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Algebraic theory of right invertible operators

by
D PRZEWORSKA-ROLEWICYZ (Warsznwa)

Abstract. A notion of an initial operator for a right invertible operator acting
in a linear space i introduced. Using this notion a Twylor Formula for vight invertible
oporators is proved and the definition of definite integrals is given. Furthermore,
initial value problems and mixed boundary value problems for equations with right
invertible oporators are solved. There are given applications to ordinavy and partial
differential equations (in particular to hyperbolic equations) and to difference equa-
tions, all of thein with variable coofficients.

In a series of papers ([1], [3]-[6]) the author has given properties
and applications of equations with an algebraic derivative defined in
[1]. However, all the rerults obtained follow only from the fact, that
cach algebraie derivative (in sense of [1]) is & right invertible operator.
‘We therefore give in the present paper an algebraic theory of right invert-
ible operators acting in a linear space. This theory generalizes the results
of the previous papers [2]-[6].

1. Notations and definitions. Polynomials in right invertible operators.
Let X be a lineax space (over an algebraically closed field & () of scalars).
We consider a linear (i. e. additive and homogeneous) operator 4 defined
in a linear subset 2, < X, called the domain of 4, and mapping 2,
into X, We denote by L(X) the collection of all such operators. Z, will
stand for the kernel of A, i.e. Z,, == {we 24 Ao = 0}.

DrvizvozoN 1, An operator De L(X) is said to be right imwertible
if there exists un operator Ke L(X) such that

1) BRX < @) and 9y = X,

(2) DR == I, where I denotes the identity operaton.

The operator It is callod w right inverse of 1. Tho set of all vight invert-
ible operators belonging to L(X) will be denoted by R(X).

DuprNvrroN 2. An operator 4.« L(X) is said to bo a Vollerra operator

(1) Tho assmnption that B is algebraioally closed is necessary only if we consider
equations with sealar coofficionts.
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if the operator I —24 is invertible for every 1¢%. The set of all Volterra
operators belonging to L(X) will be denoted by V(X).

DermnirIoN 3. An operator De R(X) is said to be V-right invertible
if its right inverse R is a Volterra operator. We then say that R is a V-right
inverse of D. The set of all V-right invertible operators belonging to
L(X) will be denoted by VR(X).

Let De R(X). The kernel Zy, is called the space of constants for D and,
every element zeZj is called a constant. We also write ap

The proofs of the following properties can be found either in [2]
or in [3], Chapter IV.

Properry 1.1, If R is o right inverse of De R(X), then D*RF = I
fork =1,2,...

ProPERTY 1.2. If R is a right inverse of De R(X), m is an arbitrary
positive integer and 2ye Zp, 2, #0 (k = 0,1, ..., m), then the elements 2o,
Rz, ..., B™z2,, are linearly independent.

PROPER’IY 1.3. If R is a right inverse of De R(X) and elements 2., ...

-y #@me Zp are Uinearly independent, then the elements Rz, ..., R's,, are
linearly independent for & =1, 2, ...

ProrERTY 1.4. If R is a right inverse of De R(X) and N is arbitrary
positive integer, then .

Z,y = {st: 2 = JSI.R"zk,zksZD}.
k=0

In the sequel we shall use the following notations: Let R be a right
inverse of an operator De R(X). Let

(1.1) Q(D):ZQ,CD", where Qe L(X) (k =0,1,..., N—1)
k=0
and Q@ = 1.
We write
N
(1.2) H(B) = (Qu—2D)RY+ Y'QBY*  for hes.

K=l

TrEOREM 1.1. Suppose that R is a right inverse of an operator D e R(X).
Then

1) If Q3 (R) is invertible, then Q(D)e R(X) and its right inverse is

1.3) = RY[Q3(R)]

(2) If Q3 (R) is invertible for every e, then Re V(X), so that Q(D)
VR (X).

= dimZ,.
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3) If Q5(R)

is invertible, then all solutions of the equation
(1.4) QD) =y, yeX

are of the form

Rl'ym \1 Qm }ﬁ ]?""’M] -] Z sz/ﬂ’

m~« 0 Icmm Tomae )

where 2ye Zyp are arbitrary and I is defined by Formule (1.3).
Proof. (1). By assumption we have from Propoerty 1.1.

