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On meodular sequence spaces

by
JOSEPIL Y. T. WOO (Borkeley, Calif.)

Abstract. Several results concerning Orlicz sequence spaces are generalized
to modular sequence spaces. For instance, a modular sequence space has an
unconditional hase itf it does nofi contiain l,, and every modular. sequence space
contains 1, for some pell, oo). A condition for reflexivity is also obtained.

1. Introduction. A convex function M : R-»R such that M(0) = 0,
M(m)> 0 for all 2> 0 is called an Orlicz function. Liet T be the set of
all sequences {x,} such that 3V M(|mylft) < oo for some t> 0. We can
norm Iy by

I{mp}lgr = int {t > 00 Y M (lmyl 1) < 1}.

(Tary I*1l37) 18 & Banach space called an Orlicz sequence space.

¢ wo consider a sequence {M,} of Orlicz functions, and define 1{M .}
to be the set of all sequences {w,} such that > M, (|2, ft) < oo for some
>0 and

e} = int{e > 0: My (ol 1) < 1,

we obtain a Banach space which is called a modular sequence space.
T M, (@) = o™ for some pye[l, o), Wo obtain the modular sequence
spaces considered by Nakano [6].

Rocently, J. Lindenstrauss and L. Tzafrivi [4] proved that every
Orlicz sequence space containg subspace isomorphic to 1, for some
pe[l,00). Morcover, if the Orlicz sequence space ly 18 separable, then
avery subspace of by, containg a subspace isomorphic to I, for gome pe[l, o0).
The purpose of this paper is to generalize this resalt to modular sequence
spaces. We are going to prove that overy modular sequence Space
containg a subspace isomorphic to I, for some pe [1, o) and we have the
corresponding result for separable modular sequence spaces.

The techniques we use are very similar to those used in the paper
of K.J. Lindberg [3]. The only new concept is the “almost equality”
introduced in Section 2 to study equivalence of modular sequence
spaces. This coneept is the chief difference between Oxlicz sequence spaces
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and modular sequence spaces, and gives us rather wide lattitudes in
dealing with the latter.

Tn Section 3, we study separable modular sequence spaces. We intro-
duce the uniform A, condition, and prove the main results of this paper:

I. The following are equivalent:

a) {M,} is equivalent to a sequence {N,} that satisfies the uniform A,
condition. ‘

() The unit vectors of 1{M,} form an unconditional basis.

c) 1{M,} is separable.

(4) 1{M,} does not contain a subspace isomorphic o 1.

II. Let {M,} be a sequence of Orlice functions satisfying the uniform A,
condition. Then V{M,} contains a complemented subspace isomorphic to
some Orlice sequence space.

Combining I, IT and the result of Lindenstrauss and Tzafriri, we obtain
the generalization of that result.

A consequence of IT is that a modular sequence space is an Orlicz
sequence space iff it has a symmetrie basis. This clarifies the relation
between the two kinds of spaces, and show why some of the properties
of Orlicz sequence spaces cannot be readily gemeralized to modular
sequence spaces, for instance those in [5]. :

In Section 4, we study the duals of modular sequence spaces and
obtain the conditions for reflexivity. We can apply the results to the
spaces X, p > 2, constructed by H. Rosenthal in [7]. We show that
X, = X}, where p'4¢7* =1, is a modular sequence space and hence
every subspace of X, contains some I, re[g, 2].

The author would like to thank Professor Hagkell Rosenthal for
suggesting the problem and for his very numerous and helpful advices.

2. Preliminaries. Throughout this paper, we shall follow the notations
and terminologies used in [4].

TFor technical reasons, we shall always assume M, (1) =1 for all n,
unless otherwise mentioned. There is no loss of generality in doing this.
For suppose {M,} is any sequence of Orliez functions. Lot o, > 0 satisfios
M,(a,) = 1. Define N,(x) = M, (a,2). Then.it is trivial to show that
{NV,} is a sequence of Orlicz functions and I{M,},1{N,} arc isometric.

We now introduce the important concept of equivalence. Recall
that two Orlicz functions M and N are said to be equivalent if there
exist o, > 0, L > K > 0 and @, > 0 such that we[0, ] implics KM (ax)
< N(x) < LM (B»). We can define something like that for sequences of
Orlicz functions, but that definition would be rather unnatural. So we
define equivalence in the following manner:
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DerNmioN. Two sequences of Orliez functions {Mn}, {NV,} are said
o be equivalent if 1{M,} = I{N,} as sets.

M, (1) =1 for all n implies |@,| < [{#c}ll. Hence by an easy conse-
quence of the Closed Graph Theorem, if {3} and {¥,} are cquivalent,
then the identity map of 1{M,} onto I{N,} is an isomorphism.

