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On the orders of the extensions of linear
functionals to distributions*

. by
P. MANKIEWICZ (Warszawa)

Abstract. Thoe problem considered is that of the orders of the extensions of
lincar functionals to distributions. It is proved that there exists a closed linear sub-
space I = D () such that the orders of the extensions to distributions of linear func-
tionals defined on L do not depend on the orders of initial functionals on L.

1. Introduction. Let D(Q2) denote the space of all functions
differentiable infinitely many times with compact supports contained
in 2, where Q is an arbitrary fixed open subset of R", neN. Let L be
a linear subspace of D(Q) and let ¢ be a linear functional defined
on L. Assume that for every compact subset K < 2 there exist a non-
negative integer h(K) and a posmvc constant ¢ such that the following
estimation holds:

(1) lp(fl<C D sup{ID?f(1)]: teK}
P<HE)

for every function f in I with supp f = K. If this is the case, then we say
that ¢ is on L of order less than or equal to {h(K)}x.» Where 2 denotes
the family of all compact subsets of Q. Note that it is a well-known fact
that every distribution. is of order less than or equal to some {I(E)}ger
on D(Q).

In the present note we study the following problem. Given a closed

_linear subspace L = .D(R) satisfying the condition

(i) every linear functional defined on L of order less than or equal
0 {B(E)}zer on L for some {i(K)}g.r admits an extension to a distri-
bution.

Does this imply that the orders of the extensions to distributions
depend “continuously” on the orders of the initial functionals (defined

* The note is & part of the author’s doctoral thesis, which was prepared in the
Institute of Mathematios of the Polish Academy of Bciences under the supervision
of Prof. W. Stowikowski in 1969.
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on L)? In general the answer is negative. In fact we prove the following
result (Theorem 4.1).

There exists a closed Uinear subspace L of D(Q) satisfying the con-
dition (i) such that for every pair h(K), /(K)eN¥, where N, denotes the
set of all non-negative integers, there ewists o limear functional @ defined
on L of order less than or equal to {h(K)}x.x on L which does not admit
an emtension to a distibution of order less than or equal 10 {(K)}xew
on D(Q).

A gimilar irregularity was observed by Stowikowski in [5], where
he constructed an example of a closed linear subspace L of D(£2) which
did not satisfy condition (i). The same author in his further investigations
[6] gave the necessary and sufficient condition for avoiding this irregu-
larity (Stowikowski’s Theorem 3.1, Section 3 in the present note). The
main result of the present note was mentioned by the author earlier
(without proof) in [3].

In this paper, in order to simplify the notations, we use a slightly
modified definition of the order of functional (cf. (1) and (2)). For the
same reason we consider only the one-dimensional case. However, our
considerations remain valid in the general (n-dimensional) case.

2. Preliminaries and notations. Denote by CO(K), for every K c R,
the linear space of all complex-valued continuous functions defined on IC.
For every compact subset K < R satisfying the property itk =K
and every positive integer n define the linear.space

C"(K) = {feC(K): (D*f)(t) exists and is uniformly
continuous for teint K and p < n},

where D?f denotes the p-fold differentiation operator for p =0,1,2,...
Put . :

Ifl = sup{|f(&)]: teK}
for feC(K) and
Il = > 1D%flx

p<n

for feC™(K) and n <N, where 13"]" denotes the extension of (DPf)(t), teint X,
onte K. Observe that (O"(K), ||-|%) is a Banach space for every neN.
Finally, define the linear space
(@) = {feC(G): D*f exists and <0(@) for every peN}
for every open subset G = R.
Fix an arbitrary open non-empty subset @ — R. Let