N
QD) = Q(DIRVIQY(R) = ( Y] D*EY) [Q)(B)]

Jeea 0
N .
= D) QuR™¥) @} (7)1 = 103 (R)IIQ} (B =T
Jows )

which means that @ (D)< R(X) and its right inverse is R.
(2). Since the operator Q}(R) is invertible for Ae#F, then

T—Af = I~ m”[@o( )17t = [Q4(R) —ABN1[QF (R)]-
r(ZQ RN ARY) [QH(R)1~ = Q}(R)[Q} (R)
is invertible for Ae#. This implies that Re V(X), and, by conclusion

(1) of this theorem, @ (D) VR(X).
(8). Properties 1.1 and 1.4 together imply that all solutions of the

equation DV == [QF (R)]~*u are of the form
N1
& = RV[QY(R)]*u-+ 2 Rz, whore #,¢Zy, are arbitrary.
Jows0
Thug, by conclusion (1) of this Theorem
QD)w =
N1 N1
= QD) { BV QY (R)) " ut Y Ry = u--Q(D) }j R,
) o
N Nl ML ’1
=t QD™ 3T By, = ut Z Qu( Y D eyt Z RE~g,) +
M) Jowa() s L) lmnm
Nt o ] .
-+ QN.DN 2 .I Rf]ﬂ s 'u+ 2 Qm Z R"""’”z,,—k Z DN“kzk
Jowa () MNheal)
Nel N

=% 2' O E EE-"g,

Meal) Jomin
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Hence, from Equation (1.4), we conclude that

N-1 N-1
1 e
w=y— 3 @ 5 B"a,
m=0 k=m

which gives the required form of 2.
TurorEM 1.2. Suppose that R is a V-right inverse of an operator
DeVR(X) and that @), = q.1, where qeF (k =.0,1,..., N—1), Then
(1) Q3 (R) s invertible.
(2) Q(D)[Q3(R)]™* = DV
(3) @(D)e R(X) and its right inverse is

(1.5) [Q3(RY)]-1RY = RY([Q%(R)] = R

(4) ReV(X), hence@(D)e VR(X).
(8) agp) = Nap and

N~1
Zomy = (AR Zy ={2e X: 2 = QSR 3] By e Zp).

Toe=(

(6) Al solutions of Bquation (1.5) are of the form

N-1
z =[QF(R)] ~1[RN Yy + 2 R"z,c], where 2,¢ Zp, are arbitrary.
k=0
Proof. The proofs of (1), (2), (B), (6) can be found either in [2] or
in 3], Chapter IV. Having the identity" (2) already proved, we act on
both sides of this identity by the operator RY and from Property 1.1
we obtain
@(D)[Qy(R)]IRY = D"RY =1,

which implies that @(D)e R(X). Since @5 (R) is a polynomial with scalar
coefficients, we conlude that
(€3 (B)]RY = RY[Q*(R))- =

and that R is a right inverse of D. In [3], Chapter IV we have proved
that the operator I — AR is invertible for every Ae &, go that Re V(X) and
Q(D)eVR(X).

Proposrrion 1.1 (cf. Mazbic-Kulma, [3], Chapter V). If Dy, ...
coos Dy e VR(X) and the operator B = Ri™.. Rie V(X) for some positive
integers ky, ..., ky,, where B; denotes a V-right inverse of D (j =1,...,m),
then the operator D = lel. .. Dfn"‘ is V-right invertible having R as a V-right
Mmuerse. .

Indeed, DR = Di’... Dimgln R =1 and by assumption Re
V(X).

Atgebraic theory of right invertible operators 133

2. Calculus of right invertible operators. In the sequel the following
notion will play a fundamental role,

DeriNrrroN 4. An operator Fe L(X) i said to be an initéal operator
for an operator 1) e R(X) corresponding to a right inverse R of D if

(i) X =Z,, I =1,

(ii) 'R =0 on X,

This definition immediately implies that

(2.1) DF =0 on X,
(2.2) Zp Ny == {0}.

Towormm 2.1 Let R be a right imverse of De R(X). Then Fe L(X)
is an initial operator for I (corresponding to R) if and only if the following
identity

(2.3) F = I—RD

holds on Dy,.

