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Differentiation through starlike sets in R™
by ‘
CALIXTO P. CALDERON (Minneapelis, Minn.}

Abstract. The woll known theorems of differentation of a multiple integral
with respect to a family of bounded convex sels are goneralized to the case of un-
bounded. sets.

0. Introduction. The purpose of this paper is to extend to the case

of unbounded sets the well known theorems concerning - differentiation
« of multiple integrals with respect to cubes or bounded convex gets.

The problem can be stated in the following way:

Consider a measurable starlike set B in R™, that is if < B, then
ave B for all a, (0 < a<1), such that |B| < co. If we denote by ¢(w)
the characteristic function of B, then the B,, ¢ > 0, will be the set whose
characteristic function iy ¢(e'w) = ¢(¢ '@y, ..., e m,). The problem is
then to study the limit
(0.1) _ Um(1/|B,)) [ fdt

&0 @+By
for fe IP(R™), p > 1.

This problem hag its origin in the Theorems 6 and 7 of [1] and our
result implies those results.

The main references are [1] and [3].

In this opportunity we would like to thank Professor A. Zygmund
for a useful conversation on the problem while this paper was in prepa-
ration.

1. Statement of the main results.

L1. TororsM A. Suppose that B, are under the conditions stated
n 0 then:

lun 1/|]3| ff(t VAt = f@) a.e. if feIP(B™), 1<p <
Fmthmmom, wa have for
£ =wup (BN [ F)d]
>0 z+By

the following inequality
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) 1l < Opllfllpy 2> 1.
If f and |f|log* |f| belong to I* we have also in this case

iii) im (1/|B,)) [ fdt = f(a) a.e.
&0 z+B, .

1.2. DEFINITION. Let B be a starlike set. We say that ¢(a), where
ae X (unit ball of R™), is the boundary function of B, if ¢(a) =
sup{r/(r, a) e B}. Clearly |B| < oo is equivalent to

(1.2.1) Jolomdo < oo

where X denotes the unit ball of R™ and do the “area” element.

1.3. We are going to use a gpecial type of exterior measure. Thig,
will help us to state results for the L' case. Our space will be the unit
sphere of R™. Let B be a Lebesgue measurable set, # = X' and let us denote

by @ any o-elementary set {J I, where the Ij are “cubes” in X. Given
1

a fixed real number 8, such that 0 < 8 <1, we define:

= inf TP,
It 21] [l
It is clear that y, is well defined for any subset of 2 and furthermore if
B, c E,, then:
(1.3.2) ol By < v ().

1.4. We say that (pst (%), where ¢ is Lebesgue measurable and
non-negative, 0 < p < oo, if the following integral is convergent

(1.3.1.) a(H)

(1.4.1) - f YR dyy{p >y}

The above integral exists in the Riemann-Stieltjes sense because of (1.3.2).

1.5. TaeorEM B. Suppose that the boundary fumction ¢ of the set B
belongs to L"’ (X) for some B, 0 < B < 1. Then if u is a measure defined
on R™ hcwmg bounded total variation there, we have:

i) 1

[ du exists a.e and equals a.e the density function of u with

:—»o IB‘ o+B,
respect to the Lebesgue measure.
g
iy If 0<f<1/2 then l{o;u* > A} <TW(M) where u*(x) =

SUP ——— ]B] f dpl, W () denotes the total variation of u over R™ and O is a
&>0

constant mdepe'ndem of u.

icm
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1.6. Now we are going to deal with another type of conditions. con-
cerning the shape and the size of the basic set B.

We shall assume first that the boundary function ¢ is dominated by
a finite sum of functions g(a) verifying the following properties

<1721¢;(a), 9(0)>0, j =1,2,..., N,

(b) @;(a) =@s(la—al), § =1,2,...N, where la—ay| denotes
the “chordal” distance from the pomt a to the point

(c qoj(t) is a non-increasing function of the real variable ¢ > 0,
j=1,2,...N.

