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¢ —a does not belong to I. Since, by Lemma 3 of [3] any I-ideal is con-
tained in an !-maximal ideal, it is sufficient to prove that there is an
I-ideal J which properly contains I..

Let Fy, F, be finite subsets of I and ¥, o F,. It is easy to see tham

Z(Xy, a) C:Z(-Pz’a)’

where the set Z (I, a) is given by formula (19). Hence for any finite family
{Fy,..., F,} of finite subsets of I

Z(F,a)N...0Z(F,,a) > Z(F,V...UF,,a).

This means that the family of all subsets Z (Tf’ o), where I is any flnlte
subset of I has the finite intersection property, Any F in I consigts of
joint topological divisors of zero. Hence by Lemma 4 any Z(F,a) is

a non-void compact set. Thus the family has a non-void intersection. Let
2o belong to the intersection. We notice, that the set I U{1y¢ —a} consists
of joint topological divisors of zero. By Lemmas 1 and 2 in [3], which
jointly state that any subset of A consisting of joint topological divisors
of zero ig contained in an ?!-ideal, there is an I-ideal J which contains I
and Ay¢ — a. The inclusion is proper, because Ao¢ —a does not belong to I.

So we have obtained a contradlctlon of the assumption that I is a I-
maximal ideal.

Remark. Since every maximal ideal is a prime ideal, Proposition 2
in [3], which states that every Z-maximal ideal is a prime ideal, follows
immediately from the Theorem.

‘CoROLLARY. If f is a fundtional in £(4) and B 8 am emtension of A,
then f extends to o member F of £(B).

-Proof. Since any I-ideal in 4 is contained in an I-ideal of B (Propo-
sition 1 of [3]), the kernel of f is contained in an #-ideal of B. By the Theo-
rem, the ideal is contained in an ideal in #£(B). The multiplicative-linear

functional ' in M(B) coresponding to thiy ideal extends f and belongs
to £(B).
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Separability of orbits
of functions on locally compact groups*

by
H. PORTA (Urbana, Il.), L. A. RUBEL (Urbana, Ii.)
and A. L, SHIBELD S (Ann Arbor, Mich,)

Absteact. Let G be a locally compact group. Fivst, if fe L (6) has a separable
orbit under loft translation by elements of &, then f is locally a.o. equal to a bounded and
upiformly continuous function on ¢. Secondly, if fe Ljoo(G) has a separablo orbits
then f is locally a.c. equal to a continuous function on ¢.

1. Notatxon. Let G be a locally compact group, dv a left invariant
Haar measure { flem)dw = j f(@)dw), We do not assume that G is com.-

pact or Abeha.n or separa.ble For se@ 'md f a function on @, the left
translate of f by s is the function (y(s)f) (w) = f(s7'w). We alslo ‘write
f, = y(8)f. For p a measure on ¢, define (,u*f m) dff(s‘ ) du(s)

whenever this makes sense. In particular, for two complex»va,lued func-
tions f and g on G we have (g*f) (#) = ff(s"lm)g(s)da, which exists when.

fls7rm)g(8)e I}’L Algo, if ¢, denotes the 11n113 mafs at we G, then (s, F) (@)
= (p(w)f) (@); ie. exf =yp(w)f. Clearly, then, y(u)(fxg) = (y(w)f)*g
whenever both members make sense.

The space I(@) is the usual space of classes of bounded measurable
functions. The space L2, (6) is the space of clagses of measurable functions
on '@ that are bounded on compact subsets of ¢ Two functions belong
to the same equivalence clags if they agree except at most on a set that
intersects every compact set in & set of zero meagure. The topology of
L (@) is given by the seminorms

Iflx = esssup{|f(@)|: @e X}

a5 K runs over the compact subsets of ¢. We use the phrase “locally a.e.”
to mean “almost everywhere on each compact subset of 6. By ¢ o (@)
we mean the class of functions that are bounded and uniformly conti-
nuous on. G.

2. Statements of results. Our fivst result is related to known results,
but does not appear to be explicity stated in the literature. It was establi-
shed independently for the cirele group by - T. Kaczyndski (unpubli-

* The regearch of thoe authors was partislly supported by different grents from
the National Seience Foundation.
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shed). A closely related result was proved by R. E. Edwards in ([8], Corol-
lary 1, p. 405) for the case R™ and it seems likely that his methods would
work in the general case. There is other closely related work on pp. 312—
313 of the paper [1] by Dunkl and Ramirez.

THEOREM 1. Suppose that G is a locally compact group and that fe L*(G)
is such that the set of left translates of f is separable as o subset of L™ (@).
Then there is a bounded and uniformly continuwous function T on G such
that f = F locally a.e.

COROLLARY 1. Hach separable closed subset of L (@) that is invariant
under left tramslation is contained in Cpy(G).

Thig is equivalent to the following statement, which is reminiscent
of Theorem 3 of [5].

COROLLARY 2. If B is a separable subspace of L™ (@) that is imvariant
under left tramslation and that comtains Opy (@), then B = Opy(@).