Proof. Necessity. Let ¥ bo an initial operator for De R(X)
corresponding to a right inverse R of D. Let we 95 and put u = RDw.
Then by definition, Du = D(RD)ao = (DR)Dus == Dx. Hence D (u—~— )
= Duy--Dg = 0, which implies 4 —o = zeZ,,. On the other hamnd, since
FEB =0, we have J'u = FRDa = 0. Then, since ¢ = u—peZ py We have
Iz ==z and

(I —RDyo—RD® = @t = —p = — Fg
= — (% — ) = — Ty T = Fo,

which implies Formula (2.3).

Sufficiency. Tet ¥ =I-—RD on 2,. Then K2 = ([—RD)?
= [ RD —RD--RDRD = I —~2RD+RD = I—RD = F. We have to
show that FX = Z,. Indeed, DB = D(I--RD) = D—DRD = D—D
= 0. Honco WX < Z,. Moreover, it #sZ,, thon Dg =0 and Fe =g—
~RDz = 2, Thus I maps X onto Z,,. Finally, we have FR == (I —RD).R
= By RDE = K- R = 0, This proves that ' iy an initial opoerator for
D corvesponding to R.

Howover, in applications, to any right invertibloe operator D there
corresponds w family {R,},,p of ity right inverses. This fact and Theorem
2.1 togother imply

Tunormm 2.2, Let {B,},.rbe a family of right inverses of an operator
DeR(X). Then this Jamily induces uniquely o family of initial operaiors
{F}per defined by

(2.4) By = I—~R,D  on 25 (yel).
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TarorREM 2.3 (The Taylor Formula). Let {R,},.r be a family of right
inverses of am operator De R(X). Let {F,},r be the family of initial operators
induced by {R,}yer- Let {y,} < I' be an arbitrary sequence. Then for N = 1, 2,

.. the following identity holds on 2Dy

N—-1

I=Fy,+ D B, ...R,

Y

(2.5) DR, . DV,

7N1

Proof, by induction. For ¥ =1 Formula (2.4) implies I =F, 4

+R,,D. Suppose that Formula (2.5) is true for an arbitrary N. Then

on 9, .1 We have

R, ... RVNDN'” =R, ... R, (B, D)DV = R, ...R,,N_I(I—FYN)DN
=By, VN~1D — By By Ty N'DN
=I-F,— 2 By .- By B, D*~R, . .R, T, DV
=I—Fvﬂ"k2 By By, WaDk’

=31
which was to be proved.
Putting K, =R and F, = I we obtain

CorOLLARY 2.1 (Taylor Formula). Let R be a right inverse of an opera-
tor De R(X). Then for N =1,2,... .
N-1
I= D> R*FD*+RVDY

To=0

(2.6) on Do,
~ where F is the initial operator for D corresponding to R.

CorOLLARY 2.2. Suppose that the assumptions of Theorem 2.3 are
satisfied. Then

N—-1

Zon = {zeX: 2 =z0+2 R, ...

k=l

B, % #e ZD} (N=1,2,...).

N-1 .
Proof. Let # =,zo-|-kZ']l B,y .o By, % Where 2g,...,2y_ ¢ Z) are

arbitrary. Then

N-1 N1
D"z =DV 4 Y DVR, ...R, &= D DV = 0.
=1 =

Hence zeZDN.
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Conversely, let 2eZ, y. By Taylor-Gonticharov Formula (2.5), since
DVz = 0, we have
N1
¢ = Tyzt+ ¥ Ry ... R

Joea 1

Ve~ 'IT‘Ic'Dk
Writing 2, = I, D' (I =0, 1,
and that z is of the required form.
Wo agsume, as proviously that {B.},., 18 a family of right inverses
of an operator f)c (X)) and that {F,},.ris the corresponding family of
initial operators, We have

(@.7) BBy =
(2.8) PRy = Ry—R,

vooy N—1) we conclude that 2,eZp

for all a, Be I,
for all a, fe I

Indeed, since DIy =0, hence F,Fy = (I—R,D)F; = Fy—R,DF
= F;. Moreover,
By By = (I —RyD) Ry = R, —Ry(DR,) = R, —Ry.
ProposrrroN 2.1, For an arbitrary e X
LRy —Rpw =2, wherezis a constant (o, fe I').
Indeed, by Xormula (2.8), Dz == D(R,2—Ryt) = DFzE.2 = 0.