PROPOSITION 2.1, Let {M,} and {N,} be two sequences of Orlicz functions.
Suppose there ewist real numbers L > K >0, a >0, a,e[0, a] and a posi-
tive integer ng such that for all n > ng and sela,, o],

KM, (®) < Ny(®) s LM, (x)
and

99@[07 an-l} < oo,

Zbu’p{lM @) — N, (@)|:

nea=l
Then {M,} end {N,} are equivalent.
Proof. The proof is straight forward. We can clearly assume
a<1. Suppose {z,}el{M,}. Then there cxists ¢>0 such that
SM (el ft) < 1. As |malft <1 for all m, we can take ¢ so large that
|2l [t < a for all . Lot B = {n2ny: ||/t < anty B = {n =00t @[t = 0n}

and 8, = sup{|M,(®)—N,(®): ve[0, a,]}. Then
N Nullzal ) < ) (Mo (120 [6) + Ba) £+ ) LU [a] 1)
N=T1y nelf nek

o0 o
< mmx{l}, 1} 2 J"[n(]mazl/t) ‘42 ﬁn < oo.
n=ng A=l
S0 {,}l{N,} and 1{M,} = I{N,}. By symmetry, 1{M,} = 1{N,}.

We now want to prove a partial converse to Proposition 2.1. Before
doing that, we have to introduce certain eoncepts and notations.

DeriNizoN. {M,} and {N,} are said 1o be almost equal it there exist
a, >0 for all meZ* such that M, (@) == N,(x) for all 23 a, and
A\: M, (@) < oo,

Obviously, almost equality implics equivalence. It plays a crucial
role when theorems on Orlicz sequence spaces are gencralized to those
on modular Sequence SPaces.

We also need the following definition:

DRFINITTON. ¢{M,} = {{m} el {M,}: > M (|w,|ft) < oo for all t> 0}

It is easy to show that o{M,} is a closed subspace of I{I,}, and
that the unit vectors form an unconditional basis of ¢{M,}. I {IM,}, {N.}
are equivalent, then ¢{M,} = ¢{N,}. The following lemma has a trivial
proof.
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LEMMA 2.2. Let {M,} be a sequence of Orlicz funclions. Then the fol-
lowing are equivalent: :

(a) 1M} = o{M,}. |

(b) The unit vectors form am unconditional basis of 1{M,}.

(¢) For all {z,}el{M,}, 3 M,(lo,|) < oo.

LevvA 2.3. Let {M,} be a sequence of Orlicz functions.

Suppose Y M ,(|z,]) < oo does not imply limw, = 0. Then I{M,}
contains @ subspace isomorphic o lo.

Proof. If the hypothesis is true, then we have a> 0 and a subse~

quence {M; } such that > M; (a) <1. Detine T: l,—>1{M,} by T({f.})
=1

= {w,}, where

. ﬂm it o=y,

wn .
0 otherwise.

Tt is easy to show that T is an isomorphism.

We can now prove the partial converse to Proposition 2.1.

TumoREM 2.4. Suppose the unit vectors form bases of 1{M,} and 1{N}.
Then the following are equivalent:

(a) {M,} and {N,} are equivalent, i.c. the two unit veolor bases are
equivalent.

(b) There ewist {MF}, {NF} almost aqual to {M,}, {N,}, respectively,

such that the following are satisfied:
There exist L= K > 0, ng> 0 and o> 0 such that

(1) EM#(2) < N (#) < LM ()

for all > ny and »e[0, al.
Proof. (b)=(a) is a special case of Proposition 2.1.
(a)=(b). Let m,neZ'. Define

Ty, = SUP{w [0, m™]: mMy(2) < Ny (@)},

<
Yo = SUD ([0, m™*]: mN,,(w) < M, (w)}.

«
Claim: theve exists meZ™ such that D M, (#,,) < co. For if not,
[==] . fn=1
then 3 M, (2,,) = oo for all meZ™. As M, () < By, < m™~? for all
n=1
neZ*, by an easy induction we can find. positive integers

PP e <Py < e
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such that
P41
m < D My (@) < 2m7E
n=ppm+1

Note that for all m and n, we have

m‘Mﬂ(mﬂ’b,n) g NH (mm,n> M

oy pm+1
Let {e,} be the unit vector bagis. Then ¥ 3 #unt, comverges in
{M,}, since Ml eyl
o  Pml 0
o - -2
Z M, (@) = Z 2m™ < oo,
M=l Nyl M=l
On the other hand,
o Pml o Pl ©
VU N \ | -1
N @) = ] MMy (W) = D 07 = oo,
M=l NPy -1 Ml N 1 m=1
. V 0 Pl
8o by Lemma 2.2 (¢), > 5 @0, (ivergesin 1{N,}, contradicting
Ml Nomyy i1

the equivalence of {M,} and {&,}.
-]

Now assume 3 M, (#,,) < oo for some meZ*. We are going to
=1

construct {M¥} almost equal to {M,} such thab N, (z) < mM ) for
all [0, m™*] and all n > some n,. Becanse 1{M,} has a basis, it cannot
contain Iy. So by Lemna 2.3, lim #,,, = 0. So there exists noeZ™ such

N+
that @,,, < m™ for all n > n,. By continuity of N,/M, on (0, o), and
by the definition of @y, ,, we have

Ny ()
AMKLTLIA—_. and

Mo (@)
N, (%) .
_J“l;fm(;)‘ <m  for all @e(ty,,, m2].