D(Q) = {fe&(RQ): suppf is a compact subset of 0}.
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In the sequel we shall write D instead of D(£).
Choose the family {K,},.n 0f compact intervals satisfying the prop-
erties
1° K, =  for neN,
2° the family of sets {K,}n.nv is @ covering of the set 2,
3° the set int(K,,— U K,) is non-empty for every meN.
neN
nFEM
Let N be the set of all*sequences of non-negative integers. We order Jt
setting for B, [eM, B = {htews [ = {lufneny 1<) if and only if I, <h,
for every positive integer n.
Take a linear subspace I = D. A linear functional ¢ defined on
a subspace L < D is said to be of order less than or equal to ), heM,
§ = {Au}nen, if and only if there exists a sequence {0, }nen Of positive
constants such that the following inequality holds

@ lpNI<Cu D) sup{ID]: wek,}

0<D<hy,

for every neN and every function feL vanishing off K,. In other words,
¢ is of order less than or equal to § if and only if

lp ()] < CallfI,

for every positive integer n and every function feL vanishing off K,.
Notice that if I = D, then the definition above coincides with the classi-
cal definition of the order of distribution. :

With every £ = {k,jn.veJt We associate the space

D! = {feC(Q): supp f is a compact subset of Q and
Iz, <0*n(K,) for every neN},

where flx denotes the restriction of the function f to the set K. Put

(3) It = Il

for every feD'. It can easily be seen that the covering {E}nenw of the
seb £ is locally finite. Flenee the sum on the right side of (3) is finite for
every feD

Define the spaces

n
D}, = {feD": suppf = U I}

for every <t and neN, and the norms

W = 1, = WA

$=1
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for every fe.D},. In this manner with every <% the sequence {(D%, Il |%)},.x
of Banach spaces is associated. In each D', £t we introduce the topology 7,
which is the inductive limit topology generated by the identical embeddings
of the gpaces D! into D! and the topologies induced by the norms s
in D, for meN. It can easily be proved that (DY, 7y) i8 an LE-space for
every heJt. Moreover

D= D"
DeN
Hence we introduce in D the projective limit topology =, generated by
the canonical embeddings of D into D and the topologies 7, for every
HeN. It can be proved that the topology 7 is the standard topology on
D = D(Q), which means that 7, is the locally convex topology of the
uniform convergence with all derivatives on compact supports. The
base of neighbourhoods of the origin for the topology =, consists of the
sets U, (D, &, {Up}new) of the form

@ Ty, (Odnew) = {FeD: 3]0, D sup{iD™f]: teK,} < ¢,
n=1 pgh,n

where ) = {h,},.v I8 an arbitrary sequence in R, ¢ is an arbitrary posi-

tive number and {0,},.y i an arbitrary sequence of positive numbers

(cf. [8]).

It follows from (4) that a linear functional ¢ defined on D is a con-
tinuous linear functional on (D, rp), i.e., a distribution if and only if
there exists an e 3 such that ¢ is a continuous linear functional on (D, =y/p),
where 7,/ denotes the topology =y restricted to D. Observe that D' = DY for
every [, heM and [ > §. In addition the topology = restricted to D is finer
than the topology. v, restricted to D. Hence if ¢ is a continuous linear
functional defined on a subspace I of (DY, ), then it is a continuous
linear functional in (D', 7)) for every 1e®R,1>1.

Given a locally convex linear space (X, v), a linear functional ¢ de-
fined on a subspace L < X is said to be a sequentially continuous linear
functional on L if and only if

@ (@) > ()
for every sequence {#,},5, = L With z,—, (n->o0) in the topology .

It is a well-known fact that if (X, ) is an LF-gpace then a linear
functional ¢ defined on X is continuous if and only if it is a sequentially
continuous linear functional on X. The same statemeri for linear functionals
defined on & subspace of an LF-space in general is not true [5], [4].

The following easily verifiable remark shows us that the notion of
the sequentially continuous functionals is a rather wseful tool in inves-
tigations of orders of linear functionals on D.

icm°
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Remark 2.1. Given a linear functional ¢ defined on a linear subspace
L < D, the following statements are equivalent (cf. 5.2 of [6]):

(i) ¢ is of order less than or equal to§, he N,

(ii) @ is a sequentially continuous linear functional defined on a sub-
space L of (DP, zy).

