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Application of approximation and interpolation methods
to the examination of entire functions
of » complex variables

by T. WINIARSEY (Krakdw)

Abstract. The objeet of this paper is to give a characterization of the order
and type and of the order and type systems of the entire function f: C* — ¢ by meana
of the Ceby¥ev best approximation to f on compact sets E < C® by polynomisls.

The methods of proof are based on the properties of the Leja—Siciak extremal
function @ (2, E).

1. Introduction. Let E be a hounded closed set in the space C™ of n
complex variables z = (2;,...,3,).
We put

Ifllz = sup{|f(=)i: z¢ B}

for a function f defined and bounded on E.
Let #, denote the set of polynomials in # of degree < v». Write

6,(f, B) = inf{|if —pllz: peZ}.

In the case of one complex variable the following theorems are known
(see [2], [9] and [11]):

THEOREM 1. A function f, defined and bounded on a closed set I with a
positive transfinite diameter d, can be continued to an entire function f of
order ¢ (0 < g < o) and of type o (0 < o < oo), if and only if

(1) limsup»/¢(&,(f, B))" = d(ece)".

THEOREX 2. If d > 0, then the order o of f is given by

= limsup vlny
e Y Thes,(f, B)

The object of this paper is to extend these results to the case 7 > 2.
Let B be a complex Banach space with a norm ||-{. Let f: C* - B
be an entire function. VWrite
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Sy(r) = sup{llf (&)l lizl = 7},

) IninS;(r)
=1 T
e msup Inr )
) InS
o = hmsup——’;“—), when 0 < ¢ < oo.
- 7

In connectiom with Theorem 1 the following question arises: does
there exist a number d = d(F) independent of the entire function f (of
order ¢ and type o) such that

ey 7, (F, B)
(ecg)tle

a(f, E) = limsup =d(k).

The answer is negative. Indeed, if we take ¥ = W, X E,, where F;
(j =1,2)is a bounded closed set in the complex z;-plane with a positive
transfinite diameter d; = d(F,;) (d, # d,) and if

fi(21y 20) = g(21),  Ja(21y 22) = g(22),

where g is an entire function of the order g (0 < o < oo) and type ¢
(0 < o < o0), We have

d(qu) = dn d(fz:E) =da-

Therefore d(f, E) depends on f.

In the case # > 1, we replace the assumption d(#)> 0 by the as-
sumption of local boundedness in C™ of the extremal function D(z, E).
For such a set I Theorem 2 is true, but in Theorem 1 type ¢ cannot be

determined by (1). It appears that the order p of}c is given by
e =inf{u>0: p(u) < oo},
where y(p) = limsup»"V &,(f, B).

—>00
Moreover, if 0 < ¢ < oo, then the type of f is:
(a) minimal, when y(g) = 0;
(b) normal, when 0 < p(g) < o0;
(¢) maximal, when (p) = oo.

Furthermore, the function f is given by

f(z) =lLmL,(2), 2e0",

¥—+00

where L, is the »-th Lagrange interpolation polynomial with nodes at
extremal points of I (def. see [10]).
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If n > 1, the type o of f cannot be characterized by means of the
measure of the Ceby¥ev best approximation to f on E by polynomials
of degree < v with respect to all variables. So we have to consider the
measures &5(f, B), ¥ = (ky, ..., k,), of the Cebyfev best approximation
to fon B = K, X... X B, by polynomials of the degree < k; with respect
to the j-th variable, j =1, ..., n, where E; is a bounded closed set with
a positive transfinite diameter d; = d(F;) in the complex 2z;-plane.

In the case of # > 1 the following theorem will be proved:

j =1,...,n are order and type systems of an entire function f, respectively,

if and only of
1%l * %le
B[ k
lim sup ]/g"(df,: ) ( ) =1,
in {y}—>c0 éop

where k| = ky+...+k,, @ =d5r ... din and

( L \kle ( ky )lqlol ( k, )knlnn
369) B €001 “. €05 0n .

I should like to thank Prof. J. Siciak for his valuable suggestions
and remarks concerning the results presented in this paper.

2. Extremal function. As in [10], let us denote by 4,(E) the set of
all polynomials p of degree < » such that

Iz < 1.
We define the extremal funetion [10]

B(2) = D(2, B) = lir:_}{sup{lp (#)7: ped,(B)}}, zeC™

It follows from the definition that @ (2) > 1 for 2e¢ 0" and &¥(z) = 1
for z¢ . The following property is known [10].

ProPERTY 1. If B = B, X... X B,, where H; is a compact set in the
complex zy-plane, j =1, ..., n, then

®(z, B) = max{P (21, H), ..., P(2, By}

PROPERTY 2. If B = {#e¢C": |2| = 7}, then D(2, E) = max(1, ||#]/r).
PropERTY 3. If E, F (F < F) are compact sets in C", then

Oz, F) < D(z, B), 2eC™

PrOPERTY 4. If p: O™ — B (B is a complex Banach space with a norm
1) is & polynomial of degree < v, then

(2.1) @l < lpllz® (2), 2<C™
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Property 4 follows from the definition of the extremal function and
from the Hahn-Banach theorem [1].