Hence 2¢ Zp.

ProrostrioN 2.2. The operator FpB,—F R, does not depend of the
choice of R, (a, B, ye I") and is equal to FyR,.

Indeed, from (2.8) we have

FyRy—~F,R, = R,—Ry—(R,~R)

By Proposition 2.2 wo can write

== Ra -—.Rp = Fﬂ.Ra.

(2'9) lg mﬁ1ﬂ~Ry"‘FaRr (ay /31 VEF)‘
The proof of Proposition 2.2 immedintely implies
(2.10) I8 = IRy (oy fel),

Propurey 2.1, Hor all o, fe 1" and we X

Lw =g, where & is a constant.

Indeod, Formula (2.10) implies that Dz = DIfw
Henceze Z)).

Prorurey 2.2, For all o 8
(2.11) I8 = —1If.
Indeed, Ji-+ 1§ = FyR, —IRy+ T R, —~FpR, = 0.

== .DFﬁ.R,, == 0,
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ProPERTY 2.3. For all a, B, 6e I’
(2.12) I+ 15 = IE,
Indeed,
L +1} = FyR,—F R, + IR, ~FR, = FyR,—F.R, = If,
ProPERTY 2.4. For all a,fe I
(2.13) I'D = p,—F,.
Indeed, Formulae (2.4), (2.7) and (2.10) together imply
IID = FyRD = Fy(I-F,) = Fog—Fpl, = Fy—F,.

In view of Propositions 2.1 and 2.2 and Properties 2.1-2.4 we can
call the operator I2— the definite integral. The family {R,},. plays the
role of an dndefinite integral. If #< X and ye I', then the clement R, is
said to be primitive for 4, since D(R, &) = x. We therefore can say that D
is a derivative (in the papers [11-[7] D was called an algebraic derivative).

TrROREM 2.4. Suppose that we are given De R(X) and an operator
FeL(X) such that F* = F and FX =%,. Then F is an initial operator
for D corresponding to the right inverse R = In;»If’I%, where B is uniquely
defined independenily of the choice of a right inverse R of D.

Proof. Sinee, by assumptions, DF = 0, we have DR = D(fﬁ«Fﬁ)
= DR—DFR = I. Hence R is a right inverse of D. Furthermore FR
= F(R—FR) = FR—F°R = FR—FR = 0. Hence F is an initial oper-
ator for D corresponding to R. We have to show that R ig uniquely
determined. Suppose that fBl #R also is a right inverse of D. Write
R, = El—FRI. In the same manner, as before, we obtain that DIAB1 =1

and ]?1{?1 = 0. Since F is an initial operator for D, we have [ —F = RD
on Zp5. Hence

By —R = R, —R—P(B, —R) = (I—F)(&,~})
= BD(E; —R) = R(DR, —DE) = R(I—I) = 0,

which was to be proved.

PROPOSITION 2.3. Let De R(X) and let R and By be two right inverses
of D which are commutative: Ry R = RR,. Then R, = R.

Indeed, by assumption, we have B — (DE)E = D(R,R) = D(RR,)
= (DR)R, = R,.

ProPoSITION 2.4. Let De R(X) and let P, F be two commmutative
initial operators for D: Fu F = FF,. Then P, =7

Indeed, by (2.7) we have F = F, F = FF, = F,.
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Observe that a convex combination (and only a convex combination)
of initial operators for a D e R(X)is again an initial operator for D. This ini-
tial operator corresponds to a right inverse of D which is the convex
combination of the corresponding right inverses with the same coeffi-
cients,

3. Initial value and mixed boundary value problems for equations
with right invertible operators. Lt Iy, ..., Ry ; bo right inverses of an
N
operator De R(X). As in Formula (1.1), wo write Q(D) = IE 0D,
(2]
whore Qe L(X) for o == 0,1, ..., N1 and Qy = I. Tet Fy, ..., Fy_,
be a system of initial oporators induced by Ry, ..., Ry_;. The following
problem will he culled & mirved boundary value problem for Q(D):
Find all solutions of the equation.

(3.1) QD)o =y, ye X,

satystying thoe miwed boundary conditions:

(3.2) By DEw = gy, whore y,eZp (b == 0,1, ..., N—1).
In pavticudar, if Iy == ... = Ry, == R, we have Fy == ... = Iy 4

= I, and the problem (3.1)—(3.2) is said to be an initial value problem
for @ (D). .

