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Translation invariant subspaces of L7(G)
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’ (579) Abstract. The main result of this papor is that if & is a locally compact abelian

group which is not compaet and 1< p < '; then LP(GF) containg a cloged translation
invariant subspace which ix not the closed span of translates of a ginglo fanction.

1. Introduction. Tn what follows G is a locally compact abelian
group equipped with a Haar measure do. For 1< p < oo Wo denote by
I7(@) the classical Banach spaces associated with the pair (@, dw). For
a function fe L? (@) and y< G, the y-translate of f is the function f, defined
by fy(w) =fl@—y), vc@ A subspace V = LP(@) is called translation
invariant, it feV implies that f,eV for every ye@. In this paper we are
concerned with the following problem:

Is every closed translation invariant subspace of I (@), 1 <p < oo
the closed span of translates of a single function?

If @ is compact, the structure of the closed translation Invariant
subspaces of L?(@) is completely determined ([11], p. 94) and it follows
easily from their characterization that if ¢ is compact and metrizable,
the amswer to our problem is affirmative. The structure of the closed
translation invariant subspaces of I*(G) was also completely determined,
by Ditkin ([2], p. 111) for ¢ = R and for general ¢ by L. Sehwartz ([9],
p. 869), who also proved that the answer to our problen iy affirmative
for metrizable ¢ and p = 2.

On the other hand it has boen proved in [1] that it @ is not compact
then LY(G) contains o closed tranglation invariant subspace which is not
the cloged. span of translates of finitely many functions, so that the answer
to the problem iy negative in this case.

Tor ¢ which is not compact and p 5% 2 vory little is known about
the closed tranglation invariant subspuces of TP(G) (see [3], p. 238),
and the defermination of their structure seoms to be far out of our scope.
The main result of this paper is that the answer to the problem posed
is negative for @ not compact and 1< p < § That is we prove:
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TrgoreM 1.1. If G is not compact and 1 < p < 3 then IP(G) contwins
& closed translation invariant subspace which is not ﬁw closed span of trans-
lates of a single function.

This gives a partial answer to the question raised in ([1], § 5). For
other values of p the problem remains open. In the proof of the corre-
spondent result for p = 1 in [1], the theory of Varopoulos on tensor prod-
ucts of Banach algebras has been used. Those methods are not appli-
cable to L? (@) for p > 1, and in the proof of Theorem 1.1 we use the methods
introduced by Malliavin in [7] and their variants which are due to Kahano
([4], p- 121), Rudin ([8], p. 181) and Lohoue [6].

2. Preliminaries. If ¢ is & locally compact abelian group with dual I
and 1 < p < 2 we shall denote by §,(I") the space §L¥ (@), that is, the set
of all functions on I" which are Fourier transforms of functions in L?(@).
The norm of a function f in §,(I") which is the Fourier transform of the
function F in LP(G) will be defined by Hf]lg ) = Fllzp. Under this
norm &, (I") is a Banach space, which is 1sometrlca11y isomorphic to I?(G).
For §,(I') the usual notation A(I") will be used. We denote by PIL,(I")
the dual space of §,(I"), which is isometrically isomorphic to L%(G") thre

1 1
? + ~q— = 1. It is easy to see that if f is in 4 (I") and has compact support,
then fe§, (I") for all 1 < p < 2, and also that the linear functional defined

on F,(I) by
Gf = [9@)fwdy, geg,(I)

(where dy denotes the Haar measure of I') iy in PM,(I") for all L< p < 2
‘We shall use those facts in the sequel, without further mention.

It is well known that L?(@) is a Banach module over I*(G) with
respect to convolution and for 1 < p < oo, ¥V is a closed translation in-
variant subspace of L*(() if and only if V is & closed submodule of L7 (@),
This implies that for 1 <p < 2, §,(I") is amodule over A4 (I') with respect
to usual multiplication of functions and that the Fourier transform estah-
lishes a ome-to-ome correspondence between the closed translation invari-
ant subspaces of L*(&) and the closed submodules of ,(I")

If 8 is a subset of §,(I"), then the smallest closed. submodule of &, (1"
which contains 8, will be callecl the submodule generated by S in §,(I")

It is now clear that Theorem 1.1 is equivalent to the following :

TerormM 2.1 If I' is not discrete and 1< p < ¥ then F,(I") contains
a closed submodule which is not generated by a single functwn