THEOREM 2.1. If the extremal function @(z, B) is locally bounded in C"*
and if R = sup{|2|: z¢ E}, then there exists an S > 1 such that

(2.2) “max (1 %) & (z, B) < Smax (1 l%l) ze C".

Proof. The first inequality follows from Plopelty 3.
Let p,eA, (). Putb

8 = sup{P(s, E): 2¢ B(R)}.
By Property 4 of the extremal function it follows that
19,(2)"" < 8B (2, B(R)), #zeO™
Hence and from the definition of & we get

® (2, E) < 80 (2, B(R)).

-

3. Order and type of an entire function. Let F be a bounded closed
set in C" such that ®(z, FE) is locally bounded.
Let

= {zeC": D(z,H) =7}, r>1.
Write
Mg(r,f) = sup{|lf()l: #z¢ E,}, r>1,

8y(r) = sap{[lf(2): llefl =7}, r>0

for an entire function f : C" - B, where B is a complex Banach space.
If B =B(1) = {#eC": |¢|| = 1}, then

Mg(r)f) = 8(r).

The order and type of an entire function f will be: determined in
the same way a8 in the case of # = 1.

DEFINITION 3.1. We call ¢ = o(f) the order of f if
1 .
3.1) o(f) = limsup M
We have 0 < o(f) < o0, IE 0 < o(f) < o0, we say that f is of the
type ¢ = o(f) if
(3.2) o(f) = limsup

70

In S, (r)
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An entire function f is said to be of

a) minimal type when ¢ =0,

b) sormal type when 0 < o < oo,

¢) maximal type when o = oo.

If in (3.1), (3.2) we replace 8;(r) by Mg(r, f), then we get og, og,
respectively. We call oz and og the FE-order and E-type, respectively.
It appears that pg is independent of . Indeed, it follows from Theorem 2.1
that

(3.3) 8(r ) < Antr, 1) < 80T,

Hence pz = ¢ and also we get
(3.4) (Bfs)te < O'E\.R o.

Therefore an entire function f is of minimal (normal, maximal) type
if and only if o5 =0 (0 < 0y < 00, 0 = a).

LemmaA 3.1. Let {p,} be a sequence of polynomials of degree < v, res-

pectively.
If there exist A> 0, a> 0, voe N, and je N such that

(3.5) 12s4ile < ™7 for v > w,,
then f(z) = V p,(#), ze C", i8 an enlire funclion, and there exist 4 > 0,
B>0, > v(; nsuch that
If(2)| < 9 (2, B) (4 + Bexp (a®' (2, B))), zeC™
Proof. By (3.56) and Property 4 we have

(3.6)  Wf@I< @ B) ) Inls+i0 e, B) D)

Pty v}vo

a av
(o@ (=) E)) R
where », = v4-+4.

Denote by m, the entire part of av. The sequence {i,} is an increa-
sing sequence of natural numbers. It follows from the definition that
each number of this sequence is repeated no more than %, (k, = 1/a) times,

If ¢ > 1, then from (3.6) we obtain

¢lla
e < one s+ io > 20

I’<l‘1 v=y

* tla »
<01 D Iplls+ar(@@)He Y (——-‘@ @)

Ve

)m,+ 1

r<vy l'=_0

< &°(2)(A +Bexp(a®'(2))), 2eC™,
where f = max(v;,j+1/a), 4 =} I2llz) B. = avke.

y<vy
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If 0<a<1, we consider two cases:
1° adle(z) > 1,
2° 0 < a®?(2) < 1,
and reason as in the case of ¢ > 1.
CoNcLUSION. The funciion f is an entire function of the order o < 1/a.
LevmA 3.2, If there exist K >0, u> 0, je N, A= 0 and v, such that

elou \M* |
lpls < 2(SE) " for v>

then the function

f@) = D o(z), zeC”

yaal

18 an enlire function, and for all £ > 0 there ewisis an 7, = ry(e) such that
In Mg(r,f)<(E+e)r*  for r>r,.

This Lemma may be proved in the same way as in the case n =1
(see [11], Lemma 3.3).
Put

vlnwv

—hmsu ———
e = Mmswp — o

We shall prove that g = o. Let o’ > o%. It follows from the definition
of limsup that

vlny <
—Ind,(f, B)

o and &(f,B)<1

for a sufficiently large », say » > »,. Hence, by Lemma. 3.1 the function f
is-an entire function of order p < QE

It remains to prove that o > oy. Without loss of generality we can
agsume that B < {2: |2} <1, j=1...,n}

Let Ly(2), ¥ = (¥4, ..., k,) be the Lagrange interpolation polynomial
for f with nodes 4™ x.. xn‘") of degree < k; with respect to the j-th
variable, where n‘” {50, -+, 13,} 18 & system of k;+1 extremal points
of the circle [2] <

It can be ;p'roved that

1 [ wm 1)
@m0 @) G2 e (G

(@) —Ly(2) =

d(f), =#ek,

where wy(2) = [T (2 —jo)--. (—nmy)y AL = dls... AL,
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Hence
M (r
IF@) — Tu(alls < 2% E, kit bR <o, v 3,
where
M, (r) = sup{||f(z)l|: gyl <y § =1,..., n}.