On the other hand, consider the linear space

D, ={feD: supp f = QIJL-}

for every positive integer #, endowed with the topology 7, of uniform
convergence with all derivatives (the topology 7, is induced by the system
of pseudonorms {||*%,: peN and ¢ = 1,2, ..., n}). Observe that

D = D,.
n=1

It can be proved that the inductive limit topology generated by the
identical embeddings of D, into D and the topologies z,, neN, coincides
with the topology 7p. Since the space (D,, 7,) is a Fréchet space, we infer
that (D, 7p) is an LF-space. Hence a linear functional ¢ defined on D
is a distribution (is a 7p-continuous functional) if and only if ¢/p,, is a eon-
tinuous functional on (D,, r,) for every neN. Finally we observe that
a sequence {f,},.x of functions in D is convergent to a function fyeD in
the topology zp if and only if ’

() there exists a compact subset K < 2 such that suppf; =« K
for 1 =0,1,2,...,

(B) Dfi—D?f, uniformly (i— oo) for every p = 0,1, ...

In similar manner we can deseribe the property that a sequence
{Futnen of functions in D is convergent to afunction f, D in the topology .

We complete this section with a theorem which summarizes the facts
given above.

THEOREM 2.2. Given a linear functional ¢ defined on D, the following
conditions are equivalent:

(i) ¢ is & disiribution,

(i) @ is a continuous functional in (D, tp),

(ifl) o/ D, 18 @ continuous functional in (D,, v,) for every neN,

)
(iv) @ is @ sequentially continuous linear functional on (D, Tp),
(v) there exists an be N such that ¢ is a continuous funciional in (DY, Tp)-

3. Slowikowski's theorem. Given: an open subset 2 = R and a family
of compact intervals satisfying the conditions 1°—3° of the previous sec-
tion. To formulate the theorem of Slowikowski [6] we need the following

v
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spaces:
™ = {feD" fla—
for heIt and meN, and

) Ket(Q— () K}
=1 i=1

n
DY = {feD%™: suppf = U K}
fe=1
for heJtand n, me N. In each space D™ we introduce the locally convex
topology m of simultaneous uniform convergence with all derivatives

oft U K, and convergence with respect to the norm |- [P. Thus we obtain

a I‘réchet space (DL™, ™) for every heM and n, meN.

Given a locally convex linear vector space (X, 7), following [6] we
call a linear subspace I < X well located in (X, v) if and only if every
sequentially continuous linear functional defined on L admits an exten-
gion to a sequentially continuous linear functional defined on (X, 7).
In view of Theorem 2.2 we infer that a subspace L of D is well located
in (D, 7p) if and only if every sequentially continuous linear functional
on L ig continuous in the locally convex topology induced on L by the
topology 7p.

Tn the sequel we shall use the following theorem (Theorem 2.1 of [6]).

TrmorEM 3.1. A linear subspace L = D is well located in (D, 7p)
if and only if to every by <M there corresponds am Dye N such that to every
k,eN there corresponds a kyeN such that for every p eN the following inclu-
ston holds:

D}gnel%z,kl(LnDp) < el o (LNDy),

n
17
where el y, 5, (LNDy) denotes the closure of LD, in the topology 7™ and
»
01".”{,1 (LNDy,) denotes the closure of LDy, in the topology induced by the
iy

norm. |- |3

4. Main result. Given: an open subset 2 = R and a family of compact
intervals {K,}, .y satisfying the conditions 1°—3° of Section 2.