Now define M to be M, it n < ng, and for # > ny, define

] -
" m~r N, (v o= W,
1'1;4”\, (w) s n( ‘), (N3]

M (), @ 32 Lp,m

M is continuous. Tt is also convex. To show this, it is enough to show
that m= N} () < My (@) for all 0> ng. (Mp(@y,,) and Ny (@m,a)
ave the right derivatives ab #,,, if the derivatives do not oxigt.) This
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follows from
No(®) N (#p,n)

for all @e(®pq, m~*] and n > n,.

Mo(@) My (@n,n)
Hence (N,/M,) (@) < 0. This means that
J‘[n(mm,n)N;u (mm n) ""Nn(wm n)M;m(mm n) <0.

AS N (@) = MMy (B ,), We have m™ Ny (@, ) < M, (m,nn So {M¥}
is a sequence of Orlicz functions almost equal to {I,}. Morcover, m M (w)
> N,(») for all #¢[0, m™2] and all 5 > n,.

We now want to obtain the other side of the inequality in (1), By
SubStituting Yo, , 10X @y 4y N, for M,, M for N,, and repeating our
previous arguments, we are able to obtain m’, n, and N3 such that m' N (x)
> M# () for all xe[0, (m')~*] and all n > n,, where N¥ = N, for n < n,,
and
(m’l)—le (.’M), AN ym’,n?

-Nn(m)7 T = ?/m’,n-

We can clearly assume m =m' and n, = n,. So we only have to prove
mM; () = N (x) for all #¢[0, m™] and »n > n, to complete our proot
of (1).

Suppose n > ngand w [0, m™]. If w¢[0, Yy, o], then N (1) = m~ M} (2)
If we[Ym n, m™"], then N¥(2) = N, (2) < th‘( ). Hence for all z«[0,m™*]
and for all » > n,, we have sz“'(m) < mMF (z).

- This completes the proof of (1) with I = m, K = m™", and a = m™>

We now infroduce some concepts which will be studied in greater
detail in Sections 3 and 4.

DeFINITION. Let M be an Orliez function. If M'(0) = 0, then I
is said to be an M-function.

Ni(w) =

If M is an M-function; then we can define the Young complemen-

tary Mfunction M* of M, where (M") ()
M*(y) =

= gup{s: M'(s) <t} and
f M*' (f)ai. Recall that for Orlicz sequence spaces, wo have

(enr)* = ZM», We want to prove a corresponding result for modular
sequence spaces. But in order to do that, the sequenee must be a soquence
of M-functions. So we need our next proposition. Beforo stating that
proposition, we need two more definitions.

DeFnrrioN. A sequence of Orlicz functions {M,} is said to satisty
the uniform A, condition if there exist p = 1 and n, such that for all €(0,1)
and n > ny, we have aM,(2)/M,(z) < p.

It is said to satisty the umfwm A condition if there exist g > 1and n,
such that for all we(0, 1) and # > ny, we have s M, ()] M, (%) = g.
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PROVOSITION 2.5, Hvery sequence {M,} of Orlice functions is equivalens
to a sequence {N,} of M-functions. Moveover, if {M,} satisfies the uniform A,
condition (resp. the uniform Ay condition), then so does {N,}.

Proof. Let {w,}el{M,}, #,>0 and 3 M,(z,) <1 Then #,<1
for all n. Put p,, == 2, M, (%,)| M, (z,). First agsume p,, > 1 for all n. Deﬁno

4 an('/”n)/’rn )
M (w),

Cloarly, N, is an M-functions and {M,}, {V,} are almost equal.
Suppose {Mn} gatisfios the uniform A, condition. Then there exist p, 7,
such that @M, ()| M,(») = p for all (0, 1) and n > n;. So p, < p for all

2e[0, @,],

V() = l

0 > Dy

n > Ny,
o, (a) ‘“ﬂ’! o e
e = 1
N (@) W’ Z Ty

Hence {N,} satisfies the uniform A, condition. The uniform A} case is
gimilai.

‘We now consider the case where we cannot have p, > 1 for all n.
So suppose oMy (%)[ M, (») =1 for all w0, x,]. Let B be the set of all
guch n’s. For nel], define

M, (w,)®
ik Zmn-—wnM T)ﬂ ! @el0, oal,
(@) = My(2)— 3, ( .
T1—31M,(= ’ =

Define M to be M, for n¢H. Then {M *’f} ig a sequence of Orlicz functions.
Let 'ndf’ It is not hard to show that |2, (w — M (0)| € M,(2,)
for all we[0, 1] 8o sup | M, (@) — M3 (@) < 3 My(w,) < oo and {M,},

Z‘u,

{M¥} are equivalent. Also,

(M) (@)
M ()

a M () (L~ M, (0,))
M, () — M, (,) ’
~M,(,) > 1. This reduces back to thoe

[]'1 #¢(0, @),

welwy,, 1],

So mw,(”‘If:lib)’(mn)/‘Mﬂbl‘(‘l'ln) =

firgt case. .
Suppose {I,} satisfies the uniform A, condition. Let p, ny be as in

the definition. For n > n,, nell and welw,, 1],

o) () wdly(@) M)t 3Ma(@))  pIa(@) (L 3M0@) )
_—M-{nl‘(w) o _]v[n (w) _Zlfn(w) o %".Zl[n (wn) 2 _M-n ($n) - %lu.n(wn)
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Ro {M¥} satisties the uniform A, condition. Note that {H,} cannot satisty
the uniform A; condition if B is infinite.