Therefore
i

{3.7) J,(f,E)gzan”-—;T(Tl, y=1,2,...,r>2,

It we take g, < %, then for any sequence {v};.»

‘l’j]ﬂ.?’j

From this and by (3.7) we get

forj =1,2,...

01 <
~ r 1 .
(3.8) ]D..MI('I')>'I’J- ]Il?l' —'Q—]Jl‘.l’j y ] =.1,2,...,1‘> 2.
1
Let ; = 8"(ey;)"®. Then

-~ V .
In My(rj) > = Arft, j=1,2,...,

2
‘where
—negy
A = 8 .
€0
Hence
M

It is clear that
B(r)c {2 Q™ |yl <7, j =1,...,n} = BoVn),
where B(r) = {#ze C": |j2] < r}. Therefore
(3.10) 8,(r) < M,(r) < 8,(+V/n).
Now, it is clear that (3.10) implies

. Inln M (r)
3. 1 =
(3.11) imsup oy e

From (3.11) and (3.9) it follows that o > o%.
So finally we have

(3.12) e = og = 0g-
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If we put

n 31 (7)

= limsup '

r—a0 (e
then from (3.10) we obtain
(3.13) e<o<Vno.
Let us take a function f: £ - B and write
I(f, B) = {n>0: p(p) < oo},

where p(x) = limsupv”“ 14 _.é,,( f, B). Put

P00

infI'(f, B), when I'(f,B) # &,
o0, ‘when I'(f, E) = @ and limsupVé,(f, E) = 0.

y—>00

-~

g =

If 0 < pg < oo, then there exists exactly one number ok such that

limsup»PEV 8, (f, B) = (ec%soz)"E.
V00 | | SR B

Now, we shall define the »-th extremal system #® of a compact seb
E < (" and the »-th Lagrange mterpolad:mn polynomial for f: £ — B
in the same way as in [10].

Let by ovvy bpgy 1 =1,2,..., 7, denote the sequence of all solutions
in non—negative integers of the inequality %y +...+ %, <.

Let p® = {p,, Psy..., »,} be a system of », points

Py = (B1gs oy 2ns)y l'j:l;-";'”*
such that the determinant
(3.14) V(.'P(v)) = det["n g ey By ]3 i, I =1,...,7,

is different from zero.

We shall consider a new determinant (3.14), say V,(z, p(")) , which
corresponds to the system of points

{Pry ooy Dic1y 25 Digay ooy pv,_}r
2 being an arbitrary point of C". Let
Vi(z, p™)
v(p®)

DerFINITION. If f is a function defined on a set E and if p® < B,

then

(8.15) L, p¥) =

'l; =1, veey Vi »

L,(8): Zﬂp ) IO (2, p),  zeC™,

i=1

is called the »-th Lagrange interpolation polynomial for f with nodes p®.
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If E is a compact set in C", then there exists a system 5 = {1,0, ...
vy} = By v =1,2,..., such that

(3.16) V(5®) = sup{¥(p"): p* < E}.
DEFINITION. We call 5™ < E satisfying (3.16) the »th emtremal
system of E.

Let E = C" be a compact set such that V(n®) %0 for » =1,2,...
LeymmMa 3.3. If f: B — B is defined and bounded on E, then

B &L B ~Lle<A+2)&(f, B) for » =1,2,...,
where L, is the v-th Lagrange interpolation polynomial for f with nodes a
extremal points 7 of E.

Proof. Let p, be a polynomial of degree < » and let P, be the y-th
Lagrange interpolation polynomial for the function g(2) = f(2) —p,(2).

Since
Lv(’]rj) = D, (1) +Pv(7]uj) for j =0,..., v,
we have
L,(2) = p,(2)+P,(2) for ze (O™
Therefore

¢.(f, B) < |f— Lllg < If = 2:llz + 1P|z

<If=2le(l+ D IZ9E) < If =2, le(l+94).
J=1
This implies the assertion of Lemma 3.3.
THEOREM 3.1. If @(z, E) is locally bounded in C", then f: E - B is

the restriction to E of an entire function f of the order o if and only if

or = 0.

Moreover, if 0 < p < oo, then f 18 of

a) minimal type when p(p) =0,

b) normal type when 0 < p(g) << oo,

¢) mazimal type when p(p) = oo.

Proof. (Divided into 3 parts).

1° We shall prove that if f is an entire function of order g < ooy
then I'(f, B) # @ and ¢ = og: .. A

Taking (if necessary) g(z) = f(az) we can assume that B c {z: ||| < 1}.
It follows immediately from (3.7) and (3.11) that for évery g, > ¢ there

exists an 7y > 2 such that
1'10

(3.18) ¢,(f, By<8v’

" for r > r,.
y
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If we take a sufficiently large »,, we have

» \Ye1
(—) > 7, for v> v,.
01

Putting 7 = (v/e)"® into (3.18) gives
‘ ”’01
8,(f, E)<8’”(&) .
. Y

From this it follows that I'(f, B) # @ and o5 < o.
Suppose that gp < ¢ and take p, such that gz < g, < g. For a suf-
ficiently large » we obtain

e V||f — L, g< v(es) +e.