1.7. TarorEM O. Suppose that the boundary function g of the sét B is
under the conditions of 1.6, and suppose further that the fumctions @;(a)
verify the following estzmates

(1.7.1)

(1.6.1)

[ o (a)log*log* g (a)do < 0o, § =1,2,...N
z

then if u 18 a measure defined on R™ and having bounded total variatfon there
we have

1
f du ewists a.e and equals a.e the density function of u with
w0 Bl .5,

respect to the Lebesque measure.
If instead of the comditions (1.7.1) we have the stronger following omes

(1.7.2) [ rlog* gy (log* log* @)+ do < oo
z

Jor some 6>0andj =1,2,...
holds truth

s . Then, the following weak type estimate

i) 15" > B <5 W (.

2. Auxiliary Lemmas.

2.1. LemmA, Let § < R™ bo o bounded subset of R™ amd suppose that
Jor each point we 8 there emists am m-dimensional parallelepiped centered
at the point w, such that: 1) Their edges are parallel to a fimed mutually orthog-
onal directions in R™. 2) The length of the edges is given respectively by m
Jundtions p,(8), va(t), ..., yu(t) of the single parameter t, where each one
of the y;(t) is o monotone, continuous and non-decreasing fumction of the
variable t verifying y;(0) = 0. The length of the edge pavallel to the j-th
direotion is measured by y;(t). Then it is possible to select an at most denu-
merable family By of such parallelepipeds, such that

i) BBy =g if ¢ #j,
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i) U,bRy, = 8, where 5ch denotes the dilatation five mmes of By about
its center.

2.2. Levma. If the pamll@lepzpeds are under the conditions oj Hw
preceding lemma, then if p-is o o-additive measure defined on the Borel
subsets of R’” having bounded variation there, we have

i) p(e) = sup| dy verifies

R(t wlé()
v o' () > 23| < (8™ 1) [A- W (B™)
where W (R™) denotes the total variation of u over R™. i

i) If* @)y < Opllflly, 1< < o0, where C,, depends only on P, and
on the dimension. :

Olearly, Liemma 2.1 implies Lemma 2.2 and this is done in [3], Vol. II,
p. 309 except for the fact that a particular coordinate system is sélected.

2.3. LemmA. Let {T)} be a sequence of sublinear operators mapping
c-additive measures defined on the Borel subsets of R™, hawving bounded
vartation there, into measurable functions of R™ — R. -Supposeé. | Lhat ‘the
Sollowing weak type inequality is wverified: .

1) |B(ITk(w)l > 4| < (C/)W (R™) where as before W(R™) danotes' the
total variation of u over R™ and the constant O does 'not depend on u or T.

Let a;, be a sequence of real numbers and call T = Zahl’k Then. zf S ey
< oo we have:

BT () > 2} < — (Z a"z) W (R").
i) If 3 (el - [loglay| < oo > we have for any measwablo set A suoh that
< 4] < oo .
(2.3.2 {B(IT ()] > 2) N 4}| < T0(L+ [log €1)- (1 +log IAI)(l/(l + og b7
3 ( X 10 (1.4 log lagl}- W (B™) (1 + flog W {R™)]).
Proof. Except for the value of the right hand constant in (2.3.1),
this is done in [2], pp. 121~122 and its verification is straightforward

So we have to prove inequality (2.3.2) only Let’s take the measnre ,u
and define the following sets: ‘

(2.3.1)

(2.3.3) X,(2) ~{|Tk<m1>2/lakl},

then

(2.3.4) X)) < (G/A)W(R’")

¥ X(J) = UXk(A) then: L

(2.3.5) X< (/1) 3 lasl) W (BT,
1

icm
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Consider a measurable set 4 such that |[A| < oco. Call Dy(s) to the distri-
bution funetion. of |T4(4)| on B™ (R™—X (1) nd = 4;. According to i)
we have:

(2.3.6) D_k(s) < min(|4], (O/s)W (R™)
that is s
: Di(s) < 4] 0 s < (CIANW(R™),
(2:8.7) Dy(s) < (Ofs)W (R™) if (CIANW (B™) < 5 < (Afla]),
Dy(s) =0 if § > (A/|agl) sinee 4, =« R™—X(4).