Tt M, is strictly increasing and continuous, then (M) = (M)~
This simplifies computations a lot. Hence the following proposition is
quite useful for Section 4.

PrOPOSITION 2.6. Let {M,} be a sequence of M-functions satisfying
the uniform A, contition. Then {M,} is equivalent to a sequence {N,} of
M-functions satisfying the uniform A, condition, and N, s continuous
and strictly increasing for all n. Moreover, if {M,} satisfies the uniform Ay
condition, so does {N,}.

Proof Let p,nm, be such that oM, (w)/ (@) <p for all we(0,1)
and n > n,. Define

(3L, (0) ft) @5

of(Mn(t) ft)ds
Clearly, N, is an Orlicz function, with N, (1) = 1. As M, () > M, (x)/z,
lim M, (z)/s = 0. So ¥,(0) = 0 and N, is an M-function.
20
Since 1 < t.M,,(t)/ M, (¢ )<p for all » > n, and t¢(0, 1), we have:
M, BE< 1) < pM, (1)1,

o
= 8]

Therefore

(3L, (1) 1) At < M, (%) <pf(lVI ft)dt.

°%s

Thus we have
- Nu@)fp < M, (2) < pN,(2)
for all #¢[0, 1] and # > n,. So {M,}, {N,} are equivalent.
For x¢(0,1) and n > n,, it is easy to see that o, (@)/N,(»)< p.
So {&,} satisfies the uniform A, condition.

N;,(w) =" Mn(w)/w .
hf (B,,(2) ft) e

Hence N, is continuous. As I, is an M-function, M,(x)/» is strictly
increasing. So N, is strictly increasing.

Pinally, suppose {N,} satisfies the uniform Ay condition. Then
there exist ¢ > 1 and n, such that x M’ w(@) [ M, (%) = q for all z¢(0, 1) and
% > . Ib 18 easy to show that o, () /N, () = qfor all 2¢(0, 1) and n > ny.
Hence {N,} satisfies the um.form A condlmon

3. The uniform A, condition. The uniform A, condition has been
introduced in Section 2. We are going to study its consequences in some
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detail: The A, condition (for small x) for an Orlicz function M iy usually
defined as follows: For all w > 1, there exist K(w)z1 and a(w)>0
guch that M(wx) < K(o)M(2) for all 2¢[0, a(w)]. We now show that
we have a corresponding definition for the uniform A, condition.

ProrosrrioN 3.1, Let {M,} be a sequence of Orlicz funclions.

Then the following are equivalent:

(a) {M,} satisfies the uniform A, condition.

(b) For all o > 1, there ewist a(w) > 0, K(w) 2 L and ny independent
of o, such that

(1) M, (cw) < K (o) M, (x) for all wel0, alm)] and n> ng,

(if) hma(w) > 1,

w~*L
K(w)—1
(i) Tom @7t
W=l -1

Proof. (a)=(b). Suppose there exist p = 1 and n, such that
e M, (x)) M, (@) <p forallwe(0,1)andn > ng.

Tirst consider 1 < o < wy < pf(p —1). Define K (w) = of(p—op--w) and
a(w) =o' Ay o< p/p=1)p—op+o>0.
Tiet n > ny and 2<[0, a(w)]. Then oo < 1. By the Mean Value Theorem
for convex funetions, there exists f,e(z, wz) = (0,1) such that
J!f L M - P M, (8 . pM,(wz)
n(l ) ( ) < 'Mn(ﬁn) < Py Py < A0 .

00— Bn = w®

Hence (p — wp -+ o) M, (0) < oM, (%) and we have M, (ow) < K (o) M, (@ )-

Consider now o > ;. There exists a smallest meZ* such that o™ = w.
Detine K (w) = K(wyy™ and a(o) = alo)o;™ Then for all 4> i
and @e[0, a(m)],

M, (o) =2 Ji‘f“(m?.’l) & I (o) M, (0 )
< K (o) My () = K () M, ().
Tinally, it iy clear that a(m), K(w) satisty (ii), (ii) respectively.
(b)=> (), Suppose 2e(0,1). Beacauso ii:iﬁ(]\f (w)wl)/(u) 1) << oo,
w1

wo have p and m, == 1 such that (K (o) —1)/(0—1) :5 p Lo all we(l, ®p)-
Also, lim a(w)iz 1 implies that there is gome © (1, wy) such that & < a(w),

Wl
Then for n =y,
J! . . o
o, (w) . 4 ,"_’_%'\ {‘:ﬁf‘f 1 ~ .
STu—1

ML) T M, ()

So M, satisties the unitorm A, condition.
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ProPOSITION 3.2. Suppose {M,} satisfies the uniform A, condition
(resp. the wniform A; condition). Then there ewists p (vesp. q > 1) and n,
such that M, (x) > ¥ (resp. M, (w) < %) for all x<[0,1] and n > n,.

Proof. Suppose v M, ()M, (x) < p for mll we(O 1) and n > 7y. Then

i, (1) M, (5) < pft for all te(0,1). Hence an fp/tdt for
all we[0, 1], i.e. log M, (x) = plogw, ie. M ( ) = o for all .’,UE[O 1]. The
other case is similar.