From Lemma 3.2 and after develbping the function f into a series

7(8) = L&) + ) (Loia(e) —L(2)), ze 0",

it would follow that ¢ < g, and this contradicts the definition of g,.

2° 'We shall prove that if R and S are defined as in Theorem 1 and
0 < g < oo, then

R 2]
(3.19) (?) 0 < og < o <8"Vno.

Let o < oo. Then ¢ < oo. Let us fix K > ¢ and R > 2 such that
M;(R) < ¢5* for r> R.

Taking sufficiently large v, we have

y \Me
(K_Q) >R for v> v,.

Putting » = (v/Kpg) in (3.7) gives

5,.(f, E) < 8™ (&K%)-Ie

Hence and from (3.13) we conclude that

for v > v,.

limsup»eV &, (f, B) < 8™(ec0)"? < 8"(eap)™e.
y—r00

‘Suppose that ¢% < oz and take ¢, such that ¢ < 0, < 0. For a suf-
ficiently large » we would obtain

If —Lls< (

-

€010 )vlo
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Hence and from Lemma 3.2 it would follow that oz < o, and this contra-
dicts our assumption. Therefore

(60z0)™ < (e0k0)"® < 8" (eag)e.
From this and (3.4) we get

R\e
(F) <K op< op < 8’“’1/7—10.
If ¢ = oo, then the above Theorem results from Lemma 3.2. This

completes the proof of the sufficient condition.
3° If I'(f, E) + @, then for every ue I'(f, E)

limsup»"*V/8,(f, B) = p(g) < co.

¥=>00

Hence for every &> 0 there exists a », = »,(&, u) such that

B\v/p
||f—LvnE<(ﬁ”—-‘i)§“—e)—) for » > 1.

By Lemma 3.2 the function

f@) = L@ + D) (L () —L,(2)  for ze O
v=]
is an entire function of a finite order p and f (2) = f(2) for z¢ E.
Now, applying parts 1° and 2° of this proof, we can prove the neces-
sary condition.

4. Order and type systems. Let a = (a;, ..., )y, 8 = (B1, ..., Ba) DO
two rystems of # real or complex numbers.
We shall use the following notation:

af = (af1; .y apfa),

a a a, .
1 n
aﬂ == afl. cen 'aﬁn’

|a| = Ia1|+"'+|an|’
a<ﬁ¢>aj<ﬂj forj=1’p--’”,
a<ﬂ¢>aj<ﬂj fOl‘j=1,...,4’b,

a” = (lay], ...y o).
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Let B be a complex Banach space and let f: C* ~» B be an entire
function.

The order and type surfaces of f will be determined in the same way
as in [7].

Let

My (r) = sup{llf(2)ll: #* <7},

where r = (71, ..., 7,) > (0, ..., 0). N
Let P; = R™ be a set of points pe B™ such that for every ue P, there
exists an @ = (¢, ..., V) such that

(4.1) In M) < r4r+...+18 for » > (O,

It follows from the definition that the set P, satisfies the following
condition:

1®  If pePy, then {u'e B*: p' = u} c Py
2°  If pePy, then {u'e R™: u' < u} c (R"\ Py).

DrrmarioN 1. The boundary 0P, of the set P, is called the order
surface of the entire function f. A point pe 0P, is called the order sysiem of f.
Let us take ge 0P; and denote by T'(g) the set of all y< E™ such that.

(4.2) In M}(r) < ppr@+...+p,r2n  for r> ¢, re R™

One can easily check that the set T/ (p) satisfies condition (W).

DEFINITION 4.2. The boundary 07,(e) of the set T'(p) is called the
type surface of f corresponding to o. A point oedTf(o) is called the type
system of f corresponding to o.

Let E = BY x... x E™, where BVY) (j = 1,...,n) is a compact set:
of a positive transfinite diameter d; = d(E?), and let &,(z)) = D(z;, BD)
be the extremal function of the compact set BY) (j =1,...,n).

Let us denote

(W)

BY = {&: ;;(%) =13}, 1>y J=1,...,m;
B, = BY x... x BD;
M(r) = sup{||lf(2)l]: 2¢ B,} for »>d.

Tt can he proved [11] that there exist »® > d = (dy,..., d,), and
numbers a,> 0 such that if ze Eg), then
(4.3) n—a< |yl <rta forr>®, j=1,.., 5.

Now we shall prove that in the definition of the order and type sys-
tems of f, M7 (r) may be replaced by M,(r). In order to do this we assume

that P, and T,(o) are subsets of R" defined by M,(r) as P, and Ty(g) by
M(r).
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Let we P;. Applying (4.3), we easily find that
(4.4) Mi(r—a)< Myr)< Mi(r+a) for 7> 1@,
where ¢ = (a;, ..., a,). Hence

In M7(r) < (14 @)t 4. +(ra+ g for 1> r(p).

