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Nonlinear integral operators on (/(8, I)

Iry
JURGEN BATT (Miinehen)

Abstract, 'Wo investigate the cluss of operators 7' on the space O(S8, B) of
veetor-valued continuous funelions on o ecowpact Hausdortt space 8 which arve
uniformly continuoms on hounded sets and satisty the algebraie velation

TS b2 = DY) T )~
for all f, fis foeO(S, B) with f; and fy having disjoint support, Wo derive integral
representations and prove universal properiies of these operators. Special attention
is given to tho (weakly) compact operators.

Introduction. Since A. Grothendieck’s celebrated treatment [227 of
this subjecti in 1953, linear bounded transformations on spaces of contin-
nous functions and their universal properties have been of interest for
many writiers. Our present study is related to the work of A. Pelezyriski
[24], C. C, Brown [10], B. Thomas [27] and I1. I Schaefer [26] and
especially to the results obtained in conneetion with generalizations of
the Riesz Theorem (see [7] for a detailed acconnt) via intégeal represen-
tations for the operators on the hasis of the well-known paper of I, Bartle,
N. Dunford and J. Schwartz [17] in 1955, namely the results of C. Foiag
and I. Singer [17], . 'W. Tewis [23], I. Dobrakov [14], J. K. Brooks
and D. R. Lowis [9] and of the author [2] [3] [4]. In 1965 N. A. Friedman,
R. V. Chacon and M. Katz began to derive representation theorems for
real, so-called “additive” (not necessarily, linear) funetionals on spaces
of reul-valued continuous funetions in w series of three papers [11] [18]
[197 with successive improvements. It was natural question to ask
which results an integration theory eould yield in the investigation of
nonlinear operators on spaces of continuous functions, Let 1 and ' De
Bunaeh wpaces and (8, B) the space of continuous funetions on the
compact Hausdortt space S with values in B (with the uniform norm):
Tn this note we present what woe think is the adequate extension of the
theory of the linear bounded transformations to the clags of nonlinear
teanstormations 7' (8, B) - F which are at all representable as integraly
with respect o additive “nonlinear” set funetions (hereby wo understand
a seb function which takes its values in a space of operators from. one
Banaeh, space into another which are uniformly continuous on "bounded
sebs). This class consists of those transformations 7' which ave uniformly
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continuous on bounded sets in C(S, F) and have the algebraic property
T(f+fi+ho) = T(f+F) +L(f+fo) = Tf

for all f, f;, foe O(S, B) with f; and f, having disjoint support; this property
was termed “additivity” by N. A, Friedman, “strong additivity” in [67]~
we prefer here to call it the “Hammerstein property” in view of the fact
that the class of Hammerstein operators satisty this condition (1),

Every new type of transformation needs the development of o new
integral for its representation ([13], p. 1095). The definition of the integral
is the subject of Section 1. We remark that, after the completion of this
part of the manuscript, essentially the same idea of an integral, but with-
out explicit development of the concept of a nonlinear measure has
been published by N. A. Friedman and A. B. Tong [20] for the special
case B = R. In Sections 2 and 3 we represent the functionals and the
transtormations on 0(8, I) by integrals with respect to nonlinear measures,
In Section 4 we derive a Radon-Nikodym Theorem for our nonlinear
measures hereby making it possible to give kernel representations for the
functionals with Lebesgue- or Bochner-integrable functions (kernel rep-
resentations for transformations without further agsumplions seem to
be very artificial). The progress in comparison with [11] [18] [197 [20]
is this: 1. We show that the detour via a compact metric space § [187[19]
is not in fact necessary; we work on a compact Hausdortf space from the
beginning. 2. Our approach is not limited to the case of real functions
f; making use of the theory of a lifting we can handle the case of J-valued
functions f. 3. We can answer uniqueness questions and 4. we can give
direct evaluation of the norm and modulus of continuity of the transform-
ations represented. ‘

In Section 5 we characterize and study the compact and weakly
compact transformations on O(8, F) and ¢ (8). In particular we completely
extend the results of R. Bartle, N. Dunford and J. Schwartz ([15], pp.
492-497) to our class of nonlinear operators. It is our special interest to
apply the integration theory to the derivation of universal propertics
of these transformations (that is, propertics which are independent from
any integral Tepresentation). Among these we show that 0(8) has the
strict Dunford—Pettis property ([16], p. 633) also with respeet to the
considered eclags of nonlinear transtormations and that any 7' of this
type on €(8) with values in a Banach space no subspace of which is ivo-
morphic to ¢, is weakly compact. In the last section we apply our resulty
to transformations 7: ¢/(§) - 0(Q) where ¢ is another compact Iausdortt
space. An essential tool of our study is the theory of nonlincar compact
mappings and their adjoints ag developped in [5].

(1) The name was suggested to the author by Professor C. Toiag,

icm°
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A great purt of our results was announced in [6] and has been 1)1‘0&01113@@
on the conference on “Function spaces and modular spaces” in October 1971
which was arranged by Prof. W. Orliez and Prof. J. Musielak of the
A. Mickiowicz University in Poznant, The author gratefully acknowledges
the honor of the invitation and wants to thank Prof. W. Orliez for the
interest in his work,

1. The integral. In this secfion we infroduce the integral needed for
the representations in Sections 2 and 3. Let & and ¥ bo} Ban‘a.ch‘sl’)aces
and M (B, 1) the lnear spuce of all transformations U: B - F with the
following propertios:

iy U0 =0, 4
(i) Tt U, i the restriction of U to the ball W, : = {we l: o] < o} then
UL ¢ == sup | Un| < oo, a2 0,

el

(i) Dy U, = WU = U] = 0 (8-> 0), a > 0

sap
e ll,
[
(i) is agsumed for conveniencoe and (‘ii ) is of COTTRO & consequence of v(m)).
The spaces M, (M, F):= {U; Ue M (B, I)} are linear and conmdurgd
to be normed by |+ U,-» U] Let us also agree alwnys to denote the
a-ball of & normed spaco by the index ¢ affixed to the symbol for the space
and the restriction of an operator on this space to the a-ball by the index
o affixed to the wymbol for the operator.
Now lot & be an abstract set, o be an z,lylgub.m of subgets of S and.
U: o — M (I, 1) He an additive set function. .1f ¢ is an e];em(int (‘)Tz € {g(yl‘),
the space of the &-simple functions on 8 with values in HB([12], p. 82)
and if ¢ hag the representation

WheTe @y, ..., wpe B and Ay, ..., A, is an s/-partition of 8 (that is, a finite
systom. of digjoint sots Ay, ..., Ad,esf whose union is §) then we may
and shall define the integral of g with respect to U by

.
[gatr:— N U(4)w.
N J ]
In foet, it i conily seon that the intogral for t‘wg zrupl{'uﬂ(a1'11‘,uj13iqrmko’lfl q )1~14
the same (as long an the sets A are (“Hj()i]l‘l:.). (kumylor () 110 bo n(’)fnn(.(i
by the unitorm norm. Then the int(\gr'{'\.’l is («.)mrmumw on & m(.{ﬂ? 1 tu.m.
only it U (as o function from o into M (B, #) is of bounded semivariation

on A, that iy,

¢ yhl
s0(U,, §) 1= sup {“E (,r(/lj)ij; {Agyooy A} -pazt, oy, .. .,w,efya} < oo
b
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svs(U,, 8): sup{”_; Yooy — U (Ay)a; H {4y, ..., A}of-part.,

gy tpe By, oy —al] < 6,j =1, ..., 7-} -0,
(6-0), a>0.
If this is the case we extend the integral to .4, (=), the space of the totally
d-lnc"amu“fmble funetions on &, with values in B (the uniform limits of
functions in &(s7)), normed by the uniform norm ([127], p. 83). It g e (o )

and {g,}n-1 18 & sequence in &y(e?) with [lg—g,] -0, we may and shall
define

ft]dU =: lim, fgndU

N0 &

In fact, if suplig,| = : ¢, it then follows from
n

“Sf gndU—ngdU”*g S’L’[;,,”‘N{,m”(U,,, S)

that { f 9,4U 5, is a Cauchy sequence in . The integral thus defined
is hnccu in U; with respect to g it has the Eollowmg property: Tor all
Gy Gy Jo€ My (@1) such that {g,(¢) s 0} N {g,(t) # 0} == @ we have

(1) f(g+gl+yz)dlf --f(g+g1)¢m+ f(g+gz)dU~— [gau.

N

Ind?cél it is snfficient to prove this relation for funetions in Ep(t). IE
we le

[gav = [0744U, gedly(t), Ae ot
A 8

and if A,, Ad;e o are such that {g.(1) # 0} < 4 3
hood 2 e {g:() b 11 {02(#) # 0} = 4, and

[@+a+e)aU = [(g+gyav +
N

oAy

(J Fga)dU

e e

= f(!/“}',fjl)dU-i gl -
aly e
+ [g+gavy [yav— [ gav
Ay A g

and this equals the right side of (1). Finally we remark that for a0

(2) ” fgdU '

Ss(U, 8), ge M1y ( S )

Hfﬂw* fg cZL' < sos( L :',;,AS‘)_, Uy e Myl llg—g'| < 0
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The second inequality follows from the continuity of sv,(U,, 8) as a
function of 4.