Wo say that o mixoed boundary value problem (3.1)~(8.2) is well-
posed it this problem. hay a unique solution for every ye« X and y,,...
veoy Yn—1€ Zp. By definition, if the problem (3.1)-(3.2) is well-posed, t?rlen
the corresponding homogeneous problem has only zero as a solution,
ie.

(3.3) ¢(D)@ =0 and F,D% =0 for k =0,1,..., N—1 imply @ = 0.
An immediate congequoence of Corollary 2.2 is
Provosurion 3.1 Lhe mived boundary value problem

(3.4) Dy esmy,  welX,

(3.5) I vy vpeZy (b= 0,1, 0, N—1)

is well-posed and its unique solution s
Nl
’ Y . P
(3.6) s Ry oo Ryoq0t 0 D) Ry ove Ry g0y

g ],

Indeod, D'y ==, henoe FyDPu == By, =, (b=0,1,..., ¥ ~1)
and Dy <= p,
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PROPOSITION 3.2. The Jollowing identity holds on the domain of DV:

. N—-1
(3.7) QD) =(I+Q)DV+ D) Qp,

M=)

where we write

N-1
(3'8) (:?m = Qm l 2 Rm . R}c—-—lFlv-Dk'}"Zﬂm])m]
k=1
for m =0,1,..., N—2,
N . N1
Q-1 =Qn_1Fy DV @ = 2 Qb oo By_y.
m=0

Proof. From Taylor-Gontcharov Formula (Theorem 2.3) we have
N-1

(3.9) I =Fo+k§ Ry... By \Fy D"+ Ry ... Ry, DY on @,5. -

Since DF; =0 for j = 0,1, ..., N—1, we obtain

(D) =
N-1
(D) [Fo+ 3 By By L D¥ 4Ry ... By, DY)
=1 L
N -y
2 m[F + 2 By . Ry F, D"+ R, ... RN-—1DN|
m=0 Jo==1 i
al N1 N-1
= Q,Fy+ ZQm 2 D™R, ... Rk_leD" + E Qm—Dm-Ro .RN,_l.DN—f"DN
m=1 k=1 =
= N—71
= D¥ -+ 2 QmRm v RN_I.DN + Qo Fy+ 2 QR ... Rk-1F]¢-Dh’f-
=1 =1
N-1
+ 2 Om [ 2 R, .. Rk—lF];Dk—I— IﬂmDm]
m=1 Te=m+1 J
N- ya1
_.DN-I—QDN—I—QO-|— ZQm I'}*Q DYV 4 2 O
me=l =0

N1
TuEOREM 3.1. If the operator I+Q = I+ ZQM o -+ Ry 18 Thvert-

M=
ible, then the mized boundary value problem (5 1)~(3.2) ds well-posed
and its wnigue solution is

. R N-1
(3.10) % =Ry... Ry 1 (T4+Q) ™y 4y, + 2 Ry... By sy,
k=1
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where
N2 N
) . (1 1 ;
@11) §oy— D) le D B By gyt ?/m] —Qy1Yyoa
W kel

Proof. Proposition 3.2 implies that equation (3.1) can be written
in the form

Nt
(8.12) (TP D) Q- y.
W)

From conditions (3.2) we conelude that

N1 N
v D Qu e D) Qul Rupeoe By By Do 1 1, D | —
Wwal) Wil e 1
—Qy Py DV g
N _~ N 11
Y- m[ 2_1 ]‘)m e ‘Rl(w‘l?/lc”l"' f’/m] - Q.\'ml?/,\f—l = .7} ..
" I) “ Nl 1

We therefore obtain an equivalent equation
(3.13) DV e (L)1 7,

because the operator I~|»(:) iy invertible by asswnptions. Proposition
3.1 and conditions (3.2) together imply that the problem (3.13)-—(8.2)
iy well-posed and its unique solution is given by Formula (3.10). Xence
the problem (3.1)=(3.2) iy well-posed and its unique solution is of the
required form (3.10).