Let us divide.the system (u:,...,u,) into two parts (uy, ..., #)
and (g5, .y ...y py,) Such that u, <0 (for 1 =1,...,5) and p, > 0 for
g =8+1,...,n Taking any &> (0,...,0) and sufficiently large », say
7> 1%, we have -

In Mf(‘l‘) <'7~;‘f1 Fo 1-;.‘:.94_ r;:?;-ﬁ‘fﬁﬂ +... +,-§:in+’in)_
Hence if peﬁ,, then x4 ee P, and so
13, < c_lP} = closure of Py.

Applying the right-hand side of inequality (4.3) in the same way,
‘we may prove that P, < clP,;. Now applying property (W) we obtain

(4.5) 0P, = dP,.
Therefore in the definition of the order system of the function f,

we can take My (r) instead of DI (r).
Let pe 0P, and y<Ty(p). By (4.3) for sufficiently large r we have

In -M; (M) < yu(rita) .+ 9y (1 + ay)m
Because for every y; #* 0 we have

!
L e Tff

so for every &> (0,...,0) there exists an »® such that
In My(r) < (y1+ &)@+ oo+ (poten)r8n for 7> 10,

Therefore Ty(g) c clT/(p) and analogously T'(¢) < c¢lT(g). Thus, the con-
clusion is analogous as in the case of the adjoint order systems of f.

Write the following two remarks resulting from the definitions of
the sets Py, T,(p) and from Liouville’s Theorem.

1° I g = (1, .-+ n) e Py (or Ty(0)) and for any j we have u; <0,
then f does not depend on the j-th wvariable.

2° If pe 0P; and for any j we have g; < 0, then f does not depend
on the j-th variable or T/ (g) =@.

With reference to these remarks and considering the order system g
and the type system o corresponding to p, it suffices to confine ourselves



110 T, Winiarski

to the case g; > 0, >0 for § =1, ..., ». In the opposite case our consi-
derations will reduce to the entire function in O™, m < =.
Suppose that dP; #+ @ and take a straight line I « R" defined by

I(z) =(1y...y7), TekR.

By applying property (W) it can be proved that 9P, N1 is a one-point
set.

DrrmNITION 3. We call p = p(f) the adjoint order of f if
P =(py...;p)e 0Py

We have 0 < p < oo, If 0 < p < o0, we say that f is of the adjoint type
g =gq(f) i
g =1(g,...,0) € 0T(p).

Observe that the adjoint order of the entire function f can be deter-
mined as the infimum p of the set of numbers p’ for which there exists
an 9 = ({9, ..., #9) such that

In My(r) <18 +... 412 for r> 9@

and, analogously, the adjoint type of f can be determined as the infimum ¢
of the set of numbers ¢’ for which there exists an @ = (+{Y, ..., 7V}
such that

In Mp(r) < g'rP+...+¢'r5  for r>r®,

Let us examine the relationship between the order g and the adjoint
order p and between the type ¢ and the adjoint type ¢. It will follow that

(4.6) e =2
and, if 0 < p < oo, then

(4.7) 2 < g <Vno.

n
Let o’ > g. From (3.11) it follows that
In Jl.lf(s) <%  for a sufficiently large s.
Since M,(8) = M} (S, ..., 8), SO
(4.8) In M} () < In My(r)) ... +1n H,(r,).

Hence
In My(r) <8442 for ;> 85, 5 =1y.00y 1

Thus, owing to optional ¢’ > g, it follows that ¢ > p.
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To-obtain the opposite inequality we fix p’ > p and #® = (»{, ...
eor, ¥ 50 that '

In M7 () <P 4 +272 for # > 1O,
In particuliar, if § > max {r{", ..., "}, then
In Jf £(8) < ns?,

Hence, by a standard argument, p > p and s0 (4.6) is proved.
In order to prove (4.7) let us take ¢’ > &, where

¢ = limsup
&0

In I,(s)
p .

By the definition of ¢ and (4.8) we have
In M}(r) < o'rP+...+ 012 for r >+,
Hence, and by (3.13) »
< o< Vno.
On the other hand, if ¢' > ¢, then for a sufficiently large s
In l|~[,(s) < ng's?,

50 o < mg. But at the same time by (3.13) we have & < ¢. Therefore
o
—<g< Vao.

5. Best approximation and interpolation in a set ¥ = BV x... x E™,
Let #, =2, (C", B), k = (ky,y ..., k,) be the set of all polynomials p: 0™
- B of degree < k; with respect to the j-th variable, respectively.

Let Z be a compact set in C" and let f: Z — B be a function defined
and bounded on E.

Write

&x(f, B) =int{(|f—pllg: pe P}

Let B = EW x.,. x BE™, where B (j =1,...,%) is a compact set
in C containing infinitely many different points.

Let 0 = (nj0, - Njey)y § =1, .-, M be & system of k;+1 extremal
points of B (see [8]).

Let us write

yAC)) (%) = ) (2, BY) = (25— 10) - - -« (2 — Mg1y) ’
(%'Fj - 7750) R PR (njyj - ﬂjkj)
where |, means that the factor y; is omitted.
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The polynomial
Bpaeenrliy
Lk (z) = 2 f(ﬂlnl) ey 7]1111") L(ﬂl) (zl) ces L(“u) (zﬂ)
“1""’”?1'_-0

&
is the Lagrange interpolation polynomial for f with nodes 5V x... x 5

of degree < k; with respect to the j-th variable.
The inequality

n
(5.1) Ex(f, BY<If—Tolm (14 [ ] 5+ 1)) €401, B)
j=1
can be proved in the same way as (3.17).

