 is a Lipschitz function on. @; that is, |4 (w) —A )] < op (v u).

The method we described above iy still applicable to such operators,
even though they are not of convolution type, if the role played by the
Hilbert transform. is assumed by the commutator singular integral of
Calderén. [3] on the torus.

These techniques have o wider range of applications than the exten-
gion of gingular integral theory. They also yield a refinement and gene-
ralization of thoorems of de Leeuw and Fife on restrietions of multipliers
to subgroups and certain measure spaces (see [8] and [9]) (see examl?le
(if) in § 8). Moreover, we shall also indicate in § 3 how matrix multiplier
theorerns for compaet Lie groups can be obtained by these means. The
connections of these considerations with spectral theory and. Stone’s
theorem will also be described in that section.

() The construction of sach funotions p is given oxplicitly by N. J. Weiss [12].
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Tn the next section we state and prove the results that generalize
the ergodic versions of the Hilbert transform and the Calderén commu-
tator singular integral.

§ 2. Operators induced by representations. Suppose @ is a locally
compact group satisfying the following property: Given a compact subset
0 of G and &> 0 then there exists an open neighborhood V' of the identity
¢ having finite measure such that

u(¥0™
(2.1) LA S
w(V) ’
where y is, say, left Haar measure (*). If ¢ is compact this property is
clearly valid; if @ is abelian it is also true (see lemma 31.36 on page 234
of [11]). Let us suppose, further, that B is a representation of ¢ acting
on functions on a o-finite measure space I (°) satistying, for some p e[, oo]

(2.2) [IBNH@PIw< e [If@)Pde,
n n

where ¢ is independent of feI?(M) wueG. Observe that an application
of (2.2) to g = R,f, with v replaced by u™, gives us

(2.3) [If@Praw< e [ |(Rf) @)/ do.
m mo

Let & be an integrable function on'@ with compact support C. Asso-
ciated with % is the convolution operator g— [h(w)p(vu~')du on IP;
¢

let A denote the norm of this operator. The kernel k& and the represen-
tation R induce an operator k(R) = K on functions defined on i:

(Ef) (@) = [T(u)(R ) @) du(w) ().
G

We shall show that K is a bounded operator on LP (M) with operator
norm not exoceeding c2A. First observe that, as a consequence of (2.3),
we have

[ IR @) Pdw < @ [ (B ES) (@) d
m m

(%) These groups are called amenable (see [10]).

(5) That is, R,f is a meagurable function whenever J is measurable on M and
Rynf = Ry (Ryf). We assume that B, is the identity transformation and that v->R, is
continuous as a mapping of @ into the bounded operators on L¥(IM).

(5) In this case we tacitly assumed the u-integrability of the integrand. We
algo would like to point out that the notation lg(R) is consistent with the definition
of the Fourier transform given in [11].
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for all ve@. Lot ud choose ¢ > 0 and V an open neighborhood of e, having
finite measure, such that (2.1) holds (C being the support of k). Then
integrating the left and right sides of this last inequality over ¥V and
dividing by w(V) we obtain

P

(CF) (@) P iy < f { [ I(Rq,Kf)(m)lpdm} do.

o] 'M(V)v it

B FTCL be the characteristic function of VO~ If ueC and veV, ob-
viously x,,a,‘,‘(w“ Iy == 1, Using this as well as the fact that R is a repre-
genbtation we see that the last expression is equal to

i S

mor

[ 60) () (0) 1 o0 ) .
[ ‘

Since the norm of the convolution operator defined by % is A, this is
less than or equal to

(40)" .

M%) u}[ {Gf (R f)®) 2 ()17 CW} dw.

An application of Fubini’s theorem, (2.2) and (2.1) shows that this is smaller
than

E"M}” ohe ] v < (1 - ) BPAP || F 1P

iy e >mf F@)Pas < @+ A7 I 1.
Sinee &> 0 can be chosen arbitrarily small we obtain the desired resulb
(2.4) IS llp < A 11f -

This argument is an adaptation of a proof of Calderén [4] to our
situation. As was mentioned in the introduction, he assumed that a one-
parameter group of measure preserving transformations acted on M
instead of a ropresentation R satisfying (2.2). On the other hand, he
consiclered sequences of operators, and the maximal operator they defined,
instead of a single operator, as we have done. The analog of this in our
gituation would be the following: Suppose {k,} is a sequence of integrable
functions on G having bounded support. Let

