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0. Summary. The purpose of the present paper is to derive analytic
asymptotic expressions for the critical Rayleigh numbers (R,), wave
numbers (a,) and frequencies (o,) for the onset of convection as over-
stability in an uniformly rotating wviscoelastic fluid layer, bounded by
two free surfaces, in the limit of large Taylor numbers (7). The results
obtained using these expressions are in excellent agreement with the
numerical results given in [2]. The analytic expression for the critical
Rayleigh number so obtained, further confirms the destabilizing effect
of rotation on the overstable mode of convection in a wiscoelastic fluid
ayer [2] in contrast with its stabilizing effect on a viscous fluid.

1. Introduction. When a horizontal layer of a wviscous fluid is heated
from below, the system remains stable to small disturbances for values
of the Rayleigh number R (defined later) smaller than a critical value R,.
When R > R,, the system becomes unstable and convection sets in the
form of a regular cellular pattern. The critical value R, depends, of course,
on the boundary conditions. This problem of thermal instability in a hori-
zontal layer of a viscous fluid was first studied by Bénard [1], experimen-
tally. Theoretically it was first studied by Rayleigh [22] and later by