Now we shall prove the Lemma, which together with inequality (5.1)
and Property 4 of the extremal function (see Section 2) will be of primary
jlnportance in. successive investigations.

Lemma 5.1, Let k¥ = (&0, ..., k), » =1,2,..., be an increasing
sequence such that min{k{": j =1,2,...,n} - oo, when » — co and kf’
are natural numbers.

Let E =EY x...xE™, where B (j =1,...,n) is a compact set
with a positive transfinite diameter d; = A(EY) in the complex z-plane
and let ppePy, b = (ky, ..., k) be polynomials such that

2(2) =0, when k¢ (k).

If there emist K = (Kyy ..., K) >0, g = (g, vry fy) > 0, v9e N and
A= 0 such that

k—y

~[eK #
{5.2) lprlle < ).d’“'"’(,—'ti) when k| > |E)|: = q,

where d = (dy, ..., d,), y 18 a fized natural number and y = (y, ..., y)e B,
then

fl&) = Y ple), zeC,
k

i8¢ an entive function, and for all ¢ = (1, ..., ,) > 0 there exists an »©
= (™, ..., 7D e R" such that

n
In M(r)< D (E;+e)rfi  for r> 10,
J=1

Proof. By Property 4 of the extremal function @ (2, E) applied to
aevery variable separately we have

(3.3)  lpa(@)l < Pl @ (21, BY) ... Pn(z,, B™)  for ze (™
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Write »(2) = (2“6l pu,7{1, ..., 2"nel, u,r'n) and take r® = (»(, ..
TP > (1,...,1) in such a way that »(r) > k* for » > »®, Moreover,
we assume that y =0 and 2 = 1.
Thus by (5.3) we get

kln
(5.4) M) Z "PAHE o y (eKy) oy 5‘! 21“

1k <a a<|7-|<I"(r)l IkI>IV(r)I

~ 4 .
< o+ Z (—ﬁ) 42" for r> 0,
a<|k)<|v(?)]
where f does not depend on 7, a = (a, ..., a)e R™
Since the maximum value of the expression

( el \'9"
k;

JJ

for 7; fixed (j = 1,...,%) is obtained for k; = p; K;747 and is equal to
oxp (K,r}7), we have

/\ A
My(r) < fr +((lv(r2+n) — (a;';n))exp( E'K? )+on
2 [ o
s (r -
m exp( E'Kjrj‘f) +9on

i=1

Pt 2l
<(ex‘p(5’K7"i + n! +exp(2K,r ) (ZK’ )

for # > M, where 8 is the smallest entire number greater than or equal
to 4.
Hence, by a standard argument, there exists an ® > #) guch that

< P4

n
My(r) < exp 2 (K;+ &)t for r> rO,
j=1
Since for any K’'> K we have (X'[k)"* > (K [(k—3))* "/* when k
is sufficiently large, in the case of y 3 0 or A 5 1 the proof is analogous
with the only difference that before the second and the third component
of the right-hand side of inequality (5.4) there ocenr (as factors) positive
constants which have no decisive influence on the reasoning.

6. Characterization of the order and type systems by &} (f, F). Let,
as before, B = BV x... x B™ and 4; = ¢(EY) > 0.

Now, we shall present a - characterization of the order and
type systems of an entire function f by means of the measure &5(f, E

8 — Annales Polonici Mathematici XXVIIL1.
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of the Ceby¥ev best approximation to f on F by polynomials of degree < I
with respeet to the j-th variable.

THEOREM 6.1. If the transfinite diameter d; = d(BP) > 0(j =1,...,m)
and 0 = (013 +++5 00) > (0,.+4,0)y 0 =(07y...,0,)>(0,...,0) are order
and type systems of an entire function f, respectively, then

k|

. Exlf E)( k )""“
6.1 Iimsu =1
(6.1) mln(k;ﬂ—}; l/ a  \egp
and

) T—Tlln| %\

6.2 limsu _ kE( ) =1.
(6.2 min{kj}—}il/ a* e0Q

Proof. Let

wi® = [ [ =) -+ (25— 1),

J=1

where {#;0y .+, o;jkj} is a systemn of k;4 1 extremal points of the compact
set BY (j =1,...,n).
It #; is sufficiently large, say #,> #{", then

Eg) = {2;: @;®(2j, BY) =1}

is a union of a finite number of mutnally disjoint analytic Jordan curves
in the complex z;-plane; therefore

(63)  fle)—Inle) = — 1) 1(0) a,

(27“')n E,(-i) v E’(:) wk(C) (Cl —2) ... (gn —2y,)

where df = df, ... d¢,.
We can prove [11] that for every ¢ > 0 there exist 4, " and k{¥

such that
dj eaj kj
<A
7y

for 7> 1, &y > WY,

1

L (B —150) «+ (zj"’?jkj) at;
2_1t'i

(Q"’?jo) see (Cj_"?jl.-j) C,—zj

Eg )