Besides the semivariation we congider for an additive set function w:
o ~ M (B, C) the quantities
”
Dty N) 3 == sUp {/}J et CAN, {Agy +ony A3} &t/‘-part.}
gl

(which is the vaviation on 8 of the set function pe: o -+ M, (B, ) defined
by pu(A) == p(d),, Aeot) and

O (fhay 8) 2 - 8up | \ Dyt (Ap)y {dyy ooy Ay} .ﬂ—pmt.}.

J -
For such an additive w: o ~ M (If}, ) we have
(4) 80 (Lay S) 5 0 (phey 8) < 4 80 (0, 8),
(5) 805 (they 8) K V5 (they ) < 4 8054y 8).

This follows from the fact that for any finite set 2y, ..., 2, of complex
numbers ‘we have

" 4
) SR
(6) gl < Y| Dals
Feal dual  Jely

with 1, == {j: Roz i 0}, Iy = {j: Regy < 0}, Iy = {j: Tmg; = 0}, I, = {j:
Im e < 0}.

2. Functionals on (/(§, K) with the Hanmerstein property. Throughout
the paper, 8 is a compact Tausdorff space and C(8, B) the space of all
continuous functions f on § with values in a Banach space M with the
uniform norm (if B == ¢ we shall write C(8)). For feC(8,H), S[f]
= {f(t) + 0} iy tho rupport of f. Woe say a functional 4: O(8, &) — C
has thoe Hammerstein property (abbreviated as HP) whenever

(M) AQF Jalofo) == A AL A AL o) — Af

for all £, fu, fac (N, 8) with S[f] 0 8[fy] =@ (for a justification of
this ferm see Section 6)., This seetion congists oi‘ the proof for tho repre-
sentation theovem for the finetionals Ae M (0(8, B), C) with the 1T,

W ghall denote by # the a-algebra of the Borel sets in 8. For subsets
M in 8 and P in H, ¢(M, P)is the subset of all fe C(8, B) with {f(1) = 0}
< M and f(M)cP. It Bed tho set x(B3) of all open aoi.s (\ont(mnmg B
is w divectod set under the partial ordering < if we define @) < @, for
two gots @y, Gyem(B) to mean ¢ o G,. Similaxly, tho seb mo(B) of all
compact soty K contained in B is a directed set under the par tial ordering
< it wo define I, << K, for two sets Iy, Kgemy(B) to mean I, < K.
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If K is a compact set in § and & is an open set containing K w (K, )
will always denote a funetion in C(S8) with the property that «(S) < [0, 1],
%(K) =1 and «(G") = 0, where G¢' is the complement of G.

TurorREM 1. There ewists an algebraic isomorphism between the space
Mep(C(8, B), C) of all Ae M(C(8, B), C) with the Hammerstein property
(7) and the space of all additive nonlinear set functions w: % — M (H, C)
with the following properties:

(1) sv (g, 8) < 00 and sv45(fay 8)~+0 (8= 0) for a> 0,

(1) po: B~ M, (B, C) (and hence v(u,) is regular (and therefore
o-additive) for a> 0.

The correspondence is given by

(8) Af = [fau,  feC(S,B),

and for corresponding A and u we have for each compact K

(9) w(K)e = lim A (oK, )

G en(K)
wniformly for we B, with arbitrary v = v(K, ¢')e C(S) such that ?(8)
< [0,1], v(K) =1, 0(F) = 0 and

(10) Aol = sv(pa, 8),

(11) Ds A, = sv5(u, 8), a, 6> 0.

Let us remark that the HP implies

Aftf) = Afy+Af,

for all fi, fae O(8, B) with S[f,] N 8[f,] =@ but is in general a stronger
condition (as the simple example Af: = inf [f(1)] on C ([0, 1]) shows —
te[0,1]

such a functional ean hence not be represented as an integral with respect
to an additive nonlinear set function)

The proof of Theorem 1 will require a series of 8 lemmas. Tot us
agree that K will always denote compact, ¢ and U open soty in S (with
or without subseripts). Two functions f, ge (8, B) haive disjoint support
whenever there exist sets K; ¢ such that {f(1) s 0} c K < Ge {g(t) = 0.
Up to Lemma 8, 4 will denote a fixed element in M m,(O(S, ), (!).

Luvva 1. If K< U,geC(K, E) and pe0(S) with U {p(t) =1},
then for all fe C(8, E) we have

A(f—g)—Af = A(pf —g)— A(pf).
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Proof. We note that {g(t) # 0}« K = U < {p()—1 = 0}, Hence
S8Tg] N 8[p—~1] = @ and therefore by (7)

A(pf—g) = A(f+(p—1)f —g)
= A(fF (9 = 1))+ A(f—g) — Af
= A(pf)+ A(f~g) —Af.
This is the only time we use (7) for f # 0.

LuMMA 2. For each I and Uy = K, each ge C(K', ) and &> 0 there
ewigts U K o U e Uy and qe C(U'y [0, 1]) such that for all fe (S, By
we have

[A (A g) A+ q9)] < &.

Proof. Let fgff -~ a By assumption, there existy 6 > 0 such that
DA < e et Ky o= {|g()| > 6} K, is compact and digjoint from J( .
Hence there exist disjoint U, U such that Ky« Uy and K< U < U,
Let ¢ = u(K,, Uy). Then U Uy < {g(f) = 0} s0 th,at qe C(U', [0, 1]).
Furthermore Ky« {g(t)—q()g(t) =0} and Kj< {lg@t) ~—q(‘t)g(t)n
= |lg(¢)(L — g () <2 8} so that |[(f--g)—(f-+a9)l = lg—qgl < 6. Hence
the last assertion follows from the choice of 8.

LummA 3. For each K, for each a>> ¢ and &> 0 there ewists U > I
such that for all fe C(S, 1), and ge C(U - K, B), we have

[A(f+g)—Af| <&
(or such that for all fy,fae C(8, B), with {fi(t) s fo(t)} = U—K we have
|Afy - Afa] < e).

Proof. If the assertion were false, there exist K and a,e> 0
such that for all U = K we have |4 (f+g)— Af] = ¢ for some correspond-
ing f, g. Given U, o K, there exists fye C(S, B), and gye O(U,— K, i),
such that

A (fubgo) — Aful 2 &
Tor & and Uy = I, for g« O(K', ¥) and &/2 wo determine ([1,1: KUy,
e Uy and g e C(U] 1, [0, 1]) necording to Lemma 2. Thon still
|4 (fo+ quga) — Afi] 2 6/2

and ¢,gy¢ O(U; N Ul y, B),. There exists Uy K = Uy < Uy < Uy, Given
Uy, wo can find fy, ga, g5 88 before. By induetion wo construct sequences
of sots U, U,, such that

KeaU,., s lf7b]1c Uy Upy n=12...
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and sequences of functions f,e C(S, E)a, hy e O(U N Unl,L),, such that
A (fp+tn)—Aful = €2, ®=1,2,...
Determine now U,,, U,, such that
Upnc Upprc Upyc Upsc Uy e Upyc Uy Uy, 00=1,2,...

Then U, N Upy © Uy — Uy B =1, 2, ... (if we let Uyy = 8). I now
Pui = u(Un n U;L.U (Un—-l,:!" Un,2)/>7 then pn(Un 2 Un,l) =1 and it
follows from Lemma 1 that
[A(pnfﬂ_l‘hn)"‘A(pﬂfnz)l = 3/27 no=1,2..
There exigts a subsequenc'e such that
7112:0‘ 2 p”lcfwlc+7”h (Z’nkfnﬂ))’ = 0.
On the other hand, for all », m =1, 2, ... we have
{pm-m(t) # 0} < Un-i-m~1,a— Un-{—m,z
& Uppmes © Ups < Uy
< Uy Y l7’:L——13 = (Up_13 N Un, o)
= (Un—l,s n " {pn == 0} .

Hence the p, have disjoint support. Because also S[h,] = U, n U,
< Un-—l,:i- n,2 & S[ﬁnL we have

k' 14
[ g, Bryfut hn|| < 205 | Igpn,cfn,c <a

and therefore

I Z pnhfnk + hnk) ~4 (p"kf”k)}l

k=1
70

. *
‘-A‘ Pnkfnk + hnk) ( g; .'p'nkfnk)

for all %', which is a contradiction.

Levma 4. For each K and Gy, G, with K < G4 U Gy and for each ¢ > 0
there ewist vy, vye O(8) with disjoint support, with v,(8) < [0, 1] omd {vr(t)

# 0} < Gy, b =1, 2, such that for all fe (8, B), with {|f(t)]> 6} < K
we have

< ”-A'sz” "" "'AaH

| 4F — (A (v, f) + A (vef)| < &,
if o and & satisfy the condition DA < &/2.
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Proof. Let K, = K n@,. Then XK, = @,. For K;,a and &/2 we
determine Uy o K; according to Lemma 3. We may assume U, < @,.
There exist Uy, Uy such that

KclUecUclUeclUecU,.