JoroLLARY 3.1, Let B be a right inverse of an operator De R(X),
and let I be an initial operator for D induced by R. Then the indtial value
problem,

(3.1) QUD)e =y, ye X,

(3.44) P gy yeZy (b= 0,1y ooy N—1),

48 well-posed provided that the operalor Qg (1) 2 (),,RV " is fnvertible.
Te )

Lhe unique solution of the problem (3,1) -~ (3.14) 4s of the form

AL N2 J ) ) .
3.15) o RV o Y Q= D () @) v +

Whevn u Josll

N1
+ 2 ka?/Ia'
Fanlh
This follows innnedintoly 1]‘()111 Thoorem 3.1, if we 1)111, Ry == 0= Ry_y
= Ry My oo o0 By oo By boeause in our ease I4+Q = Qi(R).

3 — Studia Mathematlene XLVIILY
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CoroLLARY 3.2. Let R be a V-right inverse of an operator De VR (X).
Let Q) = q, I, where q;, ave scalars (k. = 0,1, ..., N—1). Suppose that ) =0
is not & root of the polynomial Q(A). Then the inilial valie problem for
the operator DMQ(D) is well-posed and its unique solution is

NA-M-—-1

l]’N‘Ma/—}— Y’ Z(Imk JPT/A]

J==0 Ie==0

(3816) @ = [Q}(R)]

Indeed, from conclusion (1) of Theorem 1.2 it follows that the operator
Q5 (R) is invertible. This, and conclusion (6) of Theorem 1.2 together imply
that
! N+M~1
o = [QUB)IT[BY My 4+ Y R,
k=0
where #¢ Z;, are uniquely determined. It is not difficult to verify, writing

N—-1
@ (R)w = BNy + D' Rz,
Ie=0
and acting on both sides of this equation by operators D® = I, D, ..., D¥-1,
that z, are of required form.
Up Gill this moment we have considered the case when the opemtor
I -|—Q is invertible, i.e. when —1 is not an eigenvalue of the operator Q

If —1is an eigenvalue of the operator Q, the problem (3.1)~(3.2) is not
well-posed. However we have

. N-1
THEOREM 3.2. If —1 48 an eigenvalue of the operator () = > QuR,
M=0

 By_y, then a solution of the problem (3.1)-(3.2) ewists if and only if

(3.17) «(I+Q)X,

where §f s defined by Formula (3.11).

If this condition is satisfied, then the solutions are of the form

. N—-1
(318) @ =RBo... By o(I+Q)§ +¥0+ D Ry... Re_yyy+&,
Ti=s1
where (I +Q 1Y denotes an element of the inverse image of 5 under the oper-

ator T +Q and & is an arbitrary element of the eigenspace X_ 1 of the operalor
Q corvesponding to the eigemvalue —1.

Proof. In the same manner as in the proof of Theorem 3.1 we obtain
the equation

(3.19) (I+Q)D¥z =y.

icm°®
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This equation hag a solution. if and only if the condition (3.17) is
satisfied. Xf this condition is satisfied, we obtain from (3.19) that DV
— (I46)_17 +#, where (I+@)_,7 and & are described above. This and
Proposition 3.1 together imply that solutions of our problem exist and
are of the required form.

4. Examples of applications. In this scetion we shall indicate some
applications of the results obtained above. To be short wo shall omit
proofs. We remark only that to prove the invertibility of the operator
I —}-Q is exactly the same as to prove that a Volterra integral cequation
of the second kind has a unique solution.

Bxaven 1. Let X = [0, 1], ) = d/df. Then the operators defined
¢

J w(s)ds, where 0

@
V-right inverses of .D. Observe that dimZ; = 1. The family of initial
operators induced by R, is defined as follows: (F,x)(l) = x(a). Hence
it is a family of linear operators.

by means of the ecquality (R,z)(t) = < a<l, are

Ou(t, 8)
o
Then the operators R, defined by means of the equality (R,2)(¢, )

Bxamprn 2. Let X = 0([0,1]x [0,1]) and (Da)(t,s) =

j (4, $)du, 0 < @ << 1, are V-right inverses of D. Observe that dimZj,

= + oo, The induced family of initial operators is defined as follows:
(Pctm)( H é) = w(aa 8)'

Examrrr 3 (Difference equations). Let X be the space of all sequences
{@,} (m =... -2, —1,0,1,2,...) and let Dx __{w,m—qn} Then the

