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A&, is complete, there ewists in B a decreasing sequence {L,}2., of closed linecar
o]

manifolds, so that L,nA #0, n =1,2, ..., and (" L, = 0.
n=1

The author is grateful to the referee for his suggestions.
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Projections in dual weakly compactly generated
Banach spaces

by
K. JOHN and V. ZIZLER (Prague)

Abstract. Modifying the ideas of D, Amir and J. Lindenstrauss in [1] and using
some methods of [6] we prove an existence theorem for projections in weakly com-
pactly generated (WCG) Banach spaces, which gives a construction of ordinal resolution
of identity in such a way that a given (not necessarily WCG) subspace is invariant
under the projections and in the dual case the projections are w* continuous, This
is applied to the existence of shrinking Markufevit bases in such spaces, to w* closed
quasicomplements and to a certain rotundity renorming theorem for these spaces,
extending [6].

1. Introduction. In papers [81, [9], [1] J. Lindenstrauss and D. Amir
and J. Lindenstrauss construct, in spaces which are weakly compactly
generated, a transfinite sequence of projections which decompose the space
very suitably, and they show how it can be used in studying the struc-
ture of such spaces. In this note we show that in some results of J. Lin-
denstrauss ([8], [9]) the assumption that the subspaces are weakly com-
pactly generated can be omitted. This requires a slightly different approach;
unlike Tindenstrauss, we construct the projections starting from finitie
dimensions, on the whole space, and they are constructed so that a given
arbitrary subspace (not explicitly supposed to be weakly compactly
generated) is invariant under them. In this connection, let us mention
that it is not known whether any closed subspace of a WCG space must
be WOG ([9], Problem 1, [10]). Moreover, combining this with an idea
from [6], we work with three norms on X instead of two as in [1], to
ensure the w* continuity of projections in the dual case. In the next part
of the paper we prove as an application the existence of some stronger
type of the Marlku¥evit basis in certain weakly compactly genetrated spaces
(Propositions B, 6), some results about w* closed quasicomplements
(Proposition 7) and a renorming theotem (Proposition 9), which extends the
results of [6].

We would like to thank the referee for making the former versions
of Proposition 7 stronger.

.


GUEST


42 K. John and V. Zizler

2. Notations and definitions. We shall deal with real Banach spaces
(in short: B-spaces). A B-space X is weakly complactly generated (WCG)
if there is a weakly compact set X < X such that X = spK — the closed
linear hull of K. For A = X, 4 (or w*cl4 if X = ¥*) denoties the norm
closure (resp. the w* closure) of 4. WOG spaces, forming a unification
of the notions of separable and reflexive spaces, include for example
6o(I") (I" — an arbitrary set); C'(X) (K — the Eberlein compact), ( ¥ @Xy)

yel

— the direct sum of WCG spaces X, in the 1,(I") sense, I' an arbitrary
set, pe(l, oo) (cf. [9]).

If ¥ <« X¥ then a seb {foteer = Y is called an X-Markulevid basis
for Y if sp{f,} = Y and there is a set {#,},.r = X such that {m)..r is
total on Y and f,(2,) = 8, 5 (the Kronecker delta). Furthermore, if ¥ < X
is a closed subspace of X, then a closed subspace Z of X will be called
a quasicomplement of ¥ in X it YnZ = {0} and Y+Z = X. For a B-spaco
X, dens X denotes the smallest cardinal number of a norm dense seb in
X. By a subspace of a linear space we mean a linear subspace.

3. Projections in dual WCG spaces.

Levna 1. Let B, F, B be finite-dimensional subspaces of & normed
linear space X such that B = E or B <= F. Then there is a bounded linear
projection P of X onto B such that PE < E and PF < F.

Proof. If B = B, let {a;} be a basis of BNF. Let us complete {a,}
by system of vectors {b;} and {¢;} so 25 to obtain the bases of B and EnF
respectively. Then the set {a,}U{b}U{ec;} is linearly independent and we
can complete it with a set {d;} to a basis of B. {a,}U{¢;} forms a basis of
EnF and we can complete it by some {e;} to basis of ¥. Then the set
{a3utufetuid;}u{e} is again linearly independent and forms a basis
of sp(HUF).

Let us define on sp(EUF) a projection P by

P(Z ai“¢+2/3ibi+2 Vzﬁi‘l‘z 5idi“|‘2 3@'61‘) = Z“i“i”f‘z Bibs.