Let Ky = K 0 Uj. Then Kyn6Gy =K U, "G =K U, =@, go
that ,1(‘2 ey, and K=(KnUpu(KnU)cU uK,c U, Ul,.
Lot ' - u([C“ ((y W U, )) Then we have |[[f—u'f| < 8, because
K e {u( ) =1} and K’ < {|f()] < 6} Hence

[Af ~ A (u'f)] <5 e/2.
Now lob w; == w(I;, Uy) and u, - u(l/;,"'(']') Then {uy(t) = 0} N {uy(1)
#0c Uyn U, =@. Hence {wl ~+ Uy (t) =1} = {uy () = 1} U {uy(t)
= 1} and  therefore  {uw (1) -1, () 5 1} == {2 (b ;él} N {uy(t) ;Al}

< K; 0 Uy, Therefore {u' (t) # ' (¢ )(ul( )y (1))} = {u ) 0} N {uy(t)
g () 54 1} < Ky n U, and thus

LA (' f) ~ A (' [y -1 ]S)] < 6/2.
Bocause {uy(t) # 0} = Uy, = U, < {ug(t) =0} the wu;,u, have divjoint
support and thus
A (' [ty A g1 f) = A (W' uyf)+ A (w' wsf).
Let us now pub op = w4y, vy = uz Then {vy(t) 5 0} < {u,(t) 50}
e Uy e Uy e Gpand {ny(t) # 0} e {w (1) % 0} O {ug(f) 7 0} = (G U Ty) N

NT, = (G, " T,) U (U, 0 Uy) @ Gy, 50 that vy, v, satisfy the assertions
of the lemma.

If a> 0, lot us define for cach & in the lattice & of all open sets

(12) Ao (G ¢ = supz |Afl,

st
where the supremum ig oxtended over all finite systems of functions
Sy ooy fue (G BY, with [|f;(0] | f(®)] =0 for te8 and ¢ w£k; 4k
=

LinmwmA 5. We have, for o > 0,

(1) 2 (Gy U Gy) < A (Gy) - A, (Gy) Tor Gy, e &,

(i) A (G U Gg) = A (G) -+ Ao (Gy) for @y, Gue ? and Gy NGy =0,

(iil) 4, is regulax on Z.

Proof. (i) Let &> 0 and for @, U@, determine a corresponding
gystem fy, ..., f,, such that

Aa(Gy U ) < D) 1ASi| e

s
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Tet 6> 0 be such that DiA < ef2n. If K, := {|f;(t)] = 6}, then Kl

c@ Uy, i =1,...,n For KL and Gy, @, and ¢/n we determine %, o}

according to Lemm(b 4,4 =1,...,n Then
[Afi_(A(q;;.fi)’l"A(”gfi)H<5/%7 g =1,...,m.

It follows

E JAf| 46 < Z (A @i f) -+ A@if)+ e/n) +e << A, (Gy) + Aa (@) + 26,
i=1 i=

and because & > 0 is arbitrary we have (i).

(ii) follows from (i) and. the definition of 4,.

(iii). We have to show: For every & > 0 and (¢ & there exists K < @,
guch that for all G: K < & < G, we have 1,(d) < 2,(6y) + & For @, there
exists a corresponding system of funections fi, ..., f, such that

Gy < D LAS + 62

q==1

Let 8 > 0 be such that D54 < &/2n. It K, := {||f;(¢)] = 6} and K = U K,

(31
then K < @y. Let Ge % such that K = G = @ and put u: = u(K, ).
Then ufy, ..., uf, is a system corresponding to ¢ and we have

n
D) A (uf) < 2,(6)
i=1
Furthermole If:—ufil < 6 because K;< {fi(t)—wu(t)f;(t) = 0} and X;
< {lIf:(#) —u(0)fi(t)] < 8}. Hence
JAf, — A (ufy) < ¢gf2m, G=1,...,n.
It follows
Z A (uf) +ef2 < Z LA (ufy)| 4 e /20) + £/2 < A () + ¢
=1
and hence 4,(G,) < A,(@)+e.
Similarly we define for a > 0, d > 0 and (e &
3
%(6) = sup 3 14f,— Af)
where the supremum is extended over all finite systems of functions
Fiy oo fus fiy ooy T (G By with £ 1500 = 0, 1f0)1- 1 F @) = 0
for teS and ¢ = k; 4, k =1,...,n and

| S5= <o
i=1 i=1

One can prove in a similar way

icm
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LeMMA 6. For a, 6 > 0 25 satisfies the assertions of Lemma 5
LeMMA 7. 4, and A5 can be ewtended from the laltice £ of the open sels

in S to uniquely determined regulcw nonnegative Borel measures on S. For
8 < &' we have

(13) 45(B) < 25(B) < 24,(B),

Proof. & is dense in the system of all subsets of S([12], p. 302),
and because 4 is nonnegative and inereasing by definition and subadditive,
additive and regular by Lemma 5, the possibility of the extension and
its unigqueness follow from a well-known theorem ([12], p. 347). The
game holds for A3. The inequalities (13) are true for all G« £ and follow
for all Be # by regularity.

Lemma 8. If K, and K, are disjoint then for all f, ge O(S
K, UK, < {f(t) = g(t)} and (K; UK < {|f()—

|[4f — Ag| < 23 (E, N Ky).

Proof. Let e > 0. For K;,a> 0 and ¢> 0 we determine U > K,
according to Lemma 3. We may assume Ky ¢ U < K,. There are U,, U,
such that Ky Uyc U,c Uyc U,c U. Let u,: =wu(Ky, U;) and
g =u(T’, T,). Then {uy(t) #£ 0}« Uy U, e {u,(t) =0}, hence
S8[uy] N S[uy] =@, Because also (U~K,) =K, U T < {1—[u,(t)+
+ g ()] == 0}, that is, (1L —[u,+u,])e C(U—K,), we have

Iflf” (-A (uy )+ 4 ('Nfz.f)” = ]Af"‘A (f“f(l — [u, '{“%2]))' <&,

similar rclations holding for g. Because {u,(?)f(t) 5 uy(8)g(8)} = {uy (%)
#0} N {f(t) #g(t)} = U, n(K;nK;) = U—EK, we have

A (uyf) — 4

Now let us assume that f and g both vanish on K,. Because %, vanishes
on I, we have

Be #.

, B), with
gl < 6} we have

(u19)] < e.

|4 (1o f) — A (u9)] < M5 (K; O Ky).
It follows

|Af — Agl < 3e--A3(K; N Ky),
and &> 0 being arbitrary, we have proven so far that
(14) |[4f—Agl < MKy N Ky)

for any pair f, ¢ of functions satisfying the assumptions and vanishing
on K, or (by symmetry) on K. But, if f and g do not vanish on X, u,f
and %, g are such o pair (vanishing on I,); therefore by (14)

14 (sf) — A (wa9)| < A (K N K.

4 — Studia Mathematicae XLVIIL2
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The other estimates of the first part of the proof remaining valid we have
(14) also in this case. =

Together with Lemma 7 we get the following

CoroLLARY. If K < G we have for all f, ge O(8, B), with {f(t) = g(¢)}
< G—K the inequality

JAf— gl < 22,(G —K).

Proof of Theorem 1. Let AeMyp(C(S, H), C) be given. TFor
each XK the limit

pE)w: = lim A(w(K, )
Gen(K)

exists uniformly for ¢ B,. Indeed, for all Gy, Gy, Gye m(K) with K < G,
@, = G, we have according to the lagt corollary

| A (w0 (K, G))— A (wv(E, &) < 20,(6,— K), e l,,

and the last quantity can be made smaller than ¢ for a suitable ¢, by the
regularity of 2,. Because x4 (wv(K, G’)) for Gen(K) is an element
of M(E, C) it follows that u(K)e M(H, C). We have

(18)  |u(E)o— A(mo(K &)< 24,(G¢—K), ack,, Gen(K),

and using the HP of 4 one sees that w is additive on the lattice of compact
sets. For each G we define u(G) = u(8)—u(@). It Be B we can define
and have :

p(B)o: = lim u(K)o = lim u(@w, weh,
Keng(B) Gen(B)

the limits existing uniformly on e H,. In fact, if K, = K;, Ky = B < @,
it follows

(K)o — pw(Ky)a|

< | (K)o — Ao (K, 6)))|+ | 4 (w0 (K, 65) )) = A (w0 (Ko, 64))] +
+ [ A (w0 (K, G7) — u(Ky) |

28(Gro— K1) + 22, (Gy— Ko) +24,(Gy — Iy)

61

<
< 64,(Go—Ky);

it K= B <Gy, 6;c G (so that G < 65,6 < B < K) we have

(G @ — (@) 0| = |u(Gr)w— pu(G)al
< 624(Hy —6y) = 62,(Gy—Ky),
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and if K, K, « B < @, < G, then
(G2~ /A(Ifl)ml A (@16) — (K, U Gl
22, (8 = (X, U @) = 22,(6,—XK,)
< 2Aa(Go'—K0)7

uniformly for ze fl,. The quantity A,(G,—IC,) can be made smaller than
¢ for suitable Iy, @y by the regularity of A,. Ience u: # — M (H, C)
and g is additive. Passing to the limit with K, e =z(B) and using u(B)-—
= p(K) = u(K')—u(B') one has
[I/uu(c’!) "/“u(B)” < 2}%(G —""B)?
[l 0o (B) = g (BN < 22, (B —K),