=1

operators R, defined by means of the equality B,» ={ } ')sk] m =0,

Tessmy
+1, £2,...) are V-right inverses of .D. Bach of the induced initial opera-
tors I',, maps any element # = {x,} into a constant sequence {m,,} (i. e.
By, = n, for all intogers n). Using these definitions we can solve diffe-
N
rence cquations, for instance of the form 3 Py(m)a,,, = ¥, (1 =0,
Jows )

1, k2, ...) with oither initial conditions: @, = 4, (m is a fixed inte-
ger, j = 0,1, ..., N=1) or with mixed boundary conditions: ®,.,.; = ¥,
(m = Doy veey Pty WHere Do, ..., Py are fixed integers; j == 0,1, ...

, N—1).

Examrerr 4(*) (The Darboux Problem for hyperbolic equations).

L
Let X = C([a, b] X [a, b]), D = 0;%»; In this case Zp == {w: =(1, )

(*) I wish to express my profound thanks to Professor Adam Bieleeki, who is,
in fact, the author of examplos concerning hyperbolic equations.
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= @ (t)+ p(s), 9 e Cla, b]}. The operators R, , defined of the cquality
(Boo0)(ty 8) = [f @(&, m)dédy, a< u,v<b, are V-right inverses of I,
The induced fg;nily {Fy,.} of initial operators is given by the formula
(o) (2, 8) = m(u, 8) + 2 (¢, v) — 2 (u, v). Consider the hyperbolic equation
0_?9;" O

4.1 - b
1) atds Os

Ow ‘
= A(t1 5) 'a‘z '1'B(t7 s) + O(tn S)m(t7 )+ ?/(t: ‘5')7

where A, B, C, y< X, with the initial conditions
(4.2) w(uy 8) =q(s), @(fv) =p(1),
Wwhere @, we Cla, b] and w(u) = p(v). This is the Darboux problem for
equation (4.1). Write ’
O O
(Hu)(t, s) = At s) —d—; + B(t, s) 5; +0(, 8)w(ty 5).

‘We can rewrite equation (4.1) and condition (4.2) as follows:

(4.3) (D—H)z =y,

(4.4) where ¥, .(¢, 8) = ®(8)+Fp(s) ~p(u).

Since the operator I —R,,H is invertible, the problem (4.3)=(4.4) m

well-posed and has the unique solution # = (I =Ry H)" By ¥ -+ Yy o)
Bxampre 5 (The Cauchy problem for hyperbolic equations). Let

X = C(Q), where Q= {(t,5): 0Kt < @, 0 << s < b} and let D be defined

a8 a.?oove. We consider the Cauchy problem for equation (4.1), i.c. wo
admit the following condition ’

'F’M,vm = Yu, v

Oz

(4.5) b)) = o),

w(i) g(t)) = o(t),
where the given function ge(* [0y al, ¢

) 7g(t)>079(0)“079<“)’:b
gel [‘0, a]S, we G'[0, a]. The operator R defined by the equality (Ruw) (¢, 33

=(,— lf( s)[g{g}m(f, n)dn|d¢ is a V-right inverse of D. The induced initial

o Lodw
operator is (Fa) (t, 5) = a(g-1(s), §) 4 J % (5 g(&)de. Lot H be defined
o7 8) i

as in Example 4. We congider o uation (4.3) together wi he inifti
condition q (4.3) together with the initial

4

@6) P =y, where yo(ts) = ogi(s), )+ | w(e)de.

o 1(s)
Since the operator I—RH is invertible, th
: e problem (4.3)-(4.6) is well-
posed and has the unique solution ; (I —RH)-l(R(y—;—)yog el

icm°®
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ExampLe 6 (The Picard problem for hyperbolic equations). Let X
and D be defined as in Example 5. Lot ge 0[0, a], ¢'(t) > 0, g(0) = 0, g(a)
= b. We consider the Picard problem for equation (4.1), i. e. we are looking
for solutions of equation (4.1) satysfying the condition
@(ty 0) = (I’(t)a ¢€m(.‘7(3)1 '9) = p(8),
where @eCH[0, al, we C1[0, 0] and @(0) = p(0). We (Rax) (1, 8)

I8
= [| (& n)dn| 4. The operator R is u V-right inverse of 1. The cor-

ON]

(4.7)
putb

responding initial operator is defined as follows: (F@)(t) = w(g(s), s) -+
+w(t, 0} — x(0, 0). Let H be defined as in Bxample 4. We consider equation
(4.3) together with the initial condition

(4.8) Pr=yo, Where yo(t, 8) = () +p(s) —p(0).