Now we have the following inequality

(2.3.8) f I () oo < Zl%l f T ()| 4 = lekf f Dy (s)ds.
On the -other hand, enccordmg to (2.3.7) it -follows:
oo Af|agl
(23.9) [ Dyls)ds <OWR™+CW®R™ [ (1/s)dw
0 CE(Rm)
14|

< CW(R™)+ CW (R™) {Nlog 4| -+ [logay|| + [log O] + [log W (R™)| + [log | 4|} -
Therefore:

238100  [|T(u)|dw
I ¥ s

<( ) 1aal)- OW (B™)- {1+ llog 21+ [log O +- [log W (R™)} +log |41} + -
1

+OW(B™) (3] oy loglas
1 .
< 6(1+log|4]) 0(1+[logOl) (1+ log )7 (B™) (1-+ [log W (B™)])

X IZW o] (1.4 flog o)

Thus: ) ‘ .
(2.3.10)  |(IZ(w)] > 2) nA[< 1T ()] > 3} 0 d,|+1X ()]
= T(1L-+logld]) 0(1 4 log O}) %
X{Zagl (L +log lal}} (A1 + Nog A1)~ W (R™) - (1 -+ [log W (R™)])

and the lemma is proved.

2.4. LeMwA. Let {T4(t) (f) (v)} be a sequence of differentiation operators
through one parameter pamlleleptpeds, cach one of them under the assumptions
of Lemma 2.2. Let o, be a sequence of real numbers such that Xlay| llog Iakllj
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< oo, Call T(t)[f1(n) = ZapTp(t) [f](@). If u 48 a o-additive measure
defined on the Borel subsets of R™, having bounded total variation there and
simgular with respect to the Lebesgue measure, then:

(2.4.1) mT () [p] () =0 a.e in R™.
-0

Proof. Without loss of generality we may assume that p > 0. Let
us take a cube @ such that [@] = 1. Let Oy = 14(6™+1). (1+log (5™ +1)).
Let us take e > 0, 6 > 0 and ky(e, 6) such that

(242) L+ floge) e Cou(B™) Y layl(1+flog ) < 8.
ko

On the other hand:

(2.43)  sup | 2 @ T @) < 2l 1 1] (@)] = 43, (@)

According to Lemmas (2.2) and (2.83) we have:
(2.4.4)

19 0 {luky (@) > €}| < (1+ [logel)s™* Copa(R™)- Y |ay] (L +[log Ja]]) < 8.
2
Now

ko
(2.4.5) () (] (@) < | Y aTatt) 1] (0) | + ihy (@)
1

Since lijnolTk(t) [4](#) =0 a.e. in R™ for each %, then

(2.4.6) }Tr“nlr(t) [u] (@) < Hi (@) < e

except for a set whose measure is less than 6 > 0 in . Since we can select
>0 and 6> 0 to be arbitrary, the lemma is proved.

2.5. Lemma. Let K(x) be a measurable function in R™, such that
Ke I (R™) and [ K(@)de =1. Call K, = =™K (¢ a). Then
"M

(2.5.1) mK,f =f a.e in R™
&0
provided that f belongs to L*.
Proof. Consider (K,xf—f) and fix 6 > 0.
(2.5.2) (Exf—f) (@) = e~ [ K (s2y) (f (0 —9) —f (2)) dy.
Now let us split K into K,+K, = K such that

(2.8:8) K< M and K, =0 if jo| > L, |Kyl, < (1/2)8]fI5L

icm°®

Differentation through starlike sets in R™ 7

Ag it is readily seen, the right hand member of (2.5.2) is dominated by

™ [ |fl@—y)— @)y +2]|floe™ [ 1K ()l dy.

lyi<sL

(2.5.4)

Therefore
lim |[K,*f—f] < &
&0
provided that  is a strong Lebesgue point of f(y). Since § > 0 is chosen
to be arbitrary, (2.5.1) holds.
3. Proof of Theorem A.