This proves the regularity of u,. Hence

(e n(B)

(16) Kemy(B)ya>0.

amn 80 (fhey 8) = sup {’Z Ho (K ., I, digjoint, @y, ..., w,.eEa}

J=1

ay' IK,,..
< [4d

and

(18) 50y (ta, S) K,,..., K, disjoint,

= sup {| 3 (e Ep) &y — o (B )
Je=l

@y, e By |y~ < 8,5 =1, 00y 1} < Dy

‘We now show that u represents 4. Given fe 0 (S, B), and &> 0, there
exist 8 > 0 such that D;A4, < /5 and ge &x(B), such that [f—ygl < 4.
Then

| [fau— [ gau] < svs(pmer 8) < ofs.
S §

K "
Let g = D ayyp for a H-partition {By,...,B,} and &y, ..., 0¢ B,
g

Choose sets K,,..., K, sueh that K; < B; and 24,(B;—
§ =1, ..., 7. Then with. (10)
»
| [odu= ' uii)a| < of5.
& J=1

There exist Gy, ..., G, such that ¢ > Ky, j =1, ...,7 and the Gy, ..., G,
are still disjoint with [|f(f)—all < 6,te@y,J = L,...,7. I wo then lot
ay =y (K, Gy) the u; have digjoint support. We have with (15)

‘2 ﬂ(zc,)m,—jj A(wjuj)‘ < 2 20,(Gy— ;) < 221] (Ra(By) = 24(E) < &[5
J=ml Je=k

jm j=1

Kj) < &fbr,
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and with (7)
r

(Q(A(wju,)) —jé‘A(fuj)[ = ]A (gl‘mju,.) -4 (quj)) < Dyd, < ef5.

i=y
” r
Finally, because we have U K, = {f(t) = 3 F(tyu;(t)} it follows from
j=1 J=1

the corollary of Lemma 8

I;’A(fu,)—-Af‘ =4 (quj) «Af{ < 2/1“(3—});1:,)
= 2jla(Bj—~K,) < &/3.
Hence we have =

| [fau—af| <o
8

and &> 0 being arbitrary, (8) follows. For an additive u: # — M(%, C)
satisfying (i) and (ii) the A generated by (8) has the HP according to (1)
., and we have by (2) and (3) ‘
”Aa“ <'9'D(,uu7 S)’ Db-Augs'vd(:uu) S)l

and with the same arguments, (17) and (18).
It remains to prove uniqueness. Assume for an additive

u: &~ M(E, C)

we have (i) and (ii). Then, if X < @ and s ¢ B, we have
w(E)o—A(ou(E, @) = [ogedp— [ou(E,)ap = — [ ou(K, &)au,
s s G-K

80 that if v is as in (9)
(19) |u(B)a— A (ov(E, &) < v(u,, ¢ — K).

From the regularity of » (u,) it follows that (9) is valid, that u is determined
by 4 on the compact sets and hence on all of # again by regularity. The-
orem 1 is now completely established.

3. Transformations on ((§, B) with the Hammerstein property.
In this section we represent the transformations 7'« M (C(8, B), F) with
the Hammerstein property:

TeEOREM 2. There exists an algebraic isomorphism between the space
Mep(C(S, BY, F) of all Te M (C(8, B), F) with the Hammerstein property

T(f+fitfa) = T(f+f) +T(f+ 1)~ If

icm
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for alt f, fy, fae O(8, B) with 8[f,] 0 8[f,] = @ and the space of all additive
nonlinear set functions U: B — M(E, ') with the following properties:

(1) sv(U,, 8) < oo and sv,(U,, 8) =0 (6 0), for a >0,
(ii) of py: B — M(E, C),y" <« I, is given by
by (B)w = U(B),y">, Be® aell,

then wyo: 8- M, (B, C) is regular (and hence o-additive) for a> 0,
y el |

(i) <yy, ¥> - <y'y 4> (for & generaliced sequence {y)} and y' in F"
ond all y< ) implies { [faAU, 4> —~ (i’fde, y'> for all fe C(8, I).

g /

The correspondence is given by

(20) Tf = [faU, feO(8, B)

8
and for corresponding T and U we hawe for each compact K
(21) UH), g’y = lim <y, Tloo(I, @), P
uniformly for e B, and functions v as in (9). Furthermore
(22) 1T = s0(T., 8),
(23) DTy = sv5(U,, 8), a,8>0,
(24) Ty = py, yel

in the sense of the isomorphism established in Theorem 1.

Proof. Let T'e Myp{C(S, B), F). By assumption, T takes bounded
gets into bounded sets, hence its adjoint 1" is well defined ([5], p. 9) and.
maps F' into Myp(0(S, B), C). For y' < I, let u,, bo the unique measure
corresponding to 1"y according to Theorem. 1. For each Be # and we B,
the function U(B)w: B’ — C given by (U (B)w,y'> = u,(B)o,y' < I ig
an element of 7', Farthermore U: &~ M(H, F''), U iy additive and
we have, if ¢’ denotes the unit ball in P,

(25) 8v(U,, 8) = sup 80ty ay 8) = sup (L y")dl
V'eo’ Yeo'

= sup Ky If> = Tl ,
f“g(éfn)u

that is, (22), and (23) is proven similarly. We have

W, T = ('Y = [y,
8

y' e ', fe O(S, B)
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and (iii) follows. Conversely, any additive function U: % - M (E, Py
with (i), (ii), (ili) defines an element T« Myp(0(8, B), F). But T takes
values in F, because

Sffd:uu’=<!de7y’>: Yy el feO(8, 1)

and by (iii) the integral with respect to U is continuous in o (F', F). (21)
follows from (ii) and (24) together with (9).

4. Kernel representations. In this section we derive an analogue
of the Radon—Nikodym Theorem for nonlinear measures (Lemma 9) to
deduce an integral representation with a Lebesgue- or Bochner-integrable
kernel (Theorem 3 and Lemma 10). : k

L 9. Let (Q, o, w) be a measure space with o bounded, nonnegative
measure w 7 0. Then there exists an algebraic isomorphism between the additive
nonlinear set fumctions w: of — M (B, C) with the following properties:

1) po is o-additive, v(p,, @) < oo and vs(t,, @) — 0 (6 - 0) for a> 0,

2) v(puy A) < Ly (4), Ae ot for constamis L, = L,(u) = 0 and a > 0,

ahnd the fumetions w: Q@ — M (B, C) (except for at most an w-null set) such
that '

(D) w(, @) t—>u(t)w is an dement of L (w) for ve B,
(ii) u(', @) = olu(-, ) for a lifting ¢ of 2 (w) and all we B,
(A1) flee()all: t—u(t)all is bounded for each a> 0,
(i) Jlu()all and Dyu(:),: t—Dsu(t), are w-measurable and there

exists an w-null set N such that

lmDyu(t), =0, te@—N,a>0.

8->0
The correspondence is given by
(26) pA)w = [u(t,0)do(t), Acsd,oel
A

and we have for corresponding u and u

@7 V(ay A fnu Jldo(t), Aest,a>0,

(28) Vo (ptay A jD(,u Jadew(t), Aest,a,d>0,

(29) [oau = [ult, gt)do(), gesy(ar).
Q Q

Proof. Let u be given. We have for ze¢ B,
lw{d)e] <olu(-)oy A) < o(uey A) < L, 0(4), Aeo.
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By the Radon-Nikodym Theorem there exists w (-, #)e.£*(w) such that
pd)e = [u(t, @)do), Aess.
A

It follows

j o (t, @) do (1) = v(u(")o, 4) <v,(p, 4) < Loo(d), Aded,

hienee Ju(t @) < L, for o-ae. (@ and n(-, #)c £%(0), xec B. Beeause
w is bounded it possesses the direet sum property ([ 127, p. 179) and because
also @ 0 thore exigty a lifting o of £ (w) ([12], . 206). After changing
u(-, #) on & seti of measure zero if necessary we can assume (J(’Il:(‘, m))
= (-, m), we H. Because u(4)0 = 0 for all Aeof it follows
(30) w(ty, 0) = 0, for a.c.te)
and. with ([12], p. 200) we have
hu (t, @)] << sup (4, @)] = w-ess. sup|o(u(-, 2))|
teq)
= w-e88. sup [u (-, #)| < L, te@,well,.