CoROLLARY 3.3. Suppose {M,} satisfies the wuniform A, condition.
Then 3 M, (lw,]) < oo implies limm, =

PrOPOSITION 3.4. Suppose {M,} is o sequence of Orlicz funciions
satisfying the following condition:

There emist p, ny and ae(0, 1) such that
(i) infM,(a)> 0,
(i) 2 M, (2) /M, (=) < p for all z<[0, a] and n > n,.

Then {M,} is equivalent to o sequence {N,} satisfying the uniform A,
condition.

Proof. Let p, =a.M'( )| M, (e) and define
" M, (@) [ My(a),  wel0, al,

wn

@)

(o) =
y = a.
Then %, is an Orlicz function and {N,} satisties the uniform A, condition.

Let ¢ = inf M,(a) > 0. As p,< p for # > n,, and as a< 1, we have
6 > &M, (a) = o > 0 for alln > ng. So for n > ng and ze[0, o], we have
¢ M (0) = N, (2) > «® M, (w) and {M,}, {N,} are equivalent.

Remarks. (a) In (2), (ii) can be replaced by

(ii)" For all o > 0, there ewist a(w) >0, K(w) =1, and n, indepen-
dent of o, such that

M, (o) < K ()M, (@)
for all %[0, a(w)] and n > n,.

The proof is similar to that of Proposition 3.1.

(b) (2) is a more natural analogue to the A, condition (for smull m)
of an Orlicz function. However, if we use this more general condition as
ogr.definition of the uniform A, condition, we would encounter technical
difficulties when considering duals. In particular, (3), (i) is hard to verify
for the complementary functions {M}}.

We are now ready to prove the main result of this paper.

TamorEM 3.5. Let {IM,} be a sequence of Orlicz fumctions. Then the
Sfollowing are equivalent:

On modular sequence spaces 281

a) {M,} is almost equal to a sequence {N,} satisfying condition (2)
m onpomwn 3.4.
b) {M,} is equwalsm to a sequence {N,} satisfying the uniform A,
condmon
(e) T{M,} == c{M,}.
(a) \w]'[ﬂ(lmn < oo for all {’l")t}‘:l{lwn}
(e) The unit vectors form an wnconditional basis of T{M,}.
(&) 1{M,} has an (unconditional) basis.
(g) 1{M,} is separable.
(h) T{M,} has no subspace isomorphic to 1,
(i) o{ M} has no subspace isomorphic to cq.
Proof. (a)=(b) is Proposition 3.4, (¢)«-(d)<(e) is Liemma 2.2, and
(e) = (f) = (g) = (h) arc trivial
(b) =(¢). Weo first show that o{N,} = I{N,}. Suppose {w,}el{N,}.
Then there exists ¢ > 0 such that > N, (|, /t) < oo, Let s > 0 be arbitrary.
If s ¢, then clearly 3 N, (lo,!/s) < co. If s<t, then /s > 1. By Propo-
sition 3.1, we have ny, a(t / ) and K (¢/s) such that N, (tz/s) < K (4/s) N, ()
for all .’reLO a(t/s)] and n > n,. By Corollary 3.3, lim|2,|/t = 0. So there
existy n, such thatla, |/s < a(tfs) for all n > n,. Let n, = max{n,, n,}. Then

S Snf5h ) 5 e

) n:-l n=tg- 1

Henee {w,}ec{N,} and c¢{¥,} =1{N,}

Since {M,}, {N,} are equivalent, ¢{M,} == ¢{N,}. So ¢{M,} = c{N,}
= Z{Nn} == Z{A’[n}

(eye=(i) follows from the fact that the unit vector basis in ¢{M,}
is boundedly complete iff 1{M,} = ¢{M,}. So the equivalence follows
from James’ Theorem.

(W)= (). Tor cach m, ne”, define

By o NUD{wel0, 27 w My () 2r 2M, ()}

Boeeauno M, is continuous and M, is increaring, woe have

'ﬂl " LIIN(J/M ’I‘l«) Amun(wm 'It)

Uluim. There existy some meZ" gueh that )_}]lf,,(:x#,,,,,,L) < oo, Other-
el
wise, by indnetion, wo ean choose a sequence of positive integers py,
<Py< v < Py < ... sach thatb

Pypfel
\ 1 o YN
B ’ e L
2 me N () 27
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This follows from M, (2, ,) < By, < 277 and 21 M, (@) = oo forall m.
Noto that @y ndh(@nn) > 2" M (0n,) implics

M, (20,,0) = 2" M, (%,,,) -
For if @, = 0, there is nothing to prove. If 2, , > 0, then

-ZI[n( m, n) ~ ]'1-1:,(2”‘171,1» Mn(mm . Lin,n ~ ]l[' (wm,n)’rm,'n . &m

M, () T Mo(nn) = Mo(,)
P41
Now pub w, = Y @u.6,, Where {e,} are the unit vectors.
=D+l
Define T: l,—1{M,} 'b}”rl T({apn}) = Dany. T is well defined because

o . Pms1

NE {1 2“ o
< - Py < 27" =
53 ) $1 S < Saem
m=1 n=Dp,+1 Mm=1 N==Pyy+1 m=1
So T({out)el{M,}, and |T{a,} < 2|{ax}l. L' is clearly linear, bounded
and injective. It remains to prove that 7" ig bounded. Suppose |7 ({a 1)
= 1. Claim: |a,| < 2 for all m. Otherwise, we have |ay > 2 for some F.