The following lemma which is a version of Malliavins construction
in [7] is essentially due to Kahane, Rudin and Lohoue. Tt is of fundamen-

tal importance in the proof of Theorem 2.1.

icm
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LMmMA 2.2. If I"is not discrete, there exist in A (I") real valued functions
fu, fa amd @ positive function ¢, all with compact support, such that

(2.1) e Bp [ (4, A of ) Mg,y (4 -+ 97) dudo < oo
. 00 e 0Q
for all 17 << 2

Proof of Lemma 2.2. Thig is a version of Kahane’s theorem in
[4], p. 121, and is proved by Rudin ([8], p. 181) for I' compact and p == 1
with @ = 1 and by Lohoue ([6], p. 126) for I" compact and 1 <p < 2,
again with ¢ == 1, The general cage iy deduced from the compact case
by standaid Argumont& using the structure theorem ([87, p. 40) and the
following two facts:

(1) It I' is a loecally compact group, A is ax open subgroup of I" and
1< p < 2, then if f is a continuous function on I' which is in §,(I"), then
the restriction of f to A Dbelongs to §,(«1). This is proved by using ([8],
2.7.3).

(2) If H is a compdcet group, # a positive integer, 1< p <2, and f
is a continuous function in R™x H with support in [—~1, 11" x H, then
feB, (R"x H) it and only if feF,(I"x H), where I' denotes the circle
group identified with [-—m, n).

This is proved by the same method as the classical theorem of Wiener
on the local isomorphism of 4 (R) and A (1) (seo [5], p. 227).

Using those facts the proof of the lemma iy straightforward and
we omit the details.

Let now I, fy, fay ¢ be as in Lemma 2.1, By a standard reduction
(soc [B1, . 232) we may also agsume that

{f o) Bxp [4(wfy (¥) 4+ ofa () ]dJ} dudv # 0.

éRg

[2
(2.2) |
) - O
LMMA 2.2, Leb 1) fy, fuy ond ¢ be as sn Lemma 2.1, and assume that
(2.2) also holds. Then there exists a positive nonzero Borel measwre u on I,
with compact support, such that for every ge A (1)
(2.3) { g () dpa () f $gy XD [ (ufy -+ 0f) 1> dudo.
Proof. The identity

f Bxp [ (ufy () -0 ()] € ot 1) gy = § By [—» —g (ff(y)%mfi(y))]
n
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which holds for every 6 > 0 and y eI”, implies by (2.1) and Fubini’s theorem,
that for every geA(I")

[ <9, 9 Bp [i(ufy + 0f2) 1) dudv
1

=tim [ o) 8~ Bxp [ = (0) +520) |
80 r

and since ¢ is positive this shows that the continuous linear functional
on A (I

g~ [<g, 9Bxp[i(ufy +of) > dudo
RZ

is a positive functional, and therefors by the same argument as in the '

preof of Theorem V in [10] (p. 29) there exists a positive Borel measure u
on I" guch that (2.3) holds. Clearly the support of u is contained in the
support of . Finally using (2.3) with ¢ in A(I") such that g(») =1 for
wesupp- @, it follows from (2.2) that [ du =0, hence wu 5 0, and the
proof is complete. r

3. Proof of Theorem 2.1. Let now I, f;, f, and ¢ be as in Lemma 2.2,
‘We shall denote by U the ideal which is (algebraically) generated in A (I7)
by fi, fa- Since f; and f, have compact supports, U is contained in §,(I")
for every 1< p<2. We denote by V, the closure of U in §,(I"). V,, is
clearly a closed submodule of §,(I"). Theorem 2.1 follows now from the
following : ’

PROPOSITION 3.1, For 1 < p < §, ¥, 48 not generated by a single function.

Proof. Let x4 be the measure on I' which satisfies (2.3). We define
the bilinear functional L on U x U as follows: .

If g = ¢g1f1+¢.fs and b = by f, + hof, with g;, hye A(I') (§ = 1, 2) then

(3.1) Lig, ) = [ (gaha—gahs)du.

I .
We show now that L is well defined and bounded on U x U with respect
to the §,(I") norm, for every 1< p <§. Using (2.1), and integrating by
parts, (2.3) implies that if ¢ and g, are as in (3.1), then

(3.2) [lol® ap = —3 [ u*<gg, o Bxp i (ufy + ofa) ) dudo.
T R?