Now we extend P to the whole of X by the Hahn-Banach theorem.
‘We proceed similarly in the case B < F.

Levma 2. Let X be o linear space with two norms |- |y, |- |, such that
[@ly < |wly (for every me X)) and let |1y be another norm defined on & subspace
N < X such that ||, < |#ly for every me N. Further, suppose that we are
given o finite-dimensional subspace B = N, m dements fy,...,fn of
(X, 110", am integer n > 0 and & subspace Y of X. Then there exists an
Ro-dimensional subspace O < X containing B such that, for every &> 0,
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every subspace Z of X with Z > B, dimZ |B = n, there is a linear operator
T: Z — O with the properties: :

TEnY)c Y, TENN)cN, [Th<l+s [Th<lte

THEANYs<1+e Tb=10b for every be B
and
1fu(8) —fulTe) < elels  for every 2eZ and & =1,2,...,m.

Proof. Lebt # be a positive integer. Choose by, ..., b,e B such that
for every be B we have: o
(i) if |b|, < 7 then there is an h (1L <7 < p) such that [b—byl, <7 : (for

a=1,23).

Consider the Euclidean space R™ with the norm |4 = > W- (zhoose
elements 2%, ..., A2 of the unit sphere 8" = {A?Rn; 1Al = 1} _1111 R" such
that for every Ae 8" there is a j,1<j<¢, with [A—4] <7

For any natural numbers a, b, ce <0, ny and any positive integer r
we define @ = 3n - 3pg--mn real-valued functions of (Byy.0ey By Byryy - -

——b— be
v 2 NnY)* NV Yo X" b=t = H"
--~5‘T’a+b:~‘a+b+17---:"”a+b+c7-"'7 '11)6( ) s

as follows: |@lay |25, [a+ > ’H:‘”AM (b2 + ZX MIzls, fale) (A<i<m,
P i=

1<a<21<h<p,1<j< 1< k< m). Here the function J 01% X
is defined by J# = x for all #e N and Jo = 0 for ¢ N. T.hese. fune(,:mons
may be regarded as a function ¢ from H¢into R®. Taking in R* tthe
metric ¢ of maximal coordinate distance, we choose a_sequence {r!a(m ey
of = (at, ..., 2h)c H*%, which is ¢-dense in @ (H®°). This Stequenc?miﬁ con:
structed for fixed 7, , b, c. Thus we have a sequence jicbz = {%} for
each 7, @, b, ¢. Let C be the subspace spanned by B and {77 %%, i=1,...,m,
tr=1,2,.. and @b ¢c=0,1,...,7 : B

Now let ¢> 0 and Z c X, with Z > B, dim Z/B = n be given.

Choose, aceording to Lemma 1, a |-|-bounded proj.ection P of X onto
B such that P(ZnN) < N and P(ZnY) = Y. Then P is also l-lz-bm}nded
and P/E is |-;~bounded. Let K be such that |P]11\< K, |Pl,< XK and
|P/E}, < K. Choose M > 1 such that M>6(14+-K)s

In (I —P)Z choose the basis 2, ..., &, such that

(G) {21y ..., 2.} i & basis in (I —P)ZNNNY,

) 1 is a basis in (I —P)ZNN,
(J]]) {zla ceos Ry Fgpbals oo za,+b+c} is a basis in (I—P)ZQY‘ ‘
We have (21, ..., zn)e (NOY)*x NP x ¥*x X"970~¢ = H™. Further

{
11y vovs b

n a+l
we may supposc that | ¥ Aezile = 14| and \Z; izily = 1y -y Aol
i=1 =
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for a =1, 2 and every (4, ..., 4,)e R" (It is sufficient to multiply all z,
by a sufficiently great number.) - '
Let s > 1 be such that |2;], <s, a = 1, 2 and |Jz]; < sforalls = 1,...
.v.y . Now let us choose a positive integer » such that 2s-+1 < e(r—s)
and r~'s < M. Thus we have the natural numbers a, b, ¢ and the positive
integer 7. These 7, a, b, ¢ remain fixed in the rest of the proof.
Let # = " be an element of the sequence defining ¢ such that
o(p(@), 921y ..+, 2,)) < M™% Define on Z

n n
T(b-}-ZZ,.zi) =b+ 3%, (beB).
1=l =1
If 2 =b+322¢(NNZ), then b =PzeN and D Aze Nn(I~P)Z.
. at+b
Thus Agiprr = oo =X, =0 and Tz = b—{-_Z’ A@ze N. This shows that

=1
T(ZNN) = N. Similarly it can be proved that ZnY)< Y.