THEOREM 4.1. There exists o linear subspace I < D(Q) = D closed
n (D, Tp) such that

" (i) every lUimear functional defined on L and sequentially continuous
in (D, tp) admits an estension on the whole D to a distribution:

(ii) for every pair ¥,1eM, T = 1, there exists a linear funciional defined
on L and sequentially continuous in (DY, 7)) which does mot admit an emten-

ston t):) a linear functional defined on D which is sequentially continuous
in (D¥, ).

icm
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Note that point (i) of the thorem states that L is well located in (D, TD)
Hence Theorem 4.1 can be reformulated as follows:

THEOREM 4.2. There exists a linear subspace L < D, closed in (D, tp)
such that

(1) L is well located in (D, tp), .
(i) if 1N then L is not well located in (D', w). Moreover, for every

‘pair 1, FeM, 1< §, there exists a lincar functional defined on L of order less

tham or equal to 1 which does not admit an extension to a distribution of order
less than or equal to .

To prove the theorem we start with the

Construction of the linear subspace L < D. Let {EKlm}ymen
be a family of closed intervals satisfying the conditions:

(i) K7, < inb(K, UKf) for n,m =1,2,...,
=2
(i) K},nE{, =@ for (n,m) # (9, 1),
(iit) l.IltKllm #@ fornm,m=1,2,...

Next, with every n > 2 we construct a sequence {I,, ,}mn of closed,
mutally disjoint intervals with non-empty interior such that

Kpm < int(K,— 9] K,
1€

150

for meN and »n = 2.

The existence of such families of intervals follows from the conditions
1°—3° gatisfied by the covering {K,}n.n-

To every n > 2 and meN we assign a point tnmemLKnm and a se-
quence {gn mizen Of functions in D such that supp gnm c K, for every
keN and that the sequence {g% ,}x.n tends to zero uniformly with the
derivatives up to the order m while

('Dm+1gh m)( nm) =1

Tinally, to every = > 2 and meN we assign a function f,, in D with
Supp fim < Kl not identically equal to zero.

for k¥ =1,2,...

Put .
nm = flum-t J,L w  for m,keN and n > 2,
and let
L' = Lin {hn wt W, keN and n > 2}.
Define

T = o (D)

where clm (L) denotes the closure of L in (D, 7p). The set L hag the re-
quired properties. Indeed, by the definition L is a closed subspace of
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(D, 7p). In order to verify the second part of Theorem 4.1 (or Theorem 4.2)
we need the following lemmas.

LevMA 4.3. If feL and supp f < L”J K;, then supp fANEK], =0
forn<rand qg=1,2,... =

Proof. Let fel and supp f < LnJ K,. Suppose that supp fNK], # O
for some r and ¢, where.r > n andzzleN. Then

sup{ifi: 1K} > 0.

The set L is the closure in the topology v, of the set L'. Hence, for every
neighbourhood U(f) of the function f in (D, 7p) of the form

U(f) = {feD: ZN 2 sup {07 (/= D)I:

=1  p<p;

teK} < s}

where {p;};.n I8 an arbitrary fixed element of % and {N,};.x is an arbitrary
fixed sequence of positive numbers, we have

U(f)nL = 0.
In particular, the statement above remains true if we put p = {p}neM,
p; =¢q-+1fori=1,2,...and N; = 1 for eN. Denote by U(f) the neigh-
bourhood which corresponds to the p so defined and the sequence
{¥}ien- Let feU(f) n L', Tt follows from the definition of the set L' that
f' can be represented as a finite linear combination of the functions
{hE n: m, keN, n > 2}. Let

= Z a;-“’mhf,m.

k,t,m

Since, according to the assumptions, suppfN K, = @ and supp ¥, 0 K,
= @ for i 5= 7, ie N, we have

»3>Z1 Zsup {‘Dz’( Zalmhfm)} tsKi}

t=1 PPy keyt,m
> Y sup jm( o |2 T,
LD, lc B,m

= Z‘ sup {[Dp( 2 a,k.,mh,'r“’m) : teK,.}.
PEHL . k,m

Since 1, ,¢K,., we have

£>|Dq+1(2a

k,m

o hhm) ()]

icm
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Next, observe that theé functions &}, identically vanish in some neigh-
bourhood of ¢, , for m #¢. Hence