OOROLLARY 3. On the circle group, if B is a separable subspace of H™
that 18 rotation imvariant and that contains the disc algebra A, then B = A.
Here, A is the uniform closure on the circle of the algebraic polynomials.

THEOREM 2. Suppose that & is a locally compact group and that fe L, (@)
is such that the set of left tramslates of f is separable as & subset of Lo (@).
Then there is a continuous function T on G such that f = I locally a.e.

Notice that the example ¢ = R and f(») = ¢” shows that there is no

hope of concluding from the hypotheses of the theorem either that f is
bounded or uniformly continuous.

COROLLARY. Let T be a separable Banach space on which G acts, and
let T: B — Li5,(G) be a bounded linear transformation that commutes with
the action of G. Then the range of T comsisis (up to locally a.e. equivalence)
of continuous funciions.

"~ 3. Proof of Theorem 1. Our proof uses a minor modification of an
argument due to K. W. Tam [7] followed by the use of a theorem of D. A.
Bdwards [2].

LevmA. If G is a locally compact group and if ge L (@) has a countadle
set of left tramslates {g,: o< O} that is demse in the orbit of g under @, then
lim||g, — gllc = 0, where ¢ is the identity element of G.

e

In case @ is compact, this lemma follows from ([6], p. 234).
Proof. For each positive integer m, and each ¢e 0, write
8, = 'gc,m ={2e: [g:~gllo < l/m}
Then
G = U AS'c,'m'

ceC
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We prove that S, is closed. Choose ¢ §,,,, with o, —» and take fe L' (¢).
Then by, ([4], Theorem 20.4), ||f(w,s)—f(ws)|l, — 0. Hence

Tim [ £(5) s, (8)ds = lim [f(z,8)g(s)ds = [ £(5)g,(s)ds.

Hence
| [£(6) {00() ~ go()}ds | =1im.| [ £(5) {0, (8) = o(s)} ds
< I bimsup g, — ol < — Il

80 that ||gs— folleo < L/m, and hence 8, is closed.
By the Baire category theorem for locally compact groups ([4], p. 456),
there is a o, such that

Sm = {56‘: Hgm“"yamnao = 1/m}
has non-empty interior. So there is a neighborhood U, of ¢ such that for
gome @y, € Sy, we have , U, S 8y, Now for se Uy,
lge — gl = ”gaw,,n""gmm” < “gsmm“gcmn + ”gcm_gwm” < 2/m.
Hence lim ||g,—¢lle == 0 and the result is proved.
8-

The proof of the theorem is concluded by a direct application of 1.;he
main result of [2], where the author states and proves it for Abel%an
groups, but says correctly afterwards that it works as well for non-Abelian

groups.
4. Proof of Theorem 2. Agsume first that & is o-compact, ie.,
G = lj K, where each K, is compact. Let {y(s,)f},n» =1,2,..., be
1

dens: ;n {y(8)f}oee Tor the L3, topology. Consider, for each neighborhood U
of the identity 6 of @, & function &, (#) with the properties that dy > 0, dy
is continuous, the support of dy is contained in U, J Oy (@)dw =1, and

by (@) = 8y (). Agsume now that U is a compact symmetric neighborhood
of ¢ and that K is a compact subset of G. Then

[15% 8(@) ~f(@)lda = [| [ {f(s)=F(@)} do(s™ a)ds |dw
X

WK 4R

< f(8) ~—F ()] By (8™ ) dls v
wt‘IfC B(]JI‘T U(S) v

= [ [1f()=f @) dy(sa)dads
S KU mk

< [ [ 1) =f(sa)| dp(w)dods

2 KU aUK~1EK

= [ [ If(e)=Ff(s0)|ds by (w) do.

2UE~1E sekU
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Let
p(@) = [ If(s)—fls)|ds.
e KU
Then we ha,ye

z-f If*dp(@) ~fla)ldo< [ (@) dy(w)dw

T UK ~1K
< sup{p(@): we (VK K)NU} = sup{y(@): we U}.
Let g = fly, where W = KUU, so that ge¢ L'(G). Then

v = [ lgo)=glea)lds < [lg(s)~gsu)]ds.
8K U &

Now by ([4], Theorem 20.4), v is continuous, and of m
It .follows that - ’ ’ of comse vl =0

%85 —Flag =0

as U shrinks to {¢}. Thig is true for each compact K, and therefore there
is a sequence 0, =4y , with U2 Uy2 Uy 2... and all U, compact,

such that |[f*6,—fllryg,y — 0 a8 % — co for each m. Since @ = |J K,,,
£ . ‘ . - mml
oc;f 2 further subsequence denoted again by {;%} we have fx4, —f a.e.
A second subsequence, again demoted by {d,} will sati

s satisty y(s,)f*0
»yésm_) f hazh 117n(%e12e11)dent1?7 of m, and in pargicula‘r there are ﬂ;)oin‘v;
@oe @ sucl at (p(8m)f*8,) (1) = (p(s ) 28 - '
Now for ?Jn_a];biﬁramy".ge ¢ n) o ()’( m)f) (wo) % ~» oo, for each m.

