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On. contractions of normed vector spaces

by
EMERIC DEUTSCH* (Now York)

Abgeract. Lot & bo a real or complex normed vector space, let », ye X, and lot
o be o gealar such thot 0 < arg o < 2w, It is shown that there exists a positive integer
% suoh. that | + oFy| 5 [#]. As an immediate consequence one obtaing that the cigen-
vector corregponding to a unimodulax eigenvalue of a contraction 4 is orthogonal,
in the senso of G. Birkhoff, to the eigenvector corrosponding to any other cigenvalue
of 4.

Let X he a normed vector space. Koehler and Rosenthal [5] have
proved that if 4 is a linear isometry on X, then the eigenvectors corre-
sponding to distinet eigenvalues of A are orthogonal (we say that  is
orthogonal to y (2, y e X) if 2] < (@ ay| for all scalars o [2]). The same
result. has been obtained by I. Xstratescu [4] for a linear contraction A
acting in a Banach space X and whose spectrum lies on the unit cireum-
ference. In both [4] and [5], semi-inner-product [6] and Banach limit [1]
(generalized limit in [7]) techniques are used.

The purpose of this note is to prove, by a simpler method, a gener-
alization. of the above mentioned theorems. In our approach, the brunt
of the proof is taken by a proposition concerning the geometry of a normed
vector space and which may present interest in its own right.

ProrosrrroN 1. Let X be a real or comples normed vector space, let
v, yeX, and let w be a scalar such that 0 < argw < 2n. Then, there exists
o positive integer k such that |-y = ||.

Proof. (n) Tirst woe consider the case of a complex space, We denote
Q = {Le Ot |-yl = |2}, where ¢ is the complex field. It is easy to
prove that the comploment @ of Q is a convex bounded set and 0¢ P,
Och. Then K containg a closed semiplane 2 = {{c0: f—mn/2 <argl
< B+ w/2}, say. Let o == g6¥, where 0 < 0 < 27 We may assume g # 0.
It 0/27 is rationul, then clomly w'e X< £ for some positive integer %.
It 9/2x is irvational, then by a gencralization of Dirichlet’s theorem
(see, for example, [3]), thero exist positive integers & and p such thab
|66 —2pm | < ©/2, whence oe X Q.
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(b) In the case of a real space the proof is simpler. The set £,
= {{eR: |o+Lyl > o]} (B is the real field) contains at least one of the
rays [0, + o), (— oo, 0] and by assumption o is negative. Then, ' 2
for some positive integer k.

Remark. It can be easily seen, by taking the supremum mnorm
on (% for example, that there may be no positive integer & such that
Iz 4 w®yll > ll2|.

ProrosrrioN 2. Let X be a real oy compler normed vector space and
let A be a linear operator from X imto self such that ||A»| < ||| for oll
we X (i. e. A is & contraction). Let 2, u be eigenvalues of A such that |A] = :
and A # u. If w and v are eigenvectors of A corresponding to A and u, respect-
fvely, then u is orthogonal to v.

Proof. Let a be an arbitrary scalar. We have for all positive inte-
gers I,

% -+ av]) = 1A% (1 4+ av)]) = [ %2+ apo].
whence, denoting o = u/i,
(*) I+ o (av)]| < o+ o).
If |ul < 1, then |o| <1 and letting in (*) & — - oo, we obtain. [|u] < |u -
+av|. If |x| = 1, then we have 0 < argw << 2n (since o 1) and making
use of Proposition 1 we obtain from (x) that |u] < [« -+ av|.
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Some examples in harmonic analysis

by
B. E. JOUNSON (Newcastle upon Tyne)

Absteact. The papor consists essontinlly of five oxamples as follows.

(1) A Segal algobra on a comamutative group which is not *closed.

(2) A Wienor-ike Sogal algebra which. is not *closed.

(3) A group algobra such that tho ideal of functions with Haar integral zero
does not have an unbounded approximate unit.

(4) A group I' with a closod normal subgroup ¢ and a G-invariant subspace B
of I (I") such that 7' is not elosed wheve T'is the canonical map of It (I') onto Lt (I'/@).

(8) A compact group G such that the kernel of the convolution product map
from L®(G)&L*(G) is not the closed linear span of the tensors gxa@y— e® axy,
ae DHE), p, p e L®°(G).

In this paper wo give a number of examples arising in various parts
of harmonic analysis. The first four are connected with the work of
H. Reiter.

1. Symmetry and *symmetry in Segal algebras. A Segal algebra
S([B], p- 16) is & dense left translation invariant subset of L* (&), G & locally
compact group, which is a Banach space under some left translation
invariant norm || | dominating the L* norm and such that the left regular
repregentation of & on § is strongly continmous. § is symmetiic if in addi-
tion || |Ig is right invariant and the right regular representation is strongly
continuous. If & is abelian every Segal algebra iy symmetric.

Tho Sogal algebra § is *symmetric if it is stable under the hermitian
involution* on I'(G). We shall construct an example with G =R of
& (nocegsarily symmetric) Segal algebra which. is not *symmetric.

Lot fe'(R). Define

Sy = {g; ge I*(R), frge Oo(R)},
9l == lgly+ 1% gl

whero fige 0, ((1) meany f g differs from o 0 function on & set of meagure
zero and | ||, is the ¥ norm. As 8, contains all continuous functions ‘with
compact support, Sy is dense in L*(R) and it is easy to check that Sy is
2 Segal algebra. Congider the case

f(@) = (wllogal)t 0<a<i,

= 20 or 2 >%.
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