8> | DU Dl bl ) ()]

I

Finally, since (Dq“hf,q)(t,,q) =1 for every keN, we obtain

(5) &> o,
3
On the other hand, since Kj, c K, and hY, identically vanish on

K1, for (i, m) # (r, q) and A, restricted to K , is equal to f], for every
keN, we infer that i

s>2 S’sup \D"(

1,11; h?,m)[ H 1 EKi}

=1 pgp,[ k, 11 m
> sup {f kmhi m teKl}
k,g,m
= sup ﬂf—— ai,mhﬁm : teK’{,q}
Feyi,m

= sup{[f— (D) o) Frgs tekr )

> sup {|f]: teK"l',q}—‘Zaf,q sup{Ifi l: teKl ).
k

Hence we have

e > sup{Ifl: tek3—| 3 akiy|-Sup{Ifil: te K-
k

Thus by (5) we obtain
e(L+sup{If gl teXl ) > sup{Ifl: tekiy).

With ¢ tending to zero we prove that f identically vanishes on K7 ,. Hence,
if suppf < U K; then suppfnK], =@ for r>n and ¢=1,2,
which concludcﬁ the proof of the lemma.

It follows from Lemma 4.8 that f7,,¢L for meN and n = 2

LuMMA 4.4. For every positive integer n the set L'nD, is dense in
LnD, (with respect to the topology tp). )

Proof. Let feLnD, and let T,(f), for every positive integer I, denote
the neighbourhood of f in (D, 7p) as in the proof of the previous lemma
generated by ¢ = 1/l and p = {Piene®, p; =1 for ie Nand N; = 1 for
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teN. Next, let f;e Uy(f)n L’ for IeN. In the same manner as in the proof
of Lemma 4.3, for every leN f; can be represented as a finite linear com-
Dbination of the functions {A¥,: m, keN,r = 2}. Let

y akl hk

1,7, k
for leN. By Lemma 4.3 we have suppfnsupph f’m: @ for ¢ > n. Henee
fre U(f)nI/, where
= 2 2 aic'mh’?;m
wn o myle

n
Indeed, since suppf < | K, we infer that
i=1

1 1
7> 2 2 S ISl tek,
K n
GZ: %;sllp {o*(r- 3 Z;ai”:ézhiim) Lty
= t=1 m,%
> 2 2, sup {ID7(F—f)l: tekK,}.
s=1 p<]
Finally,

~ n
suppf; @ U K; for every leN
i=1

and
~ n 1
sup {ID7(f=fi)l: te U Kif <5 for p<1

=1
Hence the sequence { fl}leN is convergent uniformly with all derivatives
to the function f (is convergent in (D, vp)), which concludes the proof
of the lemma.

LeMMA 4.5. For every TeN, T = {k}.v ond for an arbitrary se-
quem.e {a}imo Of complem numbers there exists a uniquely determined linear
Junctional @ defined on L such that ¢ is of order less tham or equal to B, for
every heM, and satisfies the conditions

(i) qﬂ(hﬁ,k") = ay, for every keN, n>2,

(if) (p(h =0,  for q#£Tk, p=2, keN

Proof. Given T and the sequence {a;};s, of eomplex numbers,
we sha;}l prove tl}e lemma by constructing the functional ¢ satisfying
the desired conditions. First we set the required values of the functional ¢

icm°
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on the functions {h¥ ,: m,keN, n > 2}. Next we extend the functional ¢
on to the whole L/, putting for feI',

— k
f— 2 an.mhnm;

n,m,k
‘F(f) = 2 aﬁ,m‘p(hﬁ,m) = Z (2 a’;,kn)an'
n,m,k n k
Such an extension is well defined. Indeed, let
0= 2 a’;z,mhﬁ,m = 2 (2 a;ct,m(f{tm""gfi,m)) .
n,m,k 9, M

Since the supports of the funetions {f,: meN,n > 2} are disjoint with

the supports of the funetions {¢ ,,: m, ke N, n > 2}, we infer that

Z(Zam)flm

Next, since the supports of the functions {fI',: meN, n > 2} are mutally
disjoint, we obtain '

7 k

tpy =0 for meN,nz=2.

k

This implies that for every funetion feI' the corresponding numbers
Z“u . are uniquely determined by. the funection f.