Now we prove that |T/(ZON)ly < 146 It is sufficient to show that
[+ haly < (L+e) b+ 3 Az it

a+b n
b+ > Az =b+2 MgeNnZ  and |2 =33 =1.
e ds=1

If |bls>r then |b4 3 Ae]s > r—s, while
Ib-!—zﬂixi A [b-f-zﬂizi3+]Zliztia+!23im¢ , < :b+21~;zi
< ’b-{—Zﬂiz,- ,Felr—s) < (1 +>e) b+2 A%

Here the summation is taken over ¢ =1,...,, or, which is the same,
over ¢ =1, ..., a+b. We have also used the fact that |[n;],— l2ls| < M
<1, hence |ayls < Jggls+1<<s+Lfor ¢ =1, ..., a5

If [bly <7y let bye BAN Dbe the +*-approximation to b (according
to (i)) and let A7¢ 8* be also the r~L-approximation to e 8% We have

o+ 2, ~ o+ 3 42,

a+b . a+b
< 20b—byls+ [ byt ) A;m,.L— Pt Y He
i=1 =1

o+ (s+1)

3¢

3

a+b

a+b
L+ it-nml |3 vt 0e,
= =1

K2 4 M 4 (s 1) et < B,
while

5‘b+21,.z,.

a+b
> el I—P[;7- 'Z‘ z,.z,.]5> s(1+E)~1> 61,
=1
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The estimation of the |-|; and |- |, norms proceeds similarly.
Ifz = b-}-zliz,-ez, then

1 (@) —fi(T2)| = lzli(fk(zi) —fk(mi)) < M,

while

> (1+E)HAL

2

el > [T—PR| Y i

henece
1F6(8) —fu(T2) [ 12l, < M1+ K) < e

In all that follows all topological terms (weak topology, density
character, closure) will refer to the ||-|}-norm.

ProrosttioN 1. Let (X, ||-])) be ¢ B-space which is generated by a weakly
compact absolutely convem subset I, let |-| be another norm on X such that
o] < ||z for every we X and let m be an infinite cardinal number. Let Y be
a closed subspace of X, B a subspace of sp K with dens B << m and F a sub-
space of (X, |||)* with w*-dens F < m. Then there is a linear projection
P: XX with |P| =|P| =1, PK = K, Pb = b for every be B, P*f = f
for every fe F, densPX <m and PY = Y.

Proof. We proceed exactly as in the proof of Lemma 4 in [1] with
the difference that the construction is performed on ¥ =sp K< X
instead of the whole X. Also the notation of the norms is changed — our
|| - norm is new and the |||+}|]-norm in [1] is the norm on N generated
by K. The operators {7} in this proof are defined on the whole X and
T,Y c Y, but for the construction of P exactly as in [1], we consider
only their restrictions on N. Now as {T,} are equicontinuous on X and P
is a weak cluster point of {T,,/N¥}, we infer that the continuous extension
of P to X is a weak cluster point of {7,}. Thus P¥ < Y. P is a projection
because its restriction to N is a projection. Similarly for P = limP, in
the next part of the proof of Lemma 4 in [1].

ProPoSITION 2. Let X, |-, |||, K =« X, ¥ = X be as in Proposition 1,
let p be the first ordinal of cardinality dens X, and let {w,; a < u} be a dense
subset of sp K. Then there is a “long sequence” of linear projections {Pg;
o S a< :M} sat’isfyq}ng |Pal = “Pa“ = 17 -PaK < K: maE'Pa-HX} Pay . Y?
dens P, X < a for every o, PPy = P,P, = Py whenever f < a, and \J Pp, X
is dense in P, X for every a > o. B<a

Proof. We proceed exactly as in the proof of Lemma 6 of [1], restrict-
ing ourselves again to & = spK < X as in the preceding proof.

A B-space X is called decomposable (see [10]) if there is a Dounded
linear projection P in X such that dimPX and dim(I—P)X are both
infinite. It was shown in [10] that every non-separable WCG B-space is
decomposable. ’
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COROLLARY 1. Every non-separable closed subspace of a WOG B-space
is decomposable.