(Tg) (v) = sup ‘ f Ie,, (u)w(m{,‘“)du!
no

and supposo
— b
(f“") 1T 00 S AWl ey M
(") Calderén also considers woak-type (p, p) operators. The reader can easily
vorily that the extension wo carry out for strong tiype is also valid for weak-type
operators.
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K, f)(w) = Gf Ep(u) (B, 1 f) (@) dp () leb

(T%f) (@) = sup |(K,f) (@)]-

Provided we make an assumption that is stronger than (2.3) we can
then easily carry out the full argument of Calderdén in order to obtain
the IP-boundedness of the maximal operator T+:

@o - (JirnEpra) <ad([1f@rao)”

This additional assumbtion, which is certainly true if the representation R
congists of transformations on the measure space MM, is

(2.3 f [Sup | g, (@) 17 dee < 6? f [sup (R, gy) (0)| 1" e
. @ m "

(see example (i) in the next section). We leave the details of the proof
of this extension to the reader.

In the introduction we mentioned the extension of the commutator
singular integrals of Calderén. In order to obtain such an extension we
first prove an analog to inequality (2.4). We again assume that ¢ is a locally
compact group satisfying (2.1). On the other hand, we make the more

restrictive hypothesis on the representation R that it congist of measure-'

preserving transformations of the space M. The transformation we shall
study will have the form '

(Ef) (@) = [ (o, By, w)f (Ryw)du,
&

where k(z, y, w) i8 a measurable funection on MM xIM x @ which is 0 if
does not belong to a compact set ¢ < G. Moreover, we assume that for
each xeM the kernel

kp(v, ) = k(R,m, E R, u) = k(R B, 1, )
satisfies

([] Falr, wg(uro) duf o)’ <4 [ 1g(u)Pdu)* (%),
G G [

where A is independent of x<¢M and geIﬂ”(G). ‘We shall show that K is
a bounded operator with norm not exceeding A:

(2.7) ( f (&F) (@) da)™ < 4{ [ 17 @) aa)”.

() If K (w, %, u) depends only on u, so does ky (v, u), mnd. we have, eassentially,
the situation we considered in the first part of this sectmn The only difference is
that we changed the convolution in order to conform with the usual notation for
transformations.
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The argument we use for establishing this inequality is practically
the same ag the one used to show the validity of (2.4). We include it there
for the sake of completeness: Since R, is measure-preserving

f (EF) (o) do = f (Ef) (B,2)IP do

for all ve@. Let V and ¢> 0 be as before and -1 he characteristio
function of O~V (we are assuming (2.1) with 05V instead of Vo
then ||Kf |5 is equal to

u(V f’af (v, w)f _Iuw)xo_lv(u’lw)du‘ dv} dw

W (0717
\;Z("ff) mf { Gf 1 (Ru®) xaﬂly('u,)]pdu} do = AmW.

Inequality (2.7) now follows from an application of (2.1).

As was the case above we can obtain a result analogous to (2.6)
for suprema of operators of this type; however, because the representation
consists of measure preserving transformations, we do not need the analog
of assumption (2.3") (for the same reason we did not need analogs of (2.2)
or (2.3) in the argument that was just given).

[1r@rae. -
m

§ 3. Applications.

(i) Isometric representations on LP(IN). Suppose G iy a locally
compact group satisfying (2.1) and § is a representation of & consisting
of transformations of a o-finite measure space M for which we have
a “change of variables” formula

(3-1) [1(8,10) du(@)do = [ f(@)dw
m m

where .

(32) Au(0) = Ao(@) 4,(8, 1)

for all u, ve@ and zeIM. (For example, if @ is a subgroup of GL(n) satbis-
fying (2 1), im = R"® and S =1 then 4 ( == |1/detu]. Given p =

(BLf) (@) = f(Sy_r2) [4u(2)]*
defines a reprosentation R* of G acting on IZ(IR) satisfying

f (Bef) @) Pdo = f [ (@) dw

(thus, (2.2), (2.8) and (2.3') are satisfied). The results of § 2 are then appli-
cable.

© 71 — Studia Mathematica XLVIL3
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Such representations arise naturally when M is the boundary of
Symmetric Spaces (see the articles in [2] dealing with such boundaries).