3.1. The condition |B| < cc is equivalent to the following condition
on the boundary function ¢(a)

(3.1.1) [o™(@)do < oo.
P

It is possible to find a family {@,} of “cubes” on X and ¥;(e) the corre-
sponding characteristic functions such that

¢"(a) < ZCkm-Tk(a) a.e. in X.

k=1

(3.1.2)

Denoting by A4(@,) the “area” of the cube on X verifying the following
further condition :

(3:13) D OPAQ)<2 [¢(a)do.
k z

Consider now the parallelepiped B, in R™, whose main “axis” goes from
the origin 0 to the center Oy of the “cube” @, and whose intersection with X
is ;. The length of the main axis is 20,, where R, is symmetric about
the origin.

Clearly, the following relation is fulfilled:

(3.1.4) {(a, @) R™ such that aeQy, 0< o< O} =By c R, for all &

and furthermore there exists & constant ¢, depending only on the dim-
engion such that:

(8.1.5) Bl < Oy | By

From conditions (3.1.2) and (8.1.3)
(3.1.6) B < UB; ae and D'|By < 21B|.
1 T

Call ¢ to the characteristic function of B, g; and §, to the characteristic
functions of B, and R, respectively. Take now a given measurable and
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locally integrable funetion f and consider

(8.1.7)
|(1/1B.1) f f@dy| = (=™/1B)) fg(rl If (@ —y)ldy
z+B,
<@/IB)- 3+ [emg(e M) Fw—y)lay
I pm
< (1/1B))- 2 J ety 1f (0 —y)| dy
n»m

= (1/|B])- 2 |\ Bul (L/1Re(e)]) [ If(@—~g)ldy

Tyle)

where R;(e) means an homotetic. contraction of B, of ratio &> 0. Call

fi (@) = = sup (/B (<)) flf(w y)ldy

Let us observe that each fi(») is under the condmons of Lemma 2.
Then .

(3.1.8) F*(@) < (1/IB]) z IRyl i (@

Taking L? norm over R™ and reealhng (3 1.6) and (3.1.8), we obtam
(3.1.9) 1f¥lo < 0sCm, ) | flly, > 1.

If 4 has finite Lebesgue measure and if f and |f llog+ 1fl- belong to L
it follows that

ff do < 0 (04141 +0, flf|(1+10g I71) d«)

»m

(3.1.10)

Finally, the pointwise convergence follows from the maxunal mequalxtles
already proved and from Lemma (2.5). .

4. Proof of Theorem B.

4.1. We shall start by exphcmng gome elementa;ry estlmmtos Let
us consider the integral:

(4.1.1) — [y ady,{p > y).
]
An integration by parts yields

(4.1.2) B [ yplp > y}y™'dy

icm
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therefore we have:

0 ok+1

(4.1.8)  nf f 7ele > y}y”ﬂ'ldy + Xnf f vele > g}y ldy

= 0,+0, 275{99 > ghthyginb
k=1

This estimate shows that:

(4.1.4) 22’“%@: > 21} < ey Tog (— f v dyy{p > y}).-

Ie=1

Now, for each %, we are gomg to select a family I,

that:
ZA”(Ik,j) <

Jj=1

of “cubes” on X such

(4.1.5) o>2% e ULy, 2yplp> 24,
A(I,;) means as before the “volume” of the cube on X' (4.1.5) fogether
with (4.1.4) shows:
DIIAL )Y < Byt Ba(— [y any{p > 9))
o

e, 3

(4.1.8)

since 0 < ;3 <1 and the tetms 2%*/ {4 (I, )} are uniformly bounded we
have also:

4.1.7) DA (L) < oo

¥

Calling B, to the set of points on X where 2° < ¢ < 2% we have
immediately

(4.1.8) < le I s

Now, we are going to define B, ; to be the following set:

(4.1.9) Byy={(ay 0)e B"; e I 5, 0 << g < 2441},

Correspondingly, wo shall define I, as we did before in Theorem A.
As before, we shall have:

(4.1.10) (B, 4] < Oyl Bl < Co2"™ A (I, )
Calling B, to the set of (a, o) where o <4, it follows algo

(4.1.11) B < B, U(]L%BIM) < B, U‘(IHRM).
e X
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If u is a non-negative measure having finite total mass on R™ we have

57 f”\o(ﬂo e Yl mr ] )

w+R,M(e)
From (4.1.8) it follows that

(4.1.12)

(4.13) DByl < o0
¥
therefore:
(4.1.14) D) 1By, [log 1By, yl| < co.

s,

Aceording to the above condition i) follows from lemmas (2.4) and (2.5).
I 0 < f<1/2, ii) follows from Lemma 2.3.