Proof. Let X be generated by a weakly compaet set I;. Let S = ¥
be a separable infinite-dimensional subspace of ¥. Then § is generated
by a (weakly) compact subset K, = 8. Put K = K, +K, and B = spK,.
‘We may now apply Proposition 1 to obtain a projection P in X with
PX separable, PY o B and PY < ¥. Thus the restriction P/Y decom-
poses the space Y.

Remark 1. Using the second part of Lemma 1, we have:

A) Lemma 2 holds if we changé the assumption B < N to the asyum-
ption ¥ = N.

B) Similarly Proposition 1 changes to the following

ProposiTioN. Let (X, |-1), ||, m, F be as in Proposition 1. Let
Y < spK be a subspace and B an arbitrary subspace of X with dens B
<m. Then there is a linear pmjectwn P: XX with |Pj=|P| =1,
PE c K, Pb =b for every beB, Pf = f for 65061(1/ feF, densPX <m
and PY = Y.

In the proof we work on the whole X, otherwise than in the proof
of Proposition 1, where we worked on N = sp K. This proposition may
be applied to arbitrary ¥ < X weakly compactly gemerated by Ify,
because then Y, = spK,; < K; +K. ]

The following proposition permits the application of Propositions 1
and 2 to dual spaces to get even w* continuous projections (see [6])

ProrosITION 3. Let (X, |- |) be a B-space genemted by. & weakly com-
pact absolutely comves subset K. Put |f| = sup{|f(2); x<K} for f e X*,
Then a linear operator T: X*+X* is W* W contmuous fo it 8 continuous
in both |+ and || norms.

Proof. Using the fact that K is absolutely convex weakly compact
we conclude, exactly as in the proof of Proposition 2 of [1], that the identity
mapping of X* is w*W continuous, where W means the weak topology
of the norm |-|. The || [-unit ball B of X* being w* compact, we sec that
the w* and W topologies coincide on each 7B (r real positive). Since T is
w-w continuous and TB < rB for certain », it follows that 7' is w*-w*
continunous on B, and in virtue of the Banach-Dieudonné theorem 7'
is w*-w* continuous on X*.

4. Dual Markufevi¢ bases. Now we shall study certain types of
Markufevid bages in dual (WCG) spaces.

PROPOSITION 4. Assume that X is an arbitrary separable B-space and

Y « X* a dlosed separable subspace of X*. Then there 45 an X - Markusevié

basis for Y.

icm
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Proof. Let us denote by T the natural linear isometry of w*clY
onto (X/Y,)*. Then TY < (X/¥,)* and X/¥Y, and TY are total to each
other. Now we may use Mackey’s technigue [11] (see also [4], Theorem 4,
p. 8). '

PROPOSITION B. Assume that. X, X* are both WCG B-spaces and ¥ < X*
is @ norm closed subspace of X*. Then there is an X- Markusevid basis for Y.

Proof. We use transfinite induction on norm density densX™.
If dens X* = 8,, then we have Proposition 4. Assume that 8 < 8, is
a cardinal number and suppose that Proposition 5 holds for any spaces
X with dens X* < 8. Let u be the first ordinal of cardinality ¥. By Prop-
ositions 2 and 3 there is a system {P,},, of projections in X such that
WPl =1, P,Ps = PP, =Prynpep, Pu = identity, densP;X* < §,
P} e8p (Ph18)acp a0d P;Y < ¥ for any a<p and f< u. Let us pub
P, =0.

Let us consider now. the projection (P,.;—Py): X—(Por—Po)X
and its dual Pi . —Ph: (Popy—Pu) X) >(Pi, —PHX* c X5, (0< a< p).
Then its inverse is the restriction of fe(Pj,,—Pi)X* to (P, ,—P)X
and both are isomorphisms of (P}, —P%) X* and ((P.,—P.)X)". By this
we can easily see that there is an X-Marku¥evié basis {f2} for (Pr,,—
—P})Y ¢ ¥ « X* with respect to the system {zl} ¢ (Ppy;—Po)X < X,
ded,. Then it is easy to see that the system {f2; 0<<a<<g, ded,} is an
X-Markufevié basis for Y with respect to {zl, a < g, ded.}. Indeed,
by a simple inductive proof, P,fefp U (Pi—Pu)Y, for any y<pu

o<<a<u

and any fe¥. Thus §p U (Pi,;—P:) Y =Y and therefore sp{fi; 0<<a

I<<a<u
< p, ded} = Y. Furthermore, if feY,f 0, then (P;‘H —PHf #0
for some o < u and then, since {2} is total on (Pi,,—P:) ¥, there is
a & such that (( w1 —L0)f) (22) f(wa) # 0. Furthermore, if a; # ay,
then (£21) (a22) = ((Pin P*)f)( 2) = ((Paysr— P,,) (@)
= f“l( a1+1 Pal) (-Pa2+1 P ) fdl(o) = 0

If Y is total on X, we ha.ve a Scronger result.