Since the operator I —RH is invertible, the problem (4.3)-(4.8) is
well-posed and hag the unique solution @ == (I — RH)~*(Ry --¥,).

BxampLn 7 (Goneralized Cauchy problem for hyperbolic equations).
Let X and D be defined as in Hxample 5. Suppose we are given two
functions ¢y, g5 C1[0, a]- such that g, > 0, gy = 0, ¢,(0) == g,(0) = 0,
go(@) == gy (@) = b. Our problem is to find solutions of equation (4.1) sabis-
fying the conditions

(4.9) @ty go(t)) = p(1);  ift, gu(1) = (1),

4 8
[ | [ @& n)an]da&. The

. )
1y () 2
operator R is a right inverse of .D. The corresponding initial operator
[
is defined by the equality (Fu) (f,8) = a(gs*(s); s)+ [ @ (& g.(§)dé.
]
. 077 (8)
Let H be defined as in Bxample 4. We consider cquation (4.3) together
with the initial condition

where @, we C*[0,a]. We write (Rax)(t,s) ==

¢
(4.10)  Fa ==y, where yy(h 8) = g (gi(s), 8)+ j w(£)dE.
-
vy )

If the operator [ — RH i invertible, then the problem (4.3)~(4.10) iy well-
posed and has the unique solution @ = (I - BH)~*(Ry--y,). Observe
that the operator - RH iy invertible if g, ¢, has & constant sign for
te (0, a). ‘

We can consider similar initial and mixed boundary value problems
for hyperbolic equations of higher orders in & similar way.

Some applications to functional-differential cquations ave given
in [4]. Left invertible operators were considered in [7].
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Nonlinear integral operators on (/(8, I)

Iry
JURGEN BATT (Miinehen)

Abstract, 'Wo investigate the cluss of operators 7' on the space O(S8, B) of
veetor-valued continuous funelions on o ecowpact Hausdortt space 8 which arve
uniformly continuoms on hounded sets and satisty the algebraie velation

TS b2 = DY) T )~
for all f, fis foeO(S, B) with f; and fy having disjoint support, Wo derive integral
representations and prove universal properiies of these operators. Special attention
is given to tho (weakly) compact operators.

Introduction. Since A. Grothendieck’s celebrated treatment [227 of
this subjecti in 1953, linear bounded transformations on spaces of contin-
nous functions and their universal properties have been of interest for
many writiers. Our present study is related to the work of A. Pelezyriski
[24], C. C, Brown [10], B. Thomas [27] and I1. I Schaefer [26] and
especially to the results obtained in conneetion with generalizations of
the Riesz Theorem (see [7] for a detailed acconnt) via intégeal represen-
tations for the operators on the hasis of the well-known paper of I, Bartle,
N. Dunford and J. Schwartz [17] in 1955, namely the results of C. Foiag
and I. Singer [17], . 'W. Tewis [23], I. Dobrakov [14], J. K. Brooks
and D. R. Lowis [9] and of the author [2] [3] [4]. In 1965 N. A. Friedman,
R. V. Chacon and M. Katz began to derive representation theorems for
real, so-called “additive” (not necessarily, linear) funetionals on spaces
of reul-valued continuous funetions in w series of three papers [11] [18]
[197 with successive improvements. It was natural question to ask
which results an integration theory eould yield in the investigation of
nonlinear operators on spaces of continuous functions, Let 1 and ' De
Bunaeh wpaces and (8, B) the space of continuous funetions on the
compact Hausdortt space S with values in B (with the uniform norm):
Tn this note we present what woe think is the adequate extension of the
theory of the linear bounded transformations to the clags of nonlinear
teanstormations 7' (8, B) - F which are at all representable as integraly
with respect o additive “nonlinear” set funetions (hereby wo understand
a seb function which takes its values in a space of operators from. one
Banaeh, space into another which are uniformly continuous on "bounded
sebs). This class consists of those transformations 7' which ave uniformly
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