Then

w  Pmil Diet1
D Myllanlon) = D My(laloy,)
m=1 fn=Dy,+1 n=pp+1
P41 1’71,—;-71
> D Moz Y 2 M (m,) > 1
n=pp+1 n=pp+1

Hence [1'({ay})ll> 1, a contradiction. 8o | 77| < 2. This implies 1{3,}
contains a subspace isomorphic to I, Which is impossible.

So there exists some m such that 2 M () < 00, TAKO Y>> by
such that M, (y,) = M, (#,,,)+2"" Def.me
N, (@) = "1(11,(,%)7 2 Yo,
Mo (Yn) Yy < Yy
Clearly {N,} is a sequence of Orlicz functions almost equal to {M,} and
satisfying aiN,(#)/¥,(2) < 2™ for all n and we[0, 2“'”1 Morcover,
inf 24,(27™) > 0. Otherwise we have {M, . such that 2 M, (27™) < oo,

and by Lemma 2.3, 1{M,} contains I, conmadmtlng (h) TIence {N,}
satisfies (2), and (a) is proved.
The next theorem is essentially Lemma 3.6. of [3].
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TamoreM 3.6. Suppose {M,} satisfies the uniform A, condition. Then
{M,} contains a complemented subspace isomorphic to 1, for some Orlice
Sfunction M.

Proof. Let ng and p be such that o.M, (@)/ M, (x) < p for all (0, 1)
and n > .

Claim. {M,} is uniformly equicontinuous on [0, 1]. For let @, y [0, 1]
Then there exists o, between » and y such that

| Mo (@) ~ Mo ()] < My () [0 —y| < pﬂ{%ﬂﬁ le—yl < plo—yl.
n
So {M,} is uniformly equicontinuous on [0, 1].
M, (1) =1 for all » implies {M,} is uniformly bounded on [0, 1].
So by eompactness in C[0, 1], there exists a subsequence {M,} of {M,}
converging to a convex funetion M on [0, 1]. We can seleet the subsequence
such that

sl
D sup{| M, (2) — M ()]: @e[0,1]} < oo.
=l
It is easy to see that M is an Orlicz function satistying the A, condition,
and the subspace generated by {e,} is isomorphic to I;. Because {e,}
is unconditional, this subspace is complemented in 1{M,}.
COROLLARY 3.7. Bvery modular sequence space coniains a subspace
isomorphic to 1, for some p =1
Proof. If {M,} is not equivalent to any {N,} that satisfies the uniform
A, condition, 1{M,} contains I, by Theorem 3.5 and o contains every
Iy, pell, oo).
Otherwise, by Theorem 3.6, 1{M,} contains I for some M, which
by [4] contains I, for some p e[1, co).
DeFINITION, A basis is called a modular basis if it is equivalent to
the unit vector basis of some modular sequence space.
It iy oasy to see that overy normalized block basis of a modular
basis iy a modular basis.
TinoriM 3.8, Suppose {M,} satisfios the uniform A, condition.
Then every subspace of 1{8,} contains 1, for some pe[l, o).
Proof. Let X be a subspace of 1{M,}. By 02 of [1], X containg
a basic sequence equivalent to a normalized block basis of the unit vector
basis of 1{,}. By our remarks above, X contains a modular sequence
space. So by Corollary 3.7, X contains 1, for some pe[l, oo).
Finally, Corollaries 3.9 and 3.10 of [3] can be reformulated as the
following propositions:
Prorosreron 8.9, 1{M,} is isomorphic to a separable Orlicz sequence
space iff it has a symmetric basis.
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PROPOSITION 3.10. Lat X be a subspace of a separable modular se-
quence space. Suppose X has an unconditional basis. Then X contains a com-
plemented subspace isomorphic to some Orlice sequence space.

4. Duals and reflexivity. The complementary M-function of an
M-function has been introduced in Seetion 2. By Proposition 2.5, every
sequence {M,} of Orlicz functions is equivalent to a sequence of M-func-
tions. So we can restrict ourselves to M-functions throughout this section.
We are now going to prove I{M} o2 M, }" if {M,} satisties the uniform
A, condition.

Note that in general M) (1) # 1, which iy rather inconvenient.

We first renorm 1{}, }as follows. Liet ¥ {M,} be {{w,}: > 10,9, < oo
for all {y,} such that > Mu(ly,)) < 1}. Define |{|{m,}||| to be sup{ Syl
ST ME([y,l) < 11.°Tb is not hard to show that (1% {M,}, [I|-]|]) is & Banach
space. The following proposition is very easy to prove, using Young’s
Toequality. :

PROPOSITION 4.1. (a) For oll {w,}<I*{M,}, 3 @9nl < I{ma}lil of
DM (lyal) < 1.