Henco Ju{t) : = vup |u(t, #)| < Ly, te@. We have proven (i)-(iii). To
well,

show that (i)-(iii) 1mp1y the first part of (iv), we let ¢ > 0 and consider

the set # of all functions ¢ of the form

2, %z:y » @)l
i

where {B,} is a finite system of disjoint sets in & Wmh o(B;) = B; and
#ye B,. Then one can show

(a) llu(t)l mﬂupg 1), te @,

(b) o(g) = 9,063’,

(¢) & is a directed set of funetions g in £ (o) with 0 << g(t) < L,
te ). ;

(The details of the proof are similar to the arguments in ([12], pp.
912-214) and will be omitted here.) It follows from a well-known lemima
of A. T. Tulcea and O. T, Tuleea ([12), p. 209 and p. 139) that then |u(- )]
is o-measurable, hence w-integrable and

sup fg (t)dew(t) = fll”w *)all dew (1
that is,

(31) sup [ D yn, (0 (t, @)ldo(t) = f!i% ()l deo (8)
é 7
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where the supremum is taken over all systems {B;} occuring in the defi-
nition for & and ;¢ H,. If ¢> 0, there exists a finite system {4} of
digjoint sets in o/ and ;¢ B, such that

w(ﬂa,e><2w<Aj)wjl+e

—Zf fu (t, &) doo (1)
foAj(t Mt m,)|dw(t )+e

= [ D) 1, () sty @) do () +
Q 7

with Bj;: = ¢(4;). Because B; N B; = o(B)) N p(B;) = A; N4 =@,
% # j, the last integrand is an element of # and ¢ >0 bemg zubltrary
we have

V(4ay @) < f o6 ()l doo (1)

The converse inequality follows from (31) and hence we have the equality.
The same proof holds for each A,e.of with o(d,) = 4, (instead of Q)
and we have (27) for all Ae o because 4 and ¢(A) differ at most by an
‘o-null set. The relation (28) is proven in a similar way by replacmg
[u(ty @)l By |t %) —u(t, a;)| for . w;, wye B, with llo,—2jl < 8 in the
definition of &,

Now we show: For each natural number % there exists an o-null
set N, such that

liml)‘,u(t)k =0, te@—N,,

k=1,2,... For all teQ with the exception of the w-null get U N, we
would then have Tt

Im Dy (t)e < Hm Dyult)ge =0, a>0;

this would complete the proof of (iv) and with (30) it would follow that
u(tye M (B, C)for w-a.e. te Q. In fact, let §; | 0. The functions Dy ()2 0

are bhounded by 2I, and monotonically decreasing pointwise Lo an -

integrable limit ¢, > 0 so that we have

lim f Dyul(t dw f oi(t) dw

On the other hand,

Qf Dyt do () = vy, (4 @) >0 (6 o)

icm°®
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go that (f Pi(t)dew(t) = 0 and hence @, (t) = 0 for all < @ with the exception

of an w-null set Ny, & =1, 2,.

‘We now note that (29) is mhd for all ge &yl of the form g = 2, B X a5
with disjoint 4;e o : in fact, becanse of (30) we have

fg(t dao(t -MZM(Aj g = 3" [u(t,a) dw(t

7 Ay

= f Zu(t,wm, ydo (1)
~—f (t,Zwley, )do)
= [uft, g(t) doo(t);

Q
the validity of (29) for all ge #,(s#) follows from a simple continuity
argument. It is also clear that w is uniquely determined by u. Conversely,
given w ‘with (i)—(iv), one proves (27), (28) which imply all properties
of the corresponding u. Lemma 9 is now completely established.
THROREM 3. For any A ¢ My (C(8, B), C) there ewists a bounded regular
nonnegative Borel measure w and o function w: S — M(H, C) (except for
at most an co-null set) with the properties (¢)—(iv) of Lemma 9 on the measure
space (8, B, w) such that

Af = [uft, f(t)do (), feC(S, B).
8

Proof. Let u: #—» M(E, C) be the set function according to The-
orem 1. The relations (4), (5) show that ux also satisfies the assumption

1) of Lemma 9. Let us define a bounded nonnegative measure w on & by

Bed,

Foan L

We have w % 0 unless .4 = 0 and assumption 2) is easily verified. Henco
Theorem 3 follows from Lemma 9.

In certain cases wo claim the function u(-), is even Bochner-integrable
with respeet to w. This iy the assertion of

LMmA 10. Let (Q, o, @) be a measure space with o bounded nonnega-
tive measure o, Let X be o subspace of M (I, C) and X, the closure of the
subspace X, = {of: o'« X} in M (B, C). Assume that a) B = C or b) X,
possesses the Radon—Nikodym property (with respect to o). Then there ewists
an algebraio isomorphism between the additive set fumctions u: of — X with
the properties 1) and 2) and the functions u: @ — M (B, C) (except for at
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most an w-null set) such that wu(-),e L;:,a(a)). The correspondence 18 given
by
(32) pld), = [u(tldo(), Aedt,a>0,
A
and for corresponding u and u we have (27), (28) and (29).

Proof. Consider first case a). Let u be given and let u be the function
corresponding to u according to Lemma 9. Let a> 0. ]*‘imt]y,’ (1),
e M,(C, C)w-a.c., and because M, (C, C) < 0(C,) (with O, : = {we(:
2] < a}) u(-), is o-a.e. separably-valued. Secondly, if Z is the subspace
ot M,(C, €)' spanned by the functionals @,, e C,, with {DP,, > : = ()
for all pe M,(C, C), then Z is norming and (), is Z-woeakly w-measurable
because for each ze €, the funetion - u(f, #) is w-measurable. These
two facts imply that w(-), is o-measurable ([12], p. 105) and together
with its boundedness we have u(-),e L% (@) Furthermore, for all
@ecZ we have by (26)

(B, p(d)y = [P u)ydolt) =<, [u(t)do@®), Ades,

A A
and (32) follows. This representation implies that the cssentinl range
of u(+), on @ (the set of all pe M,(C, C) such that for every &> 0 the
set {te@: |u(t)—¢| < &} has strictly positive o-measure ([25], p. 469))
is contained in the closure of the set {u(4).jw(4), Ae o, w(4)> 0},
hence in X,. On the other hand, the set of all t¢@, for which w(f), does
not belong to its essential range has w-meagure zero ([25], p. 470) so that
1(*), is w-a.e. X -valued and hence u(-),e Lf{lﬂ(w), a > 0. The remaining
assertions are easily verified. — Now we consider case b). Given u, for
every n =1, 2, ... there exists a function w(")eLf{‘in(w) (without loss of
generality we can assume w™(t)e X, and [w®™ ()] < L, for all te@) such
that :

pd)y = [u(t)ydw(s), Aesf.

A

I m < n, then w™(+),e L3 (o) and

BA)y = [w (@), dolt), Ao
A

Hence w™ (1) = w™(t),, for all te@ with the possible oxception of an

o-null set N,,,. ¥ N =) N,, we can define u(t, #) = 0 for te N or
n,m

2 =0 and =w™(t)a for te@—N and axeB,—B,_,. Then wu(t, x)

=w™ () s = w™@),s = w™ e for any seB,—H,_.,m =1 ..,%,

te@) —N, so that u(-)neL%L(w), no=1,2,...and u(*),e Li:%a(w), a > 0. The

remaining agsertions are then clear.
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5. Compact and weakly compact transformations. In this section we
investigate the compact and weakly compact transformations in
Mrp (018, 1), 1),

TusoriM 4. Let T'e Myp(C(S, B), F). Then the following conditions
are equivalent.

(Ay) For each a = 0 there emists o nonnegative bounded regular measure
Ao on A such that the measures v{u, ) are absolutely continuous uniformly
with respect to y'e o',

(Ag) Us @B M (K, I") and for each a> 0 the measures v(p, ) are
o-additive uniformly with respect 1o y' ¢ o',

(Aq) For each compact K in 8 and we B the limit (20)

lim 7 (aw (K, ) = U(K)»

(en(K)

ewists in o(F, F') and the series ju\‘ U(K;)w; converges (strongly) in I for
=

every sequence {5, of disjoint compact sets in S and every bounded se-

quence {a;}, in K.

In this case U,: &~ M, (H, F) is regular in the norm of M (B, ),
a> 0. :

Proof. Ax in the case of linear 7' ([37], p. 225) one sees that (A,) and
the second condition of (A,) are equivalent and that they both imply
the regularity of the set function U,: & — M, (B, F'') given by U, (B)
= U(B),, Be %. Now let I be a compact set in S and let # ¢ B, . We shall
show U(K)xeF. It ¢>> 0 we can determine 8 > 0 such that 1,(C)< 8
implies v (py,,0) < & y'e o', A, being regular there exists an open set
@, o I{ such that 4, (@, — K) < 6. If follows for all open sets G: K < G = G,
with. (19)

[T (I — 1T (a0 (K, &))|| = sup [KUE)m, y'>— <y, T o (K, &)
Yo

= sup |ty (B — (1" ') (w0 (K, G))
Y e’

L (g O~ K) L e

go that U(K)we . It follows U,: # - M (I, I") by regularity. This
ghows that (A,) and (A,) are equivalent. Now assume (Ay). If the measures
©(py,,) arve not e-additive uniformly with respect to y'e o' there exist
an &> 0, soquences of integers Ny < My << ... < Ny < M; < ..., disjoint
compact sets K¥, k =1,...,%, j = Ny ..., M; and functionals Ype o'
such. that

ALy vy

\! > . E
2 Dy, (ERI> e d==1,2,
Joa Ny Jowal AN
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In viewr of (6) and u, (B) 0 = 0, Be # this implies the existence of ele-
ments mfe E, such that

PRRLE

whieh is a contradiction to our assumption. Hence (A;) implies the second
part and (as before) the first part of (A,). Also (A,) implies (A;) and the
theorem is proven.