Hence and from (6.3) we have

M .
(6.4 I ~Eills < 25 (dery

for r > = (#{, ... ¥, B> D = &Y, ..., kD),

where A = A;0...04,, e = (&1, ..., &), € = (€, ..., &'n).
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Let 9 = (91y ...y ¥p) > 6. In consequence of the definition of the
type system of f there exists an ® > #(® such that
My(r) < exp(p 2 +.on +9,7%)  for » > ¢,
Let k® > k% such that

k. \Yy
(; ) > forj=1,...,0, k> E®.
i 0

, ( ( k, )1!a1 ( k, )1/9,,)
Y101 T Va @n

in (6.4) and presenting y in the form y = (o,¢%, ..., 0,6’%), we get

kle Koy .9
(6.5) |]f—LkIIE<A(de’)"(%) zdk(";") (e( *e)) for k> k),

where 6 = (d;,..., §,).
Hence because of ¢ and y being arbitrary we get

]
— I, L \ke
i sup l/llf kmE( ) <1
min ;)0 d eog
Suppose that

1kl
— L, T \e
lim sup l/ If = e ( 3 ) —p <1

min (kj}—+o0 eog

Putting

and take 5 such that » < 5, < 1. From the definition of the limsup there
would exist a %® such that

kle
If ~Lllg < 7™ @ (”—;‘9—) for &> k9.
Taking ¢; = 5% we would obtain o’ = (ay,..., 0,) < ¢ and
es 0 kle
(6.6) If =Lllg < d"( . ) for k> kO,

Let vy =(»,...,9)eR", »=0,1,... From (6.6), from the triangle
inequality and after expanding the function f in the series

f&) = Li(e) + D)L (0) — L (2)),  #e C™

v=(

we would obtain

* o \"le
~[€0Q
VD — Ll < f ~Zerila+ 1 — Lol < 2 (45
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Hence and from Lemma 5.1 and property (W) of I'i(g) it would
follow that oeintT,(g), and this is contradicts the assumption.

The other part of Theorem 6.1 is an immediate consequence of ine-
quality (5.1).

Equality (6.1) or (6.2) is at the same time a necessary and sufficient
condition for the systems p, o of positive mumbers to be the order and
the type systems of the entire function f, respectively. Before carrying
out the proof of this fact we shall prove the necessary and sufficient
condition for the system o = (g, ..., 0,) Of positive numbers to be an
order system.

Under the same assumption on the compact set E = BV x... x ™
a§ in Theorem 6.1 the following is obtained:

THEOREM 6.2. A system of n positive numbers ¢ = (pg, ..., o) 8 an
order system of the entire function f if and only if

i In kHe
a im sup =1
(a) min {10 '—llllllf — Lyl z ’
or equivalently if

In */e
(b) limsup 1.

mingieglreo — I Ex(f, E) -

Proof of the sufficient condition. Let § be a real number such
that
0<26<y;, dy<l forj=1,...,n.
.. It follows from the definition of limsup that there exists a sequence
(B9 = (&P, ..., BD)} (B¥+) > 1)) convergent to infinity (i.e. imk{? = oo,
j =1,...,n) for which veo
In ( k(v) )k("),’g
—Injif —Lk(u)"E
Hence

>1-06, |[f—-Lul<l for»=1,2,...

Ay %)
(6.7) ln"f_Llc(v)"E == 0 : Inkgﬂ'*’"' + = ]-U-km’ »=1,2,...,

1— & On—¢&n

where g = 6Qj, j = 1, cosy T
By a standard argument from (6.4) and (6.7) we obtain

. r,  Ink® .
(6.8) In M,(r) > E’ky) (m-i— ! )— S'k}")ej—lnl
=1 4G e =1

for » > »,, ¥ > RY,
where & = (ey, ..., &,)-
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Let us take », > v, so large that
1
(e >R for j =1,2,...,m, v>
and let us substitute in place of 7;/d; (in (6.8))
g s
dj =(ekj )Qj—'j.

After this substitution we have

n
In M,(r®) > Z k)
i=1

n

—Zk,‘-”)s,-—]nl for v> »,.

%—45 £
1 () ej—gf
Since f? = —(1’ ) , we have
e\ d;
N 1 InA
1 - '(") —_ ej _ i . V) 0;—8y
n AT > ; ( o= BT el )

for » > »;,
Hence by a standard argument we conclude that

n
In M) > 3 ()29,
J=1

and this means that o —2e¢ P,.

Let » be a natural number, and ¢ > 0. We shall put v = (», ..., »)e B™
By the definition of limsup it follows that for a sufficiently large », say
v > vy, the following is true:

-~

—p
6.9) If—Lillg< (),
where ¢ = (&1, ..., &), & = 0;0, j =1,...,m.

Hence

o — Lsllg < 2(3) ©F°  for v > .
Let ¥ = (K,,..., K,) be such that

ote
) for v =1,2,...