¥ Observe that ¢/r~p, is & bounded linear functional with respect
to the norm |- 9, for every neN, where [, = {l;};cn; i = 0 for e N. Indeed,
let {M;};cn be a sequence of positive numbers satisfying the inequality

0< |ag) < Mysup{|fiz,: teKi}

for i< N. Hence, for every feL' nD,, f = 2 Z o hf, We have
i<<n mk

lp(f ‘fp 2 5‘ )]
‘Z 2 i) < 2 o (2 “Z'C:’“ihf»’cm
Z:‘Zamklf’qf Z‘yazk

<Max{M;: i< n} V~ yal,%‘sup{lfl_ktltd{l}

TN k

“} Z sup ’Z f] Slep |

i<n

< n}ysup{lfl: te K}
i < mplfIhe-

T te Ky}

= Max {M;: ¢

teKl}
< n Max {M;:

=n Max {M;:
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By the Banach-Hahn theorem ‘p/L'r\Dn admity a norm-preserving
extension to a continunous linear functional in (LND,, | [] 9) defined on
the whole LND,. For every neN, let ¢, be an extension of ¢/, D, to
a - H -continuous linear functional on LN.D,. Since, by the previous
lemma, L'n D, is sequentially dense in LND, in the topology 75, which
is finer on LN D, than the topology induced on LN D, by the norm |-,
we conclude that such an cxtension is uniquely determined. Moreover,
we have

Pn = PmiLAD, for n<m.

Finally, we define
for feL with suppfe U K;. Observe that ¢/rp = ®y 18 a continuous

linear functional on (LnDn, -1, Hence ¢ is of order less than or equal
to Ty. Since I, is the minimal element of N, we infer that ¢ is of order less
than or equal to § for every he N, which concludes the proof of the lemma.

Having Lemma 4.5 we can prove-.that L satisties the condition
(if) of Theorem 4.2.

Proof. Given & = {k,},.neN, sct

=n D sup{|D7fly, |+ teK}

p<sn

for n €N,

and let ¢ be the functional from the previous lemma. It has been proved
that ¢ is of the order less than or equal to [ for every leN. Suppose that ¢
is extensible to a distribution of order less than or equal to . Let ¢ be
such extension. This means that ¢ is a continuous linear functional on
(D, 7yp). It follows from the definition of the functions {hz,kn}n,laeN that

hﬁ,k _')'f{zlcn (7{:-—)-00)

with respect to the topology 7. It follows from the continuity of the
funetional ¢ in the topology 7y that

(fl Fopy, )= hm‘p(hn lc =N 2 SHP{LDpfl Ic:ﬂ t“:](l}
p<n

But, on the other hand, ¢ iy a distribution and this implies that there
exist constants € and ¢ such that

PHI< 0 D) sup{|D?f]: tek,}
<y

for every f sD~ with suppfeK,. Thus we get a contradiction with the
evaluation of ¢ obtained above, which concludes the proof of Theorem

icm°®
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4.2 (ii). Nevertheless, ¢ can be extended to a distribution of order less
than or equal to ¥, = {k; z}u.n, Where %k, = k,+1 for neN. Indeed,
such extension can be explicitly written as

o = Zw: (% 2 sup {]Dpfl'fknl: teK,} 57fn+1(tn,kn)),

n=1 p<n

where ¢"(¢) denotes the distribution which is the evalution at the point ¢
of the n-order derivative.

In order to prove the good location of I in (D, v;) we need the fol-
lowing sequence of lemmas.