The following theorem characterizes the compact and weakly compact
transformations. Its proof is similar to ([3], p. 229) and is omitted here.

TEEOREM 5. Lot T« Myp(0(8, B), F). Then the following conditions
are equivalent.

(By) T is (weakly) compact.

(By) U: 88— M(E,T) and the set of finite sums

={2 T

is a conditionally (weakly) compact subset of I for o> 0.
(Bg) The integral

M
’@"j—ZN kz UEDap| >4 i =1,2 ..

)% Bye B, B; disjoint, a,,eL’}

[0 =:Tf,  feMy(®)

8
defines a- (weakly) compact extension Tin M (M (B), F).

In this case the conditions (A;) are satisfied.

We now want to show the weak compactness of 7' under various
conditions. Let ¢ (8, F)® be the linear space of all complex-valued functions
f# on O(8, B) with the property that the restriction f£ to € (8, B), is bound-
ed. The linear space of the restrictions:

C(8, B); = {fi: f'< 0(8, B}

coincides with the linear space of all bounded complex-valued functions
on 0(8, B),. Let C(8, B be normed by the supremum norm. We have
shown in ([5], p. 12) that T: C(S, B) —» F is weakly compact if and only
it T,: B — O(8, B is weakly compact, « > 0. In practice we shall work
with a closed linear subspace Y (a) such that

(33) T, F' < Y(a) = 0(8, ).

Then an equivalent condition is that the image T ¢’ of the unit ball ¢’
in 7' be conditionally weakly compact in ¥(a), a > 0. Now define B*
and Ef similarly. If U: 4 — M(E, F) and if one knows a suitable closed
linear subspace X («) such that

(34) U(B).F < X(d) < B,

icm
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then U(B) is weakly compact if and only if U(B)' ¢’ is conditionally
weakly compact in X (a), a > 0.

TuroreM 6. Let Te.MHP(O(S, ), F) satisfy ome of the conditions
(A). If U(B): B—T is weakly compact for Be B and if for each o> 0
the spaces

X, =span{u,  B): y'¢F', Be B} = M, (B, C)

together with their duals have the Radon-Nikodym property (with respect
10 Ay), then T' is weakly compact.

Proof. With the notation of our assumption (A,) define a nonnega~
tive bounded regular measure 1 by

Au(B)

© RO

A(B) =22~n Bea,

nw=]

and for each y'¢F’ define the nonnegative bounded regular measure
w, by
(/"‘7/ s B)

TTouy, 8’ 2%

el

It is eagy to see that the w, are absolutely continuous with respect to A

uniformly for y'co’. Lot a>0. We shall use the space .i'!_i—a(s, %, A)
of all X -valued A-integrable functions ¢ on § with the norm

(36) Iolo = sup > | [otts)arm)|

Fe=1 Bj

(where the supremum. ig extended over all #-partitions {#, ...,
elements @y, ..., ®,¢10,) as a space ¥ (a) in
be considered as a subspace of C(S, B)::
fie O(8, 1), by

B,} and
(33). Indeed, this space can
Every ¢ defines an element

fif = fw, 1)da@),  fe (8, B

by approximating cach fe 0(8, D), by functions in &x (#) one obtaing
178 < l9llo; the converse inequality follows from the absolute eontinuity
of the integral [le(t)] dA(t), the regula.nty of 1, Urysohn’s Lemma and

@(t,0) = 0. Let X : = span{u, (B),y <, Be @} < M (E, C). Because X,
has the Radon-Nikodym 1)roperty we can use Lemma 10. For y' ¢ I’
let w,: §— M (D, C) corvespond to u, and let hyeL'(S, &, 1) be the
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Radon-Nikodym derivative of o, with respect to 1. Then u,(-),
« I3 (8, 4, 3) and with (29) we have

(Toy")f = ffdl"w f“ (t, (1) deoy (1)
§
= fh” Yty (8, F(8) AA(E)

= [yl f1) ), fe 08, D,
s

where ¢, = hy ¢ L (S, &, 1). We have shown
TLF < IY (8, @, 4) < 0(8, )
and we can as well prove the conditional weak compactness of Tio' in
XQ(AS‘, #, %) because the integral norm is equivalent to the norm (36).
We have
@) sup Ipul = sup f Ity (2)all Aoy (£) = sp v (ttyr,ay 8)

4 sup $V(piye oy 8) = 4T = with (27) and (26),
1[ o’

(i) lim sup f oy (01 A (E) = 11m Sup v(py,q, B) =0 because also
MB)=>0 y'eo’ —0 9/ e’
0 18 absolutely contlnuous with respeet to A uniformly for y'e o,

(iii) the set {{rpu DAL}y e = {Bya(B)lyreor = {U(B)aY Yy eor 18 con-

ditionally weakly eompact in X, for each Be %, because by ([5], p. 12)
and (34) with X (a):= X, the weak compactness of U(B) implies the
weak compactness of U(B).. ‘

. By our assumption on X, and X, the assertion now follows from
[8], Corollary 2 of Theorem 4. '

Remark. In general even a linear bounded transformation T' necds
10t to be weakly compact if only one of the spaces X, and X, fails to have
the Radon~Nikodym property though the remaining conditions of Theorem
6 are satisfied ([8], Examples 2 and 7). Theorem 6 generalizes a rosult
of A. Pelezyriski ([24], p. 645, Theorem 1').

Let us turn to the special case B = C. We need the following two
lemmas. Let o and #' stand for finite and infinite sets of natural numbers.

LemyA 11. et {U}52, be a sequence of operators in M(C, ') with the
Sfollowing properties:

(a) 5131? HEZ,, Ujaj|| < o0y >0,

(1) hm sup [[2 (Usm;— Ugg)|| = 0, a> 0,
=0 1/ Cly
ooy~ 24| <8
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(¢) For cach =’ there ewisls U,e M(C, F) such that Y Uz = U=,
we €,y in the norm of I. few

Then fo) each o> 0 (considering y'cU; as an element in M (C )
the sums 2 y'o Ul converge uniformly for y'eo’, the sums ‘ Uﬂj
converge “”Wf(” mh/ for & = {w};...¢ [T and the transformation H e M (L“" )
given by HE - Z Usa; 48 compact.

o]

Proof. For each o let U,e M (€, ) bo the sum of the U ; with je o,
Then (a) and (b) suy that the family {U, .}, is a bounded set of equicontin-
wous fonetions in M (C, 1) < O(C,, F) 'f()r cach a> 0. The assumption
(¢) means that for each xe ¢, the series )J Ujw is unconditionally con-

e
vergent, so that ([217], p. 245) for each ¢ C, ﬂw set {U,a}, is conditionally
compact in . Heneo {U, .}, is (*ondmonaylly compact in M, (C, F). Let
&> 0 be given. There exist 6 > 0 such that the supremum in (b) is smaller
than ¢/2 and finite sets of complex numbers £y, ..., {ye C, with

inf le—¢l<d, xel,,
=l 0N

and of operators Vy, ..., Ve M, (C, F) such that

inf |U,—Vill <e/2N  for all .
Bl e, M

The finite seb (Vi G-k + Vigly, 1< < M, ¢ =1,..., N} is then
an e-net for {24 Uywy: .l‘je C.- T'[on(m this set is conchmoncblly compa.ch

in I and all Lho series 2 U,y €] < a converge and (as in ([4], p. 911))
Jml n
uniformly. Thercfore, if H,&:= Y U, then
i=1

|H,~H,,) = sl Y Ufm,“»o, a>0,

I¥ll=e gomg1

and the I, , being compact, H, is compact ([8], p. 16), a > 0. To show the
remaining assertion onoe argues in o similar way a8 in the proof of (Ay)
~ (Ag)e
Lvma 12, Let (Q, o, 1) be @ measure space with o bounded nonnegative
measure A Then a subset M in L},,,“(,;_(,)(Q, &2, A) is conditionally weally
compact if
(i) ssup f|[cp (O dA(t) < o0,

(it) 11m sup [l (8)| dA(E) =0,
ALd)~>0 pe M ol
(1) lim sup [ Dy (8)dA(E) =

§-»0 @edl Q)
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Proof. Our result will follow from an application of ([8], Theorem 6).
We have to show that the assumptions are satistied. The space M,(C, C)
is the space of all continuous functions on C, vanishing at 0 and it has
a basgis. Begides of (i) and (if) we have (iii) : the set { [dA} e 5 15 conditionally

weakly compact in M,(C, C) for each A . Indced, a fortiori the set
{fpdi, pe M, Ae £} is bounded by (i) and equicontinuous by (iii). We
A
now show (iv):
valued.

First, for every u > 0 there exists L > 0 such that

Mol = L}) <, ¢ M.