(i) Multiplier operators defined by actions of locally
compact Abelian groups. Let G be a locally compact abelian group
and S a representation of G consisting of measure preserving transforma-
tions on & o-finite measure space Nt. Then, as was seen in the first appli-
cation, § defines a representation R of @ acting on IP(M), LK< p < o0,
by letting (R, f) () = f(S_,@) for weG and feL?(IM). We shall show how
2 bounded “Fourier multiplier” operator on I7(@) induces, by means
of R, a bounded operator on L*(MM). Special cases of this situation have
been considered by de Leeuw in the case of certain homogeneous gpaces [8],
and by Fife [9] when a one-parameter group acts on m.

We already observed in § 2 that condition (2.1) is valid for all abelian
locally compact groups. In order to avoid certain techuical difficulties
we shall further restrict ourselves to o-compact groups. It G is such a group
then it is known (see [11], Vol. I, page 255) that there exists a gequence
of open sets {H,} having compact closure such that

n (et A0
by U H, =G; (c) lim — P ==

A==l N0

Such a sequence of sets permits ug to introduce a notion of “Cesdro
Summability ? on & This, in turn, can be used to describe those Fourier
multiplier operators that can be approximated by eonvolution operators
with kernels that belong to I*(@) and have compact support. Let us
begin by showing how a sequence satistying (3.3).can be used to introduce
such a summability process. From now on, we let Az denote the charac-
terigtic function of E (the letter y being preserved for characters).

Tmvuma 3.4. Suppose {H,} is a sequence of open subsets of @ sati-
sfying (3.3) and g, (v) = (ig,*I_m,) () [ u(Hy), for weG andn =1,2,3,...
Then the sequence {p,} of Fourier transforms satisfies

(3.3) (a) Hy < Huyss 1.

LAz, ()1
(1) Pa\X) = w(H,) =03
2) ' [ onln)ax =1;
]

(8) if € is a compact neighborhood of the identity of @ then lim f Pn(y)dy=0.
o0 440

This lemma is well-known; however, for the sake of completeness,

we shall indicate how it can be derived easily from (3.8). Property (1)

is obvious. Using (1), the second property is then an immediate conse-

quence of Plancherel’s theorem. In order to show (8) we first choose

icm
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pelt(G) such that for all we@, p(w) > 0, p(u) = p(—u) and, moreover,
Jotw)dutu) =1.
@

It thfan follows that |@(y)| < 1 whenever y is not the identity char-
?;cﬁfﬁl‘ 1 (since, for y <@ fixed, {y(u): <@} is a subgroup of the unit circle;
if it is not the trivial subgroup then there exists at least one u f017‘
which Re(y(u) < 0). Thus, we can find &> 0 such that

p(l<1—e for all x¢C

(it @ is not compact, p(y)—~0 as y “tends to infinity”). Consequently,

([w+H,)NH, e,
Gf{ﬁ(ﬂ)% dﬂ(u)=@f¢(x)%(x)dx<‘x£l —kf”ﬂ

< [diz+a—a [
2e0

p1le
=f<ﬁn(x)dx—6 ft??n(x)dx-
@ 240
This shows
0<e [dumag<i— g ETEI00) 6, 0
,ﬂl Gf py e

Since, by (3.3), the last integral tends to 1 as %»—>co this gives us property (3).
) ‘We ghall say icham a bounded measurable function m on @ is normalized
(with respect to {p,}) if ’
Lim (@ *m)(x) = m(x)
N—>00

for all ye@. It is an immediate ¢consequence of Lemma 3.4 that a bounded
continuous function on @ is normalized.

Tf m is & bounded measurable function on & then f—>('rﬁf ) isa bounded
operator on L*(G). If, for some pe[l, oo], this operator is bounded in the
LP-norm we say that m is a Fourier multiplier for L (G). We let N, (m)
denote the norm of this operator. ? .

LeMma 3.5, Suppose m is normalized and is a Fourier mulliplier
Sfor IP (@) then there ewists a uniformly bounded sequence {m,} of functions
satisfying

@ - m(y) =Umm,(y) for all yeG;

(2) if heL*(@) has compact support then the funciion (mnff,) has compact
support and is in L'(G); .