. . 1 2
Let now 1 < p < § be fixed, and define r by Pt 1. Young’s inequal-

S

ity for convolutions ([3], p. 241) implies that

(8:3) 991,z < 9150z -

icm
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Now sinee 1 << r < 2 (here we use the fact that 1< p < 21), we infer from

(2.1), (3.2) and (3.3) that

(34) [l < Gl oy

A

where ¢, denotes the Ieft-hand side of (2.1).
Similarly it g and g, are as in (3.1) we get thab

(3.5) [ Il <2 O gl oy
:

Lot now g;, ) (== 1, 2) be functions in 4 (") such that '
(2= g1 (ga—ga)fa = 0.
Tt follows from (3.4) and (3.5) that [lg;—gjl'du =0, (j =1,2)
hence g;() == gy(®) (§ =1, 2) for all @ in the é‘upport of u, and this shows
that L is well defined. Applying Schwartz inequality to both terms in

the right-hand side of (3.1) and using (3.4) and (3.5) together with their
analogues for i, hy, he, wo get that .

|L(g, W) < 20&\1!/119;,,(13 Hh'“iyz,(r),

and this shows-that L is bounded on Ux U with respect to the F,(I")
norm. Now using the fact that U is dense in ¥, we extend L to a bounded
bilinear functional on V,, x V, which we continue to denote by L.

It follows from (3.1) that for every fe U and for all ¢y, pyed ()
(3.6) L{pyf, gaf) =70
and since U is dense in V), this also holds for every feV,. Hence if f is any
element in V,, and. V(f) is the closed module generated by fin §, ('), then
(3.6) implies that L annihilates V' (f) x V(). But from (3.1) it follows that
L(fiy fo) = f du 5= 0, and therefore L does not annihilate V% Vy, thus
V(f) # V,. This proves Proposition 3.1, and therefore also Theorems 2.1
and 1.1,

4. Generalizations and related results. Using the same methods as
in the proof of Theorem 1.1 tho following generalization can be proved:
. 2(k+1)
TorowsM 4.1, If G is not compact amd 1<p < T
IP (@) contains a closed translation fawariant subspace which is not generated
by the translates of T fumokions.
The proof of the next theorem is also by the same methods.

Tunownn 4.2, Let B be a semi-simple self-adjoint Banach algebra,

then

which is vepresented as an algebra of continuous fumolions on its regular
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mazimal ideal space M. If there ewist two real fumctions fy, f; in B and
a positive non-zero Borel measure v on I, with compact support, such thay

(4.1) f (u® -+ v*) [p Bxp [4 (uf; -+ ofe) 1l 5 dudo < oo

n»?
then B contains o closed ideal which is not gemerated by a single function.

CorOLLARY. Let A,(@) be the Banach algebras defined as in [6]. If
1<p< oo and G is not discrete, 4,(G) contains a closed ideal which is
not singly generated.

Proof. It follows from Lemma 2.2 that condition (4.1) is satisfied
for A,(@).
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A remark on the d-characteristic and the dg-characteristic of linear
operators in a Banach space
by
STEFAN SCHWABIK (Praha)

Abstract, Lot X bo a Banach space, and & a total space of continuous linear
functionsals on X which is also a Banach space. It is proved that I-- 1 is a &g -oper-
ator provided I': X -» X ig compact and Z is preserved by the conjugate operator 1.
The paper i closely rolated to the work of D. Przeworska-Rolowicz and 8. Rolewiez.

Let X be a linear space (over the field of real or complex numbers)
and let 4 be o linear operator mapping X into itself and such that Awx
is defined for all we X (D, = X). Let the set of all such operators be de-
noted by Ly (X).

We denote by

N(4) = {weX; Av = 0}

the kernel of the operator 4, and by
R(4) = {yeX; y = Aw, weX}
the range of tho operator 4, and define
oy = dimN(4), B, =dmX/R(4)

(dim denotes the dimension of a linear set and X J/R(A) means the
quotient space). The ordered pair (a4, f.4) is called the d-characteristic
of the operator A. The index of the operator 4 is the number

indd = ﬂ_,i—-aA.

By X' the space of all linear functionals on X s denoted. Lot & < X'
be o total space of linear functionals on X, Le. if &(w) = 0 for all §e5
then @ == 0, Wo writo

Ng(A') = {Ee8; E(Aw) =0 for all weX}
and define

pE = dimNg(4).

The ordered pair (a, #5) is called the dg-characteristio of A.
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