by (510 %0, @) — (51 % 8 (0] < [y (51— (85)) % 8, (00)| +
o +|y<s,i>f*.«s,,(wo>fy(sj)f*am(wo)|+|(y<s>fmy<s,>f)*am(wo)w.
(6= s05)% 00 @0| < [ 11p(6)F —{85) 1 (5~ 8y () s
<y ()F = v (8)fllzeogery »

Wo bave [y (s)f* dy(@0) —p()f% (@) =0 |
i 0 i o as m, n —> oo, Therefore we
can define. F pointwise as the limit of fx 8, (s), ainee, Jr8,(8) == 0, (805" w,)

= y(wy8™") % d,(w,) converges for all se'@. Si f
conclude 1sha.tr;r =F a.e, on G. et A

g O 29T PO )=y ()T (0)] =1 by (617 8,(0) (0, )]
Iy ()f# 80(@) —y O * 8u(@)l < [ 10y () — » ()] ()] 8, (u~") du
. é }

Sy Of =y OF lzowo,y < Iy (6)F —» ) fllzo@rry »
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whence
I (8) F (@) —y () F (@)] < Iy (8)f — 9 O)f lmoerry

for each z}veG‘, se@ te @. It follows that
sup Iy (8) 7 (@) — y () P (@) < [y ()] =7 () ooy

for each compact K in G. If ¢ is replaced by sy, with y () > (&S

in IS, (6, it follows that y(s,,) I converges uniformly to y(s).' on each

compact subset of & Howover () ' = lim 7 (Bm)f* 8y overywhere,
200

5o that because F* 6, is continuous, we know that y(s,,)F i continuous
off a get of first category. By the Baire category theorem for locally com-
pact groups, there is some #« G at which the y (s, I') ave all continuous.
Therefore y(s)F as the uniform limit of 7 ($m,) ' o each compact neigh-
Porhood of 2, must also be continuous atb z,. Thus I i continuous every-
where. o

We turn now to the general case, assuming that & i3 an arbitrary
locally compact group. Consider an eloment ae @ and an open, relatively
compact symmetric neighborhood U of ¢. Liet H be the subgroup generated
by U, o, 81, 83, ..+ Lt is cloar thai I coincides with the union of all possible
finite products of sets of the form U, oT, Ua~t, s,U, Us;}, which are
all relatively compact. Thus H is o-compact.

Since U < H, H is also an open and hence cloged subgroup of G,
and therefore a o-compact locally compact group. It is clear that {y(s,)fx}
n=1,2,...,is still dense in {y(8)fa}ee (where fx 18 flg) for the topology
of L%, (H) and therefore the first part appplies. This shows that fz is equiv-
alent to a continuous function Fy on H, and in particular on Uw. This
means that for each set Us there iy a continuous function I, on it such
that F, = I, almost everywhele (and hence everywhere) on intersections
Uw N Uy. Calling the global function F, it is well defined and continuous
on each Uw and therefore continuous on G. Since f = I a.e. on each Uwm,
it follows that F' = f locally a.e. and the proof is conplete.
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On a problem of moments of S. Rolewicz

by
IVAN 8INGER (Bucharest)

Abstract. We golve a problem of moments raised by 8. Rolewiez.

1. 8. Rolewicz has proved the following result, with applications
to minimum time problems of the theory of control:

TarorEM [5]. Let I, I be two Banach spaces, w a continuous linear
mapping of B into Ty and y am element of ' such that the equation u(x) = y
has @ solution. If u(8y) is closed in F, where Sy = {ze B|[x| <1} (the
unit ball of B), then
(1) inf |jo| =sup inf |

.2 ger™ well
)=y o(%(2))=o)

Tt is known (See [B], remark 1 and the references of [5]) that in the
particular cage when dimF < oo, formula (1) holds without any additional
assumption; in particular, in this case the agsumption that «(8g) is closed
in F, is superfluous. At the Conference on Functional Analysis in October
1970 at Oberwolfach, 8. Rolewicz hag raised the problem whether (1)
always holds without any additional assumption. In the present Note
we shall solve this problem by giving a necessary and sufficient condition
for the validity of (1) and an example in which this condition is not satis-
fied. Also, using our criterion, we shall show that the assumption that
w(H) is closed in F is sufficient, but not necessary, in order that we
have (1).

2. The following theorem gives a necessary and sufficient condition
for the validity of (1):

Taworem 1. Let H, I be two Banach spaces, 4 & continuous linear
mapping of H into I, and y an element of I' such that the eguatw'n wu(w) =y
has a solution, say w,. We have (1) if and only if

@) mi ol = sup |f(@)].
u(m)mz/ ’uru(-l !

Proof. If for each ge I™ we denote ‘
®) H, = (we B|(u*(g)) (@) = g(v)} = {oe Blg(u(@) = g(),
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