5. Proof of Theorem C.

5.1. We shall deal first with the point ii). We ate going to reduce
it to a particular case of Theorem B. Since we have a finite number of
dominating functions (g, j =1,2,..., N), it can be reduced to prove
the result for the case of only one dommatlng function. This is done in
both cases i) and ii).

Without loss of generality we may assume that the boundary function
is coincident with its dominating function. We have the following:

(6.1.1) [B] = —‘f yrdA {p > v} ='nf Afp > y}y*dy,
] b

this last integral is bigger than:

(5.1.2) 0 D 4{p > 22t
1

The same type of argument gives

(8.1.3) D) 2" klog" kA {p > 2% < oo
3 .

provided that the following integral is finite:
(8.1.4) [ ¢"log* p(log*log* p)+*do.
X
Notice that {p> 2"} is a “sphere” on X; therefore, for each % we can
find a cube @, on X, such that:

(5.1.5) @G> {p>2"  A(Q)) < 04{p> 24,

icm°®
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Notice also that AY2(Q,)
chain of estimates:

> yia{p > 2%}; therefore, we have the following

oo

(3.16)  — [y dyu{p >y} < Ko+ K, D) 25 42(Q,)
[ 1

<K +K,0 D) 2" 412 {p > 24
1

1

< E;-I—Kgo sznlz k1/210g1/2(1+d] kAl/z{q, - 2k} mﬁ'
3

By wing Schwartz’s inequality we get:
o o 1 12
1. — | g <K, —
617 = [t s} < Kﬁ-M(Z )

-]

x (sznklogH"kA (o> 2by)th.
3

That is ge L2 (). This finishes part ii).

Y12
5.2. For the case i) we are going to assume also that 4 i8 coincident
with its dominating function.
The fact that [ ¢"log*log*pde < oo implies thab:
z

00

sz”log kA {p > 2% < co.

3

(8.2.1)

Since {p > 2%} is a “sphere” on X, it is possible for each % to find a “cube”
Q. on X such that:
(5.2.2) {p>2 <@, AQ)<24fp>29.
If we call B to the set of points of T where 2 < ¢ < 2%, we have clearly
2y < Q.
Now, as we did before, we define the set B, to be
(6.2.3) By ={(a, 0); a€ @y, 0 < e< 2’0“} By = {{a, 0); 0 < o< 8}.
The R, are defined as previously.
‘We have then the inequalities:

(8-2.4) Bl < Cy|Byl < 022" A(Qy)-
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Algo the following holds truth:

(5.2.5) B < B, U{L]JB,G} c B, “{V"“’“}‘
R (1 c
So,if pisa non-n@ﬁﬁvé measure having finito fotal mass ('m"R’" wo have:
(5.2.6) .
< ¢ ( f dut > 2" A(Qp) - v é M) .
IB,! f R AT Z QLTI !

Our next Htep w111 be to decompose the sequoence {k} of indices into two

non-overlapping subsequences Z; and Z, ac (’()1‘(1111”‘ to. the follnwmg eongli-
tions:

i 1
— A(f.z,, < e
(5.2.7) L &> 0.
]06 Z If ..!1 (Qk) —7—1—[?2—,‘_—”
In the first case, that is for those k belonging to Z, we have the domination

D
and Lemma (2. 3) znpphes for the dommaﬂsmg coeftmmntq 7*;-} + finco
(5.2.9) Z k”’ 100*70 < oo,

In the second casge, that is for dz, (We may assume without loss of genet-

1
..... = gAY implies:

(5.2.10) 0g Smy o i) < (14¢)logk.

Consequently:

(8.2.11) Zz"wcek log 2" 4 ()] < (1+¢) D2 loglid (@)
8

keZy
< K+ K, fqﬂ"log"‘lqg"‘qada. .
x

This finishes the proof of the theoremn, -
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