(3) Ny (my) < Nyp(m).
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Proof. Define, for xeé,
mn(%) = (an*m)(%)-

Since m is normalized, (1) clearly holds. Let h be in I*(@) having support
in a compact set 0. An easy computation shows that the I?-function
(3.6) Ey, = (mnh)”

has support in (¥, —H,) —0, and, thus, belongs to L*(&). Tl}is establishes
property (2). To show (3) we first observe that for each yx,¢G the function
(T () = m(yxrY) is a Fourier multiplier for I7(G) with norm N, (m).
Next an application of Minkowski's integral inequality and parts (1)
and (2) of (3.4) give us

(JISLS m (e a2 ) F () o wp dyf” du
G g &

< [ Falr0) I f1 Iy to < N () 1f -
@

)l/r

Thus, the operator f—»([m*(}:ﬂ,]}”)' is bounded with norm not exceeding
Ny (m).

Let us now apply the generalized theorem of Stone to the represen-
tation B defined by S as was done at the beginning of (ii). Thus, we obtain

a spectral measure ¥ on the character group & such that
R, = [ {x wdB(y)
é

for all we@. Hence, with k, defined by (3.6) and f, geL*(IN)
[ o) (B_ofy @) dps (w) = [{ [ Touw) <z wpdps(w)} (B (), 9)
@ @ @
= [h(z)ma(2)d(B(2)f, 9)-
é

But, by the dominated convergence theorem of Lebesgue and lemama (3.5),
the last expression converges to

[ hGm(n dB(n], 9).
[¢;

Since the Fourier multiplier operator -defined by m,, followed by con-
volution with 7%, is the operator f—(k,f), it follows from (3.5), part (3)

that Np(lg;n) < Bl Vp(my) < (Rl N, (m). Thus, applying (2.4) to the in-

tegrable kernel with compact support k, and then passing to the limit
we see that the operator

[ bxym(z)am(y)
G
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has norm not exceeding N,(m) for all heL?(@) having compact support

and L*-norm equal to 1. It follows that the same must be true for the

operator [m(y)dH(y). We have, therefore, obtained the following result:
@

THEOREM 3.7. Suppose m is a normalized fundtion of G such that
the operator

> (mf)”
8 bounded on LP(G) with operator norm N,(m) for some pe[l, co]. Then
the operator

[ m(x)am(x)®
] ‘

is a bounded operator on LP(M) with operator norm not exceeding N,(m).

It H is a closed subgroup of G and H = {we@: (x,u> =1 for all
xeﬁ} then H is a closed subgroup of @. Let I = G/H and S the repre-
sentation defined by the action of @ on the cosets in G/H. Then Theorem
8.7 agserts, in this case:

COROLLARY 3.8. Suppose m is a normalized function on G which s
a Fourier multiplier for L¥ (@) with operator morm N, (m) for some pe[1, ool.
Then the restriction of m to His an I? multiplier for IP(G[H) with operator
norm not exceeding N, (m).

This is a version of the original theorem of de Leeuw. Theorem 3.7
generalizes a theorem of Fife. If ¢ = R" and H = 2" = {§ =01y eesfn):
Jp integral} then H can be naturally identified with Z" and G/H with
the torus 7™ Corollary 3.8 then tells us that a normalized function m

" on R” which is a Fourier multiplier for Z?(R™) with operator norm X, o (M)

has the property that {m(j)} (the restriction of m to Z") is a Fourier mul-
tiplier for I?(1™) with operator norm less than or equal to IV, (m).

We remind the reader that this method also yields similar results
for suprema of operators (see (2.6)) and can be used to obtain weak-type
inequalities. For, example, for the Calderén-Zygmund singular integraly
described in §1 we obtain the fact that the operator K* defined for
periodic functions f on R" by

" T Q% .
wH@) =sp | [ 2D ey,
8,050 " ge(y|<d l?/l
is bounded on IP(1™), 1L <p < oo.
(ili) Generalized Calderén commutator operators. Let v be
an ergodic flow on, the o-finite measure space I (that is, = is & one-param-

(°) This operator can, formally, be written in the form [ % (u)B_pdu.’
[
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eter group of measure preserving transformations). A function 4 on I

is said to be Lipschite relative to v if
|4 (z58) —A (#)] < (const) |s|

for all #¢IM and seR, where the constant is independent of x<IR. In the
sequel we shall agsume, for simplicity, that this constant is L. If0 < e < &
let

Ag)—A -
kS (e, y, §) = (m)sz = i e<lsl <9,

0 otherwige.