(b) For all {m,} ¥ {M,}, 31l < 1o} 11| S (19al) 4 3 (1yl) > 1.

(¢) For all {&,}el*{IM,},

YM*( w1zl /11w 1D) < 1 and %:Mn(lmn]/l”{mi}m) <1

(4) Z{Mn} =T {0} and I{o,)l} < ||{m 1] < 2 [{m,}] for oll {m,} L { M}

THEOREM 4.2. o{Mn} o~ U{M}}. Hence if {IM,} satisfies the uniform A,
condition, M} o T{M}}.

Proof. Suppose {y,}<l{M}. Define T{y,}: ¢{M,}—>R by T{y,} {2}
= 2%, Yy- By Proposition 4.1 (a), 3 (@, yul < [{@a | 1{¥n}ll. Hence T'{y,}
is well defined, and |7 {y,}| < [{yuHl- So T{y,}ec{IL,}".

We thus bave a linear map T': [{M}-»c{M,}". It is clear that T
is 1]1]00th8 and bounded. It remains to show that 7' iy surjective. Lot
fec{Mn} and let {e,} be the unit vector basis of ¢{M,}. Pubt y, = f(e,).

Claim. {yn}el*“{M",;} I‘orsuppose MM, (]mn]) < 1. Let o, = §<*n(fvnyn)

Then fOI‘ all k Zlmnyn] = Z Wy Ly Yy, = anmn% [l 1|24Lwnwnen||
M= Nm
l!fllllle el < Hfll |Iywn0wl AB kis mbl’rr&ry,
=

2 120yl < 17 @ -

n=1
S0 1@, Y.l < Ifil for all {w,} such that > M, (lw,) < 1. So {y,}el*{M}}
= 1{My}. As {e,} is a basis for ¢{M,},

anyn = anf(gn) :f(z ;mn@n)7

ie. f = T{y,}.

icm
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BxampLe. Consider the space X, p > 2, defined in [7]. X, can be

normed by
ot = ([ 3 a7 3 o)),

where w,—0 and > w?@* = co. Define M, (x) = max {&?, wia?}, i.e.

() wiet,  wel0, w27,
" ) w”? @ = wz"/(ﬂ-—ﬂ .

Then M, is an M-funection for every neZ*. It is not hard to see that tho
unit veetor bases in X, and [ {3} arc equivalent. We also have M,(1) = 1
and
. , 2,  we[0, wi@9)
@M, (0)] M (@) = l L ey
’ P, @w=uy .
So {M,} satisties the uniform A, condition.
For ge(1,2), X, is defined to be X5, where p'+¢7* = 1. So by
Theorem. 4.2, X, is a modular sequence space. We are now going to
compute M.

My (@) == l 2wpe,  we[0,w @),
pa?t,  wz wleY,
Hence
Y wel0, maz“g*@],
My (@) = Iw%(”'”, we[20C, pulle-07,
(@/pY"Y, oz pwE9.
Therefore
o [dw?, » <[0, 20HE-9],
Mo (@) lwﬁ{(”“‘”w\—« w0 e [P0 pulC-a]
o (gp"™"), @ 2 puil¢=9,

My (1) 38 a constant independent of #. So all the theorems in Section 8 hold
for {My}

@M () 2 [0, 2uf/¢-9)
M s [L—= (w0 ® D) |71 me[20)/C9, puw/E=9)
Ak n( ) q- 2 > pwz/(z*"ﬂ)

Thercfore w. M ()] MY () <[q, 2] for all # > 0 and for all n, and. {M,} satis-
fiey the uniform A, condition. By Theorem 3.8, every subspace of Xy
containg I, for somo re(l, co).
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Remark. Tt is well known that every subspace of X,,p > 2, con-
tains I, or I, See, for example, Corollary 2 of [2].

We are now going to tackle the problem of My(1) # 1. We are going
to show that if {I,} satisfies the mniform A} condition, then {M}} is
equivalent to a sequence {M #1 satistying MiF(1) = 1 for all n.

ProvosiroN 4.3. Let {M,} be a sequence of M-functions satisfying
the uniform A} condition, and let

M (@) = My ()] Mu(1).

Then {M¥} and {M}} ave equivalent, and M (1) =1 for all neZt.
Proof. It is enough to show that inf M%(1) > 0, since My(1)<1
for all neZ™. Suppose ¢>1 and n, are such that w M, (@) | M, (%) = q
for all z¢(0,1) and n > n,.
Olaim. ME(1) > ¢ Ve-0—g=9@1, Ror suppose @, = M (1). Then
by Young’s Inequality,

By convexity, y = M,(») would lie above the line y = @0 2+ M, (@)
= @— M} (1). By Proposition 3.2, M,(#) <2 for all n > n,y. S0y =a—
— My (1) can at best be tangent to y = 2% So y = o —ME(1) lies below
y =x— g YD 4 g=90-1 apd we have the necessary inequality.

TrmoreM 4.4. 1{M,} is reflexive iff {M,} is equivalent to a sequence
{N,} that satisfies the uniform A, and Ay conditions.