ProrosirioN 6. If X, X* are WOG, and ¥ < X* is a mnorm- dosed
subspace of X* which is total on X, then there is on X-MarkuSevid basis
{f:}, {w}, iel, for ¥ such that é‘f»{mi} =X

Proof. We again use transfinite induction on densX*. In the sep-
arable case see Proposition 5. Suppose that ¥ > ¥, is a cardinal number
and assume that the assertion is true for all X with densX* < X. As in
the proof of Proposition 5, take the system of projections {P,}.<,. Then
using the observations that (P, —P%) Y is total on (P, —P,) X and the
method of proof of Proposition 5, we easily obtain our statement.

By W. Johnson a Markuéevxé basis {w,}, {f:}, i1, of a B-space X is
called shrinking if sp{f;} =

al)fgi) (Pu2+l .
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COROLLARY. If X, X* are WOG B-spaces, then there is a shrink{ng
Markusevid basis of X.

5. w* closed quasicomplements. J. Lindenstrauss proved in [9],
Theorem 2.5, that if X is WCG and ¥ < X a closed WOG subspace of X,
then Y hag a quasicomplement. Using this proof and Proposition 2, we
may prove the same result without the assumption that the subspace ¥
is WCG (gee also the proof of Proposition 7).

Here we shall construct the w* closed quasicomplement of every
norm-closed ¥ < X* if X, X* are WCG.

PROPOSITION 7. Assume that X, X* are WOG B-spaces. Then for any
norm-closed subspace ¥ < X* there is a w* closed quasicomplement in X*.

Proof. We use transtinite induction on densX*. If dens X* =N,,
then the assertion follows by [7], Theorem 3. Let 8 > ¥, be a cardinal number
and suppose that Proposition 7 is proved for all X with densX* < X.
Let dens X* = & and let Y be a norm-closed subspace of X*. Let {Py}.<,
(# being the first ordinal of cardinality 8) be a system of projections as
in the proof of Proposition 6. By the induction hypothesis, and the natural
isomorphism of (P;,,—Pu)X* onto ((P,.,—7P,)X)* mentioned in the
proof of Proposition 5, we easily see that there is for any a < p. a w*
closed subspace 7, c (P},,—Pi)X* which is a quasicomplement of
(Prp—PnY in (P, —PnX* Let Z=w+elsp(lJZ,) and zeZnY.
Then (P, —P:)2eZ, for any a < p, since P are w*w* continuous
and also (Ph,—Phze(Pi,—PiY. Thus (Pi,,—Piz =0 for any
a < p. From this it easily follows by the behaviour of {P}} that 2z = 0.
Also, §B(Z+Y) (2, + (P~ Pl ¥) = (Ph, —P3) X* for any o< u.
Thus, §p(Z -+ ¥) = X* (cf. the proof of Proposition 6).

6. A renorming theorem. Here we prove a renorming result for
certain (WOG) spaces. First we need two auxiliary lemmas.

LeMMA 3. Suppose that T' and T, are continuous linear operators acling
from X and X™ respectively into co(I"), such that Ty is W*-w continuous
and T = Ty on X. Then T, = T*.

Proof. T™, T,: X* >m(I') and both are w*w* continuous.
Furthermore, T = T, on a w* dense set X in X**.

LuyMA 4. Let X, ¥ be B-spaces and T a continuous linear operator
of X into X¥. Then

{oe X; ol +|Toll < 1)° = {™ e X™; o™+ 17" 0™ < 1}

Proof. Let K, K’ denote the closed unit balls in X*, ¥*, respec-
tively. Then, clearly, it suffices to prove:

() E+T"(K') = {we X; |lg|+||T=| < 1}", and

(fl) (E4T"(E))* = {@" e X™; ™|+ T ™) < 1)

icm
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(Jls™*|| and [T 2™|| denote the second dnal norms on X** and ¥**, respec-
tively.) .