~

2) < af

eK(o+ ¢)
7
Since

~
v

5 (eE (o +2)\**
=5

A Lyl < d for » > »,,
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by (6.9) and Lemma 5.1 we have

f(2) = L)+ D) (Ligi(e) — L; (2)  for zeC™

p=1
Moreover, there exists an »® = (#{%, ..., #(¥) such that

k]

In M(r) < Z(KH- g)r§its  for » > O
j=1

Hence it follows that p+42ee¢ P, for sufficiently small 6. Since we also
had o —2+:¢‘Pj, this eompletes the proof of the sufficient condition.

Proof of the necessary condition. Let o' = (gyy..., 05) > o.
Applying (6.4) and the definition of the order system of f in the same
way a8 in the proof of (6.5), we get

- ) 59' kil
(6.10) If — Lz < A(de)* (_k—) for k&> k.

After calculating the logarithm of (6.10) bilaterally and dividing

both sides by In|f— Lz we get

In ¢ In
(6.11) 1> + +
—Inflf-Llg = [f—Lilg
1 Ing;
n Ind;+ &+4— +_]1&
+ Z 2 % for k> k©.

1
=1 Tln”f—I’k"E
g
It follows immediately from this that

In %*e
6 = limgsup <1.
min {kj}—00 —In||f —Lllz h

Suppose that & < 1. Taking e, so small that

do+2e<p, where ¢ = (01,5 & 0n),
we would have
_
If — Ly llz < (B®) e+

for any sequence {k"} convergent to infinity. Now, from Lemma 5.1
it would follow that (po4-2¢)eP; and consequently geintP,, and this
contradicts the assumption.

Condition (b) follows immediately from (a) and (5.1).

Let a compact set I < C" be such that there exists a compact set
I c K satisfying the assumptions of Theorem 6.2.
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Theorem 6.2 implies

THEOREM 6.2a. A4 system on f positive real numbers p = (gyy ..y 0n)
is an order system of an entire function f if and only if
In f;¥/e

lim su =1.
min {];j]—}; —In gl*:(fa K)

Keeping the notation of Theorem 6.2 we shall prove the following

THEOREM 6.3. Let f: E — B be a function defined and bounded on E,
where E is as in Theorem 6.2. Let 0 = (0yy ..y 0y)s 0 = (07, ..., 0p) De
systems of n positive numbers.

I Ik -
L T \Me
@) lim sup /”f k"”"( ) =1,
min{kj}—wo § d 6ap
or equivalently if
Ik
SL(fy B) [ kb \Me
(ii) lim sup l/ L (f,f ) ( ) =1,
: min {kj}->e0 d* 6o

then there exists an entire fumnclion f such that

1° fl2) = f(2) for zc B; )

2° p 18 an order system of f, and o is a type system of f corresponding
to o. '

Proof. Let us take ¢> 0 and K = (K{",..., EY) such that

go ke ]
(6.12) If —Lillg < d’"( . ) ¢¥=  for k> KO,
From this and by Lemma .1 it follows that a function

(6.13) f(2) = L; (2 +Z(L,,+1 L;(2) for ze(™,
y=1
where » = (»,...,%)e RB", is an entire function satisfying condition 1°
Calculating the logarithms of both sides in (6.12) and applying an
analogons reasoning to that used in the proof of the necessary condition
of Theorem 6.2, we get

In %*/e
(6.14) limsup ——
min {kf}-ee In “f LL”D

From the definition of limsup it follows that there exists a sequence
(B = (&0, ..., &)} such that min{k{": j =1,...,n} - oo and

k("o
a(" €oQ — k") e .
If = Lyl > @ )(ﬁ) o for v =1,2,...
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By a similar reasoning we shall obtain the inequality opposite to
that in (6.14). Thus from Theorem 6.2 it follows that p is an order system

of f.
Inequality (6.12) may be written in the form

t \FKlo
OC;G Q) for & > KO,

(5.15) w—mm<m(

where o' = (ay,...,0,), 0; = 0y¢% for j =1,...,a.

It follows from Lemma 5.1 that (o’ + &) e T¢(p), where & = (e, ..., &) e R"
Therefore o<T(o).

Suppose that oe int T (p). Since inequality (6.15) holds true for every
ye int Ty (g), taking a sufficiently small e > 0 such that y = ¢ o e int T (o)

we would have
I fe
lm@Vwkh )\
.min (k_,-}—roo 879

On the other hand, on the strength of the assumption

il
~ Ll { T \Me
lim sup / I/ k el ( ) >e¢>1,
min {kj}—oo d eyo

which contradicts the previously obtained inequality. Thus o is a type

system of f From Theorem 6.1-6.3 we get as a conelusion the following
generalization of the results obtained in [2], [9] and [11].

THEOREM 6.4. Function f: B — B, where E is as in Theorem 6.2, is
prolongable to an entire function f of the order p if and only if

p = limsup In*
min {ky}—e0 —In ‘g)k f’

or, equivalently, if and only if

p = limsup In%*
= limsuyp ———.
min {kj}+c0 — In||f— Lyllg

Moreover, if 0 < p < oo, then the adjoint type ¢ of f is given by
12l

ég*
lim sup 'l/ "(f’ ) i _ (epg)'™?,
min {kj}—e»on

or equivalently by
lim sup l/“f o7 Lyl E? = (epq)'2.

min {k}-rco
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