Proof. <. By Proposition 2.5 and 2.6, we can assume {N,} to be
a sequence of M-funetions, and N, is continuous and strictly increasing.
Ag {¥,) satisties the uniform A, condition, 1{N,}* = 1{¥,}. By Propo-
sition 4.3, [{N%} ~ I{V#}. We are going to show that {N#} satisties the
uniform. A, condition. Then I{NF}* ~ I{NF¥*} = I{N,}. By the way the
isomorphisms are defined, we have 1{¥,} = I{¥,}* under the canonical
injection. ‘

Let g > 1 and n, be such that aN,(z)/N, () = ¢ for all x¢(0, 1) and
n > mny. N, is strietly increasing and continuous. So for all ye(0, 1), there
exists , such that N, (z,) = y. Because N, (1) = 1, ,¢(0, 1). Mence for
all n > ny, .

9 @) _ NNy (Na(@a) _ 2. (w)
N (y) No(Nolwa)) @ () — N, ()
Y 1 g
 Nm) 1 g1
@0 N () T g

So {N}} satisfies the uniform A, condition.

icm
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=. By Theorem 3.5, {M,} is equivalent to a sequence {N,} that
safisties the uniform A, condition, otherwise I{M,} = I,. By Propo-
gitions 2.5 and 2.6, we can assume N, is an M-function, and N, contin-
uwous and strictly increasing. .

Claim: inf Ny (L) > 0. For let N, (®,) = 1. Then as in Proposition 4.3,

w3z N,(%) = e—-Nn(l) for all we[0,1].
Thus if inf N (1) = 0, N, () converges to & uniformly on [0, 1] as # tends
to oo, and I{N,} contains I, which is impossible by reflexivity.

We can now define N¥(w) = Nj(x)/Nn(l) as in Proposition 4.3.
If {N#} satisties the uniform A, condition, then computing as in the
proof of “< ?, we can easily show that {¥,} satisties the uniform Aj; con-
dition, and we are through. .

It {N3¥} does not satisty the uniform A, condition, then by Theorem
3.5 (a), {IVF} is almost equal to {P,}, which satisfies the following:

~ There exist § > 0, ny, ¢ such that

(i) inf P,(8)> 0, and

(i) yPn(y)[Puly) < g for all ye(0, f] and n > n,.

We now use {P,} to construet-{R,} equivalent to {¥,} and satisfying the
uniform A, and A; conditions.

Let B, = 0 be such that Ni¥(y) = P,(y) for all y > 8, and such that
SN (B,) < oo. Wo are going to construct a, = 0 such that 3N, (a,) < oo,
and then we shall define @, () = N, () for all #3> o,. Because N, is
strictly increasing and continuous, there exists e, > 0 such that N, (a,)
= f,. If n iy large enough, 8, < B. So for n sufficiently large, we have

-N-;ﬁ:l '3
P (B _ BPolf)
TEGD | Pulf)

Hence
by = BuVi (Ba) Na(L) < gV (Bu) N (L) < aNF (Ba)-
Therefore 3 a,B, < co. Sinee N,(a,) < apfny 2 Nulas) < oo
Put a =indN¥(8). Olaim: a>0. For Ny'(f) = N¥(B)Nu(1)
> NFE VAL = Po(B) V(L) > hP, (B)int N(1)/f > 0. As XN, (a)
< oo, there exists ny, > n, such that » > n, implies a, < a. 8o for # > ny,
wela,, ] implios N;,(@)e[f,, f1 by continuity of N,. Thiy shows that

@V, (@) q
= r— .
| W@ > g-1
Now define {@,} by
N (w), 0> Ony

Qn(m) =

Np(om) (“z—)an wel0, a,].

8 — Stvidia Matharmsadineg 40 2
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where g, = a, Ni(ay) /N, (a,). Clearly {@,} is a sequence of M- functions
almost equal to {¥,}. Because {N,} satisties the uniform A, condition,
{g,} is bounded. So {@,} satisfies the uniform A, condition. For n > n,
and z¢(0, a,

Q“(«’IJ) - Q—-l ' !

since g, > ¢/(g—1) > 1.

Finally, we use the construction in Proposition 3.4 to construct {Rn}
equivalent to {Q“}, and it is easy to see that {B,} satisties both the uni-
form A, and Aj conditions.

Remark. As we remarked in the prooi of Theorem 3.5 (i), the unit
vector basis in1{M,}is boundedly complete iff { M} satisfies the uniform A,
condition. So 1{,} is reflexive iff it does not contain .

We now generalize Lemma 3.1 and Proposition 3.2 of [3] to modu-
lar sequence spaces. As the proofs are practically the same, they will
not be given.

LemvA 4.5. Let L{M,} be a separable modular sequence space. Let {By}
be a seminormalized block basic sequence of the unit vector basis {e,}. Also
suppose ' '

ol (@) _
M) = °

P>

for all xe(0,1) and n > ne. Then D|a? < oo if 3 B, converges, and
DBy, converges if 3 la|? < oo,
THEOREM 4.6. Suppose {M,} and {N,} are sequences of Orlicz functions
satisfying
2 My, (2) oV, (2)
Pl A AN >l
P = Mo (@)~ dv P22 No@) )

for all n > my and ze(0, 1). If g, > p,, then 1{M,} and 1{N,} have no common
infinite dimensional subspace.
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