We prove (i). Since T*(X') is w* compact, then K4 T*(K')is w*
closed, and thus it suffices to prove that (K- T™(K')), = {zeX; ||+
4 ||T#| < 1}. But the last fact is a matter of simple direct computation.

Similarly (ii) is proved.

ProrvosirioN 8. If X* is WOG, then there is am equivalent norm
on X, the second dual morm of which on X** is rotumd (i.e. sirictly
convew).

Proof. Let K be a weakly compact absolutely convex set in X*
guch that spK = X*. Let T, be a w*w continuous linear one-to-one
operator of X** into ¢,(I") for some I" constructed by D. Amir and J. Lin-
denstrauss in [1], Proposition 2, p. 37, and let T be its restriction to X.
Then by Lemma 5 we have T, = T**. Now let us define a new equivalent

norm |||-||l on X by |llzlll = [l + | T#]l, where the norm [|-[| on c,(I)
is Day’s rotund norm ([3], Theorem 10). Then by Lemma 6, the second
dual norm of this on X™** is |||2™|}| = |l#**||+ |7 2™||, which is rotund.

Before we proceed to the main result of this section, we recall the
notion of local uniform rotundity of a B-space X, introduced by R. Lo-
vaglia. X is said to be locally uniformly rotund, LUR, if whenever z,,
#e X, o]l = |loll =1, ll#n+a]—+2 then [u,—af—0.

Now we may state

ProrosiTioN 9. Assume X, X* are both WOG B-spaces. Then there

s am equivalent norm |[[|-]]| on X with the following properties:
@ Ul-Ni s LUE,

(i) the dual norm of ||-|l| on X* is LUR,

(i) the second dual norm of |]|-||} on X** is rotund.

Proof. By [6], Corollary 1, there is an equivalent norm [[]-[j|; on X
with properties (i) and (ii). Let [||-|||; be the norm from Proposition 8.
Then we may combine the norms |[|-|||; and |[|-||ls by Asplund’s averaging
procedure [2] to obtain & norm |||-|j| with properties (i), (il) and (iii)
simultaneously.

Remark. In connection with this theorem let us mention the following
example. The second dual of ¢, cannot be renormed either to be Géteaux
smooth ([3], Theorem 9) or to be LUR ([9], Theorem 5.8).
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@

Résumé. On étudie pour des systémes aléatoires généralisés & liaisons complétes
non homogénes des conditions nécessaires ot suffisantes d’ergodicité faible, des condi-
tions nécessaires et suffisantes d’ergodicité forte et des liens entre ces deux modes
d’ergodicité. .

I. Introduction. C’est dans larticle [4] de LeCalvé et Theodorescu
que la notion de systdmes aléatoires généralisés & liaisons complétes
a 6t6 introduite. Sa définition est la suivante:

On appelle systéme aléatoire généralisé & liaisons eomplétes, une
suite (Wi, #7%), (Zir1y Bipr)s ', ‘Plyeg, (T désignant soit Pensemble
N des entiers positifs ou nul, soit ’ensemble Z des entiers relatifs), telle
que pour tout teT,

a) (W, #) soit un espace mesurable,

D) (Zsp1s Bipa) 80it un espace mesurable appelé ,espace des états”
4 Pingtant t41,

e) YT soit une probabilité de transition de lespace mesurable
(WyX Zpyry W ® Bpyq) dans lespace mesurable (Wipy, #iy1),

d) *P soit une probabilité de transition de l’espace mesurable (W;, #7)
dans ’espace des états (%iy1; Bipr)-

Lorsque, pout tout (w, ©)e Wy X .1, 1a probabilité de transition YT (w,
), ] est Ia probabilité de Dirac 6, (") dont la masse est concentrée au
point u, (w, ), (olt u; est une application mesurable de (W; X Ziyy, #; @ Biy1)
dans (W, #,.,)), on vetrouve la notion de systémes aléatoires 4 liaisons
complétes étudiée depuis longtemps par divers auteurs roumaing (voir par
exemple [3]). |

Comme déjd indiqué dans le résumé, notre contribution porte sur
Pergodicité faible, sur ’ergodicité forte et sur les liens entre ces notions.

* Recherche partiellement supportée par la subvention A 7223 du Conseil
National de Recherches du Canada.
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