LeMMA 4.6. If feD}cncl,;;k (LND,) for 1eR, p, keN, then

supp fAN K, =@ for 1>k and qeN.

Proof. Let f e_D},ncl,zl;lc(LnDp). First we consider the case where
r > p. By Lemma 4.3 we infer that supp f' N K], = @ for every f'<LND,,
and # > p, ¢eN. Hence

= int{sup{lf~f'|: teE} }: f'eLnD,} = sup{lfl: t< K }.

If this is not the case, then p > r > k and we proceed as follows. Given
&> 0, let U(0) be a neighbourhood of the origin in the topology 75* of
the form

k
U(0) = {fel)j‘,;": sup{ID*f]: $eQ— (U K} < & and sup{|f[: t¢Q} < e}.
i1

It feDin cl,;,)k(LnDi,), then there exists an f'eIND, such that
(f—1)eU(0). By Lemma 4.4 I'nD, is dense in LN D, in the topology tp.
This implies that L'n.D, is dense in LND, in the topology 7.*. Hence
without any loss of generality we can assume that f'¢L'n D, and

] Y
=2 Dl b

n<p m,8
Thus we have ) =
sup ”D‘”‘l (f—— 2 Zaﬁ.mhj‘%m)]: teQ— LEJ Ki} <e
) n<p m,8 i=1

Since f vanish identically on Q— U K; and ?,,e0Q~ U K;, we have

sup {’D‘” ! ( Z Z O nm)

n€p m,s

2
te 2 — L)lK}

o[

8 T ) 1)

n<p m,8
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Next, in the same manner as in the proof of Lemma 4.3, since
(DTHRE o) (1, q) = 1 for every seN and (DTHRS ) (f ) = 0 for (n, m) = (r, )
and every s <N, we infer that

(6) | Dasg|<e
On thé other hand, ’

e > sup{lf—11: 1eQ} = sup{If—F: 1<K} }.
In the same manner as in the proof of Lemma 4.3, we obtain

Y] o> sup{ifls tekl g —| 3 ab|sup{fgl: teXi ).
8

The inequalities (6) and (7) imply
e(L-+sup{|fi l: K7 }) > sup{ifi: te KT ).

Since £ has been an arbitrary positive number, the last inequality implies
that sup{|f|: teK},} = 0. Hence suppfnKj, =@, which concludes
the proof of the lemma.

LeMmA 4.7. I'nD, is o dense subset of Din clk(LODy) in the topol-
ogy 75" for every 1R and b, p<N.

Proof. Let feD‘ncl,kk(LnDp) and let U,(f) be a neighbourhood
of f in the topology =5* of the form

U (f) = {f’eD}s’“: il <—i—}

for every neN. By Lemma 4.4 for every neN there exists an f,eI'nD,
such that f,eU,(f). Let
= 3 Setnii

<P M8
for every neN. By the prevmus lemma since suppf < U K, we have

suppfN K], = @ for 7 > k. IIence the support of the func‘mon f is disjoint
with the supports of the functions {;,: m,seN,r> k}. This implies

that
1
~ >~ fnil‘—Hf 5“2 anttnl =] 1 3 e,
r<k m,8
Put f,, > Dagm ki, (in the case where p <k we set, ma.ddltlon, apm =0

r<k m,$

for n,s,meN and p <r<k). Observe that suppfn < UKi. Hence
4=l

icm°
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eLIﬂDI for every neN and
n E

1 . .
W WF = Fallt = I = Falli-

This means that the sequence {f,}nx converges to f in (D%, |-{i). Hence
{fulnen converges to f in (D3, ”‘) This follows from the fact that all

the funection { fn}'nsN vanish off U K.

We proved that if f eDLn . wc(Lu

of functions {fn}m N in I'nDy Wlnch converges to f in the topology 7%,
which eoncludes the proof of the lemma.

LueMMA 4.8. The following inclusion holds:

) then there exists a sequence

Din clLk(LND,) = el L (LN D)

for every 1eM and I, peN.