Otherwise namely there exists some 7 > 0, a sequence of numbers {L;}p.;
with It oo for k— oo a sequence {g,}i., = M such thab

the functions pe M are uniformly A-almost compact-

e = L) =n k=12 ...
This implies .
[lge®lare > Ln, =12, ...
qQ
which contradicts (i). If we put

4, = {lle @l = L}

then A(4,) <7, pe M and the set of functions {p(¢),te 4y, pe M} on C,
is bounded.
Second, for every » > 0 and ¢ > 0 there exists 6 > 0 such that

AM{Dsp(t) = e}) <, @M.

Otherwise namely there exist some 7,e>0, a sequence of numbers
{8}y with 8, 0 for k— oo and a sequence {p ., = M such that

l({Dak(Pk 1) = }) My k=1, 2.
This implies

fﬂ%cpk 1)dA@) = e,

which contradicts (ii). Hence, if we consider a sequence {g}f., with & 0
for i — oo, for every ¢; and 7/2° we can determine d; > 0 and sebs B¢ o
with A(B, ;) < 5/2" such that

Daﬂi( )< g - for mlltqu,L,q:e M, i =1

,.4,...

I we let B,:=|J B, then A(B,) <% and the set of functions {p(t),

i=1

te B, ¢ M} on C,is equicontinuous. For given % > 0 we have constructed

icm°
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a system {4, U B, Oplgear Of sets in & such that A(C,) < 29 and the
get {p(1), te (1‘,, Qe M } i3 conditionally compact in IM,(C, C). This proves
(iv).

As for the last assumptbion (v) ma,de in ([8], Theorem 6) it is sufficient
to show: If for a sequence {p}i., in M and a set function p,: & — M,(C, C)
we have

(@, f gy = (B, pa(A)y,  Acsdt, De M,(C, O,

for % - oo, 1hcm e hag a derivative in LM (0,0)(@y o, 3) with respeet to
A It follows from ([8], Theorem 3) that u, is 4 measure on «f of bounded
variation with values in M, (C, C). Furthermore, g, is absolutely continnous
with respect to 4 and for any «-partition {4,, ..., 4,} in @ and clements
oy, 2y B, with gy —xjl < 6,§ =1, ..., 7 we have (&, is again the evalu-
ation functional at )

’J%:(M:(A.f)wf_ﬂu(flf)wjl)l = {éj <([)wj-“ ¢w3’ /"u(AJ)'

= lim ‘ Z <<15

Je~r00 j=1

""¢m}7 I(phcu>{

= hm\ > f @1 (8) By — @y (1) })‘“(t)l

Feerc0 j—l
< lim sup [ D) dA(E),
k~ro0 Q

so that lim sv,(p,, @) = 0. One can cxtend each element in M,(C, C) to
80

M (C, C) without increasing the norm and modulus of continuity. Hence
we can assume that u, is the restriction of a set function w: o — M(C, C)
which satisfies the assumption of Lemma 10 with o = v(u,). Let u: @
= M(C, €}y bo the function corresponding to w. Then we have u(-),e
Ly, (@ o, v(u,)) and for some he L@, o, A)

Aest

fald) = p(A)y = [ (0@ (past) = [ (20 (H)adA(t);

3 A
with (- )u(-)ee Ll 0,0 (@) o, 2). This proves (v).
Tho following theorem characterizes the weakly compact transfor-
mations for I == C.

TurormM 7. Let T'e Myup(C(8), F). Then the following conditions are
equivalent.

(0y) ' 48 weakly compact.

5 — Studia Mathematicae XIVIIL2
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(C,) U: 2~ M(C, T).

(4;), ¢ =1,2,3 hold.

Proof. The implication (Cy)—(C,) follows from Theorem 5. Now
assume (Cp). To show that (A,) holds, consider a sequence {I(;}72, of dis-
joint comypact sets in 8 and let U;:= U(K;),j =1, 2,... It follows from
Theorem 2, (i) that the first two assumptions of Lermoma 11 are satisfied.
The third assumption follows from & straightforward application of Orlicz’
Theorem, because for every y'e T’ and ze C

tim (y', 3 BNy = D) tyo(Ep)o = ', U(chj)@.
n—oo i=1 =1 -

Gea' Jen’ Jen’

Hence (A;) follows from Lemma 11. It remains to show that e.g. (A;)
implies (C,). We proceed similarly ag in the proof of Theorem 6. We let

X:=M(C, C) and X,: = M,(C, C) = X, and use the space Lk (8, &, )
as Y(a) in (33). Because ¥ = € Lemma 10 applies again and we have

T,F < Ik (8, 8, 2) < 0(8, B)E.

To prove the conditional weak compactness of the set {p,}yer = : M
in Llia(S, A, 2) we apply Lemma 12. Olearly (i)-(ii) hold as before. As
for (iil) note that with (28) and (23) we have

[ Depy 0A(E) = [ Dyt (0)@ye(8) = 05(tyr,ay §) < 4D, T,
s S

uniformly for y'e ¢’. Hence (A;) implies (C,).

LemMA 13, If F' has no subspace isomorphic to c,, then any Te
Mye(C(8, B), F) satisfies the conditions (A;).

Proof. We first assume that § is compact and metric with. metric d.
‘We show that (A,) is satisfied. Let K be a compact set in § and we H,.
Consider the sequence of open sets @,:= {d(t, K)<1l/n},n =1,2,...
and let w,:= u(Gyyq, Gr). Then we have according to (21)

U(E)my'> =nlim <Y’y Tlwu,))

=l ' <y, T(wug) — T (@uy_)> + <y, T(auy)).

=00 Jmn
The series converges abolutely: We namely have

{ur(t) # Uy (0} © Gy —Gpny T =2,3, ..
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and if we denote by 4, ., the measure corresponding to u, according to
(12) then we have in view of the corollary of Lemma 8

n L3

Z I(Il/': -T(w“k) ""T(wuh—-l)>.| < 2 Zaw',a(ak—l“ak-i-l) < l-u'y’,a(Gl—*K) .
Ie=2 Io=s2

Because the spaces I with no subspace isomorphie to ¢, are characterized

by the property that for every sequence {y,}m.; of elements in I such

that 3 [Ky', ¥ud| < oo for all y'e F' there exists ye< F such that ', y>

Ml
= 3 <Y’y Yu), it follows that U(K)weF, we H and that also, by Orlicz’s
Ne=]

Theorem, the second condition of (A,) iy satisfied. Now assurae S is compact
and Hausdorff. For we I/ define
Tof: = T(af), feC(8).
We have T'ye Myp (0 (8), F). ‘We show that 7', is weakly compact. Congider
a sequence {f,}o, in O(8),. There exists a compact metric spaco ;§, a se-
quence { fn}f{’.,l in O (S)a and a transformation Te My (C (A§‘), ) such
that .
Tofn = :ufm

(the details are similar to the Jinear case ([15], p. 496)). By the part we
have proven, !f’m satisfies the condition (A;) and is hence weakly compact
by Theorem. 7. Therefore T is weakly compact, for each K in § the net
{T(a0(K, G¢)) = Tp(v(K, &)), Ge n(E)} has a o(F, F')-limit in F and
U(K)aeF. The second condition of (A,) is satistied as before, and so
(A;) holds also in this case.

Because (A;) characterizes the weakly compact transformations in:
the case B = C, we have :

TuworeM 8. If I has no subspace isomorphic to ¢y, every transformation
Te Myp(0(8), F) is wealkly compact.

Tumonmm 9. ((8) has the strict Dunford—Petiis property also with
respect to all transformations T Myep (0(8), ).

Proof. Our assertion says that any 7 of tho class considered takes
a weak Cauchy sequence {f,}m. in a strong OCauchy sequence. Indeed,
the limits limy, () exist for every te § and there exists o > 0 with || f,]| < o,

N0
n=1,2,... (A;) means that given &> 0 there existy 4 > 0 such that
Ao(B) < & implies sup v(py 4, B) < e There exists n>0 such that
y'ea’

n=1,2,..

s0,(U,, 8) < &. According to Egoroff’s Theorem there exists an index
n and a set Bye & with 4,(B,) < ¢ such that

[ (6) =S (D)) < m,

ny M = Mg, te By.
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It follows with (3)
12— Tl = | f FalU— f fmdU+( f 14U~ [ faa0)[< 8

B,

for n, m = n,.

COROLLARY. If R is an arbitrary weakly compact transformation from
a Banach space B inio O(8) and T is a weakly compact transformation in
Myp (0(8), F) then TR: B—~TF is compact.

The following theorem characterizes the compact transformations
for B = C.

TmmormM 10. A transformation T e Mgp(C(8), F) is o compact if and
only if for every a> 0 U, takes its values in a compact set of M, (C, F).

Proof. Let T be compact and a > 0. The set { T (B),} 3. is bounded
and equicontinuous and by Theorem 5, the set {U(B), we B,} is condi-
tionally compact in F' for each Be #. Hence {U(B,)}p.s is conditionally
compaet in M, (C, F), a > 0. Conversely, given a> 0, for each >0
there exists 6> 0 such that svs(U,, S) <e/2 and there are complex
numbers &y, ..., {ye C, with

inf lo—{l<d, we C'a.'
jeml,ee N

Our assumption implies that there are sets Ay, ..., Ay e # such that
inf |U(B)a— U(As)l < /2N, Bed

k=1,...,00
and it follows that the set {U(4y)¢; + +U(A,CN)CN, < k< M,
1<k M,j=1,..,N}is an e-net for Pa, so that 7 is compact by
Theorem 5. :

6. Transformations 7': 0(S)— C(Q). We now specialize our results
to the case that & = C and F = C(Q) for a compact Hausdortf space Q.