We claim that this kernel % satisfies the conditions we need in order to
obtain inequality (2.7) when @ = R. In fact this is an immediate con-
gsequence of the following result of Calderén:

If a is a Lipschitz function on the line then

< oplielly

( ~ a(s)—a(s—1)

p p{s—1t)dt ‘ ds

-0 a<|tj<d

for 1 < p < oo, where C, depends only on p and o's Lipschitz consiant.
Hence, we obtain the result:

THEOREM 3.9. The operator K2 defined by

A () — 4 (v,)

82

(Ef) (@) =

s<|sl<d

f(z,m)ds

18 a bounded operator on L”(&m 1< p << oo, with operator norm inde-
pendent of & and 8.

This. theorem can be extended to an analogous result involving an
. action § of R" on I (instead of the one-parameter group we have just
" considered). Suppose, then, that 4 is a function on M. We say that A
is Iipschitz relative to 8 if

|4 (8,2) —A(x)] < (const) |u]

for all xMt and ueR™ Let kb be an even function homogeneous of degree
—(n-1) which is integrable in |u|> 1.
CoROLLARY 3.10. The operators 03,0 < ¢ < 8, defined by
ON@ = [ bw)[4(@)—4(8,2)1f(8,2)du
s<|uj<d

have wniformly bounded norms as tramsformations of IP(IM), 1 < p < oo.
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To reduce this to (3.9) we observe that
(C°f) (@) = } fh( f ﬂ”“_:ﬁl_s_tﬂfs m)dt}du
=<ltl<d
Now an application of (3.9) and Minkowski’s integral inequality gives
(3.10) in complete analogy with the method described in §1 for singular
integrals.

Calderén, himgelf, extended his commutator operators to n-dimen-
gions [3]. In fact, he also includes odd functions % as well (satisfying
more restrictive conditions). A corresponding more general version of
corollary 3.10 is obtainable divectly from his results and inequality (2.7).

‘We again gtress the gpecial case when Mt = T™ and G = R" In this
cage the Lipschitz function 4 is periodic. With % as above, we have the
uniform boundedness of the L?(7™)-operator norms of the transforma-
tions
(3.11)

CN@) = [ Mw)A(0)—4(@—u)]fe—u)du,

<] <d
where f is periodic.

(iv) S8ingular integraly on compact Lie groups. Let & be
an N-dimensional compact connected Lie group and I™ a fixed maximal
torus. 'We shall identify T™ with the cube @ = {8 = (6;, 05, ..., 6,) <R™:
—ng b;<m §=1,...,n} via the map 0> (0) <I™ Let m(u) =
= det(4d,—I), where Ad denotes the adjoint representation of @ on its
Lie algebra. The function m is central; thus, it is completely determined
by its values on 7" which are known to be

(8)) = []451113(0: (6))

for 0e@), where Zq = N—n and o; is a non-trivial linear functional on
R" (see [1], Chapter VI). Moreover, m can be used to evaluate the Haar
integral of all central functions: if f «ILM@) is central then

af st == [ sema,

Jm«

(3.12) m(t(0

where |w| denotes the order of the Weyl group. This formula allows us
to obtain the following extension of (1.6):

Gf fw)du mﬁ%)’ af {i Foowym(s)dt} do

‘We choose a central function p such that

p(t0) =( > 6" =101
Fm=1

(3.13)
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for 6 in a neighborhood of the origin and p(t) > ¢ > 0 for ¢ outside this
neighborhood (see [13]).

THEOREM 3.14. Let T be o finite dimensional unitary representation
of @, then the operator

&
T(w)—T(u1) O
ELf)(v) = P.V. fv—--uw»_—j('uu, ) du
( Tf)( ) d [p(%)]NH
18 @ bounded operator on LP(G), 1L < p < oo
Proof. Using (3.18) we have

T () —T (Y

(K3 (v) = E%—l&fl’(u) {P.V. S e f(motu““)m(t)dt} T(wYydu.

It follows immediately from (3.12) that

L TW-TEY)  m@) Q)
B = —Lwr ™ mor—  jor

where Q is an odd matrix-valued function that is homogeneous of degree 0
and bounded. This shows that the kernel H (¢) in the inner integral defines
a bounded operator on L(IT™), L < p < co (see (3.8) and the last para-
graph of (ii)).

Let R" ue@, be the representation of 7™ acting on functions on G
defined by (RYf)(v) = f(vutu™?). Applying (2.3) we see that the operators
defined by the expression in the eurly brackets are bounded on L#(G)
independently of u<G. Now, an application of Minkowski’s integral ine-
quality (using matrix operator norms and taking into account that 7T'(u)
is unitary) yields the theorem.

THEOREM 3.15. Suppose A is ‘a fundtion on G satisfying the Lipschite
condition |A (u) —A(v)] < op (u™'0) then ‘

A (u) —A (uv)
Gy w) =P.V. | ———Tom
Gf [p ()17
is & bounded operator on LP(G), 1 < p < co.

Proof. We proceed in a manner completely analogous to the last
proof. Using (3.13) we have

+O(161",

fluv)do

A (uy—A (vutu™
() ) = [ {P.V. | —@Wgﬁ’ﬂl m(t)f(matu‘l)clt} .
(e m
It follows from Corollary (3.10) that the expression in the curly brackets
defines a bounded operator on I#(G) with norm independent of w, Where
p .
() = —[;%)(]—l)vﬁ +O0([p(®H])™" is an even homogeneous function of
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degree —(m+1) (Instead of R™ the group T™ is acting on M = @; (3.11)
asgures us that this can be done). As before, the theorem now follows
from Minkowski’s integral inequality.

OOROLLARY 3.16. Lot T be a finite dimensional "unitary representation
of @, then the operator

"T(w™) —J
(K ypf) (v) = P.V.G —[—%@%m—f(mr])du
i8 o bounded operator on IP (@), 1 < p < oo.

This is immediately reduced to (3.18) by multiplying this operator
on. the left by the unitary operator 7'(v) (we can use, say, the Hilbert—
Schmidt norm of 7' to reduce this to sealar-valued funetions).

Moreover, we can obtain precise estimates of the operator norms of
the matrix entries of K, (with regpect to a bagis that diagonalizes T (u)
for ueTI™). These estimates involve the Lipschitz norms

W () —
by = sup VT =T1
uel P (1)
where || || denotes the operator norm of T(u)—I. Let (#,y) be the matrix

entries with respect to such a basis. Woe firgt observe that for w <G and
teI™ we have (since 7' is unitary and T (f) diagonal for te1™)

dar
b (Whw ™ — 8y = Ethl(w)iﬂ(w) {ta(t) "1)7

[=)

(3.17)

where d, is the dimensgion of the representation space. Thus,

. by (471) — 8y -
P.V. Gf WW flou™) du

. ~1y
= { {1’.'V. g (00 ) — 0y m(t)f(th‘lw“l)dt} dw

F i [p (£)1¥*
C oy . m (t) .
ml;’( I g (1) by (10) {P.V. 2;[ (t(t=1) —1) i f(q;wrlw—l)dt} aw.

We now claim that the kernel in the inner integral defines a bounded
convolution operator on ILP(1T™).

To see this we use the fact that wultiplication by the charvacter
ty of the torus does not change absolute values; thus convolution by
this kernel has the same absolute value as

1
f t"(f_t._._z_:@l_(i) (g s)dt,

n
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where h is the (asymptotically) even homogeneous function of degree 0
given by h(?) =m(f)/[p@#)1¥ "™ By (3.11) the operator norm of this
transformation doese not exceed sup Ml—_—f"—(ﬂ—

g,el™ st~
A, depends only on p and n. (“’) As seen often. (by now) lpd, dom-
mates the L?(G)-norm of the operator defined by the last curly brackets.
Sinee T (w) is unitary we have

yfltkl(w)tﬂ(w Ndw < f(Z b () |2) (2 b5 (w |2)

This, and Minkowski’s integral inequality give us

(3.18) (ﬂ}?v

for 1< p < oo

This inequality yields the following result.

TeEOREM 3.19. Suppose {T;} is a complete system of irreducible repre-
sentations of G, d, the dimension of the space on which T, adts and U =y, .

If Zdall 2 ]ak|< co then the function (with a(l) = (a},))

k=1
= Y d,tr (& (1) T (w))
defines a bounded operator om LP(G) by letting

a(u)—ale
(E.f)(v) = P.V. f %T_"L“_) Flou) du
To conclude we observe that in the case G = SU(2) one can make
a choice of a natural matricial Fourier transform so that multiplication
by [p(u)]? yields a difference operator on the Fourier coetficients (see [6]).
Theorem 3.19 can be reworded as a matrix multiplier theorem. Such
choices can be made for other compact Lie groups.

A, << lpd,, where

p
tld(“ Y- O (vu”)du{pd’v) élTAprHLp«;,

TP
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