Proof. By Lemma 4.7, L' nD;, is a dense subset of DinclLe(LND,)
D

lk:

in the topology 4*. Since the topology coincides on D} with the

topology induced by the norm | ||}, we hzwe
Din cl,;;k(LnDp) c cl,}u,k(L’n]),,) = GIH.H;E(L’HDLA) < eyt (LN Dy),

which concludes the proof of the lemma.

Proof that I satisfies condition (i) of Theorem 4.2. In
order to prove the good location of L it is enough to observe that by the
previous lemma the assumptions of Stowikowski’s Theorem are fulfiled.
Indeed, given §; 9 and k;eN, it suffices, by the previous lemma, to set
b, = b, and k, = k, and apply Stowikowski’s Theorem. Hence L is well
located in (D, 7p), which concludes the proof of Theorem 4.2 (i).

Remark 4.9. Note that Theorem 4.2 (and Theorem 4.1) remains
true if we change the definition of the order of linear functional and define
the order as a natural-valued function defined on the family of all compact
subsets of 2 (as has been done in the Introduetion).
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Eigenschaften von Schauder Basen und Reflexivitiit

von

ULRICH MERTINS (Karlsruhe)

Zusammenfassung. Fiir lokalkonvexe Riume E mit einer Schauder Basis werden
Sitze vom folgenden Typ bewiesen: E ist reflexiv genau dann, wenn jede Schauder
Basis von E cine gewisse Eigenschaft erfiillt.

1. Einleitang. Es bezeichne ¥ einen lokalkonvexen Raum mit einer
Schaunder Basis {z;}. Ist {f} ¢ B die Folge der zugehdrigen Koeffi-
zientenfunktionale, so sei die Basis auch durch {z;,f;} gekennzeichnet.

Der Zusammenhang von Reflexivitit des Raumes F und Bigenschaf-
ten der Basis {x;, f;} 18t in zahlreichen Untersuchungen (etwa in [11-[6],
[12], [16], [19] und [21]) erértert. Zwei Basiseigenschaften spielen hierbei
eine Hauptrolle: Eine Schauder Basis {;, f;} heilt fallend (engl. shrinking),
wenn {f;} eine Schauder Basis fir 7} (Dual B versehen mit der star-
ken Topologie f(Z', B)) ist. Die Basis heiBt beschrinkt vollstéindig (engl.
boundedly complete), wenn fiir eine skalare Folge {a;} aus der Beschrankt-
heit der Folge { >'a,;} ihre Konvergenz in F folgt.

i<n

Zunichst zeigte James [5] filr (B)-Raume, dann Retherford [16]
fiir tonnelierte und schlieBlich Cook [1] fir beliebige lokalkonvexe Réume,
daB B genaun dann halb-reflexiv ist, wenn die Basis {z;, f;} fallend und
beschréinkt vollsténdig ist.

Die vorliegende Arbeit befaft sich mit der Frage, ob ein tonnelierter
Raum reflexiv ist, wenn alle seine Schauder Basen fallend bzw. beschrinlkt
vollstdndig sind. Dabei werden Ergebnisse von Kalton [6] verbessert,
der seinerscits Untersuchungen von Singer [19], Zippin [21] und Rether-
ford [16] weitergefiihrt hat. Dies wird erreicht analog dem Vorgehen von
Kalton durch eine Abschwiichung der Begriffe “fallend” und “beschrinkt
vollstéindig” (Definitionen 2 und 3 in Abschnitt 2). Die hier gewihlte
Form der Abschwiichung ist jedoch der Fragestellung und den Gege-
benheiten von Basen in lokalkonvexen Riumen angepafBter als die von
Kalton und liefert daher auch weiter reichende Ergebnisse. Zwar ist
auch hier die Frage nicht fiir den allgemeinsten Fall beantwortet; jedoch
lagsen die offen bleibenden Probleme (A) und (B) in Abschnitt 2 vermuten,
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