TesorEM 11. A) The class Mgy (C(S), 0(Q)) coincides with the class of
all operators T': O(8)— 0(Q) of the form

(@7 (Tf)(g) = f fluy  F<0(Q),q¢Q,
where
(ay) pg: B M(C, C) is additive for ge),
Q(az) Mg,at &= M (C, 0) is regular (and hence o-additive) for a>> 0,
ge b,

() sug 8V (g 0, ) < oo and 11m SUp 895 (fig,ey S) =0, a > 0,
qe: &0 geQ
(a,) the imtegral in (37) is a continuous fumection in ge@ for each

feC(8)

icm
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For each T it then follows that

[T = sup sv(pg,q, 8),
q¢Q
DsT, = sup svs(pga, 8)y, @, 6> 0.
2eQ

B) The class of all weakly compact tramsformations in Mygp(C(8),
(Q)) coincides with the class of all opemtors I: C(8)~C(Q) of the form
(37) with (an)-(2) and

()" po(B)w 8 continuous in qe@ for each we B and Be B, or of the

form

(38) (@) (g) = [E(t, f0)aris), fe0(s),
8

where

(by) A 48 a nonnegative regular Borel measure on S with 4(8) < oo,
(ba) for every qe Q we have K, (t): @ - K, (t, 2) is an element of M(C, C)
and K, (),e Lﬁy,u(c.c)(é‘, B, ) (except for at most a A- vmll set), a>0,
(bg) suUp &j [ K, (1)all @A (1) < oo andlim sup JD‘; )a@A(t) = 0,a >0,
aeQ

&0 qeQ
A)I!Ka(t: 2)dA(t) s continuous in qe@Q for all Be B, we 1.

0) The class of all compact transformations in Mgp(0(S), C(Q))
coincides with the clags of all operators 7': C(8) - C(Q) of the form (37)
with (a;)~(a) and

()" hm’”(l‘q a " Mg,ar 8) =0, Q€Q7 a> 0,
or of the form (38) with (by)—(by) and
()’ Hm [ K g ()a — B (8)ll 42(1) = 0, ge @, > 0.
g 8

Proof. Let y:z be the evaluation functional on 0(Q) at the point
ge Q.
A) For TeMgp(0(8), 0(Q)) the set function pg:=p, has tho
[

desired properties by Theomm 2, the converse part follows from Theorem 1.
B) It T'e Myp(0(8), 0(Q)) is weakly compact let U be the set func-

tion of Theorem 2 whmh represents I'. According to Theorem 7, U(B)w
0(Q) for Be B, e C, so that u(B)e = {yg, U(B)ay = (U(B)w)(q) is
a continuous function of ¢ €. Conversely, let 7' be given by (37) with
(ay)~(a3) and (a,). Detine an additive set function V: @~ M (C, C (@) by
(V(B)@)(g) = u,(B)w for Be B, w<C and ge Q. If follows from (a,) that
V is of bounded semivariation on 8. Furthermore, the set function Vig,:
Z—-0(Q) given by Viy(B) =V (B)e,Be# for weC is (strongly)
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o-additive. In fact, for any sequence {B;}j.; of di.sjoint sets in # we
have by (a,)

lim (Vi (B)) (@)

000§

=1lim D' (By)w = #a(HBJ)” = V[x](,Ule)(Q): q¢Q,
N300 21 = J=

which is equivalent to the weak o-additivity of V. Therefore for any
such sequence {B,}; the sequence of operators {V (B))}j., satisfies the
agsumptions of Lemma 11. It follows that

11msup2||(yoVB,)||~—0 a>0.

n—roo Y'e
Hence for each a> 0 the variations of the regular measures » »

Ypa
by Vz/;( )@ = (Yg V(B)@Y = uy(B)w, Be B, z¢ C are o-additive uniformly

for ge @ and therefore absolutely continuous with respect to a nonnegative
bounded regular measure on S. Therefore V, is regular in the norm of
M,(C, C(Q)) and V coincides with U of Theorem 2. Because U takes
values in M (C, 0(Q)) T iy weakly compact by Theorem 7. The second
part of B) follows from Lemma 10 and Theorem 7; 2 is comstructed as

given

in (35). C) follows from a direct application of the Arzeld—Ascoli Theorem.

References E

[11 R. Bartle, N. Dunford and J. Schwartz, Weak compactness and vestor
measures, Canadian J. Math. 7 (1955), pp. 289-305.

[2] J. Batt, Integraldarstellungen linearer Transformationen und schwache Kompali-
heit, Math. Ann. 174 (1967), pp. 291-304,

8] — and E. Jeffrey Berg, Linear bounded transformations on the space of con-
tinous functions, J. Funct. Anal. 4 (1969), pp. 216-239.
[4] — Applications of the Orlice—Peltis Theorem to operator-valued measures and

compact and weakly compact linear transformations on the spaoce of continuous
functions, Rev. Roumaine Math. Pures et Appl. 14 (1969), pp. 907-936.

[81 ~— Nonlinear compact mappings and their adjoints, Math. Ann, 189 (1970),
pp. 5-25.

[6] — Strongly additive transformations and infegral representations with measuroes
of momlimear operators, Bull. Amer. Math. Soc. 78 (1972), pp. 474-478

[71 — Die Verallgemeinerungen des Darsiellungssatees von I Ricss und ihre Anwen-
dungen, = Jahresber. d. Deutschen Mathematiker—Vereinigung 74 (1078),
pp. 147-181.

[8]1 — On weak compaciness in spaces of wector- valued measuwres and Bochner-inte-
grable functions in connection with the Radon—Nikodym property of Banach spaces,
submitted with Rev. Roumaine Math. Pures et Appl.

[9] J. K. Brooks and P. W. Lewis, Operators on function spaces, Bull. Amer.
Math. Soc. 78 (1972), pp. 697-701.

[10] C.C.Brown, Uber schwach-kompalkte Operatorem im Banaohrawm, Math, Scand.
14 (1964), pp. 45-64.

icm

Nonlinear integral operators on O(S, E) 177

[11] R. V. Chacon and N. A. Friedman, Additive functionals, Arch. Rat. Mech.
Anal. 18 (1965), pp. 230~240.

[12] N. Dinculeanu, Vector measures, Berlin 1966.

[18] — Coniributions of Romanian mathematicians to the measwre and integration
theory, Rev. Roumaine Math, Pures et App. 11 (1966), pp. 10751102,

[14] I. Dobrakov, On representation of Vinear operations on Oy(T, X), Czech. Math.
J. 21 (96) (1971), pp. 13-30.

[18] N. Dunford and J. Sehwartz, Linear operators, Part I: general theory, New
York 1966. )

[16] R. E. Edwards, Fundional dnalysis, theory and applications, Chicago, San
Francisco, Toronto 1965,

[17] C.TFoiagand X. Singer, Some remarks on the representation of linear operators
in spaces of veclor valued continuous functions, Rov. Roumaine Math. Pures
et Appl. 5 (1960), pp. 729-752.

[18] N. A.Friedman and M. Katz, A representation theorem for addilive funclionals,
Aveh. Rat., Mech. Anal. 21 (1966), pp. 49-57.

[19] — — On additive functionals, Proc. Amer. Math. Soc. 21 (1869), pp. 567-561.
[20] — and A. E. Tong, On addilive operators, Canadian J. Math. 23 (1971), pp.
468-480.

[21] 1. Gelfand, Abstrakie Funktionen und lineare Operaloren, Mat. Shornik 4
(46) N. 2 (1038) pp. 235-284.

[22] A. Grothendieck, Sur les applications linéaires fuiblement compacies &’ espaces
du type O(K), Canadian J. Math. 5 (19563), pp. 129-173.

[23] D. R. Lewis, Inlegration with respect to vector measures, Pacific J. Math. 33
(1970), pp. 157-165.

[24] A.Pelezynski, Banach spaces on which every unconditionally converging operaior
is weakly compact, Bull. Acad. Pol. Sei., 8ér. math. astr. phys. 10 (12) (1962),
Pp. 641-648.

[25] M. A. Rieffel, The Radon—Nikodym Theorem for the Bochner integral, Trans.
Awmer. Math. Soc. 131 (1968), pp. 466-487.

[26] H. H. Schaefer, Weak convergence of measures, Math. Ann. 193 (1971), pp.
57-64.

[27] E. Thomas, L'intégration par rapport & une measure de Radon wectorielle, Ann.
Ingt, Fouricr Grenoble 20, 2 (1970); pp. 55-191.

MATHEMATISOHBS INSTITUT DER UNIVERSITAT MUNCHEN

Recetved June 20, 1972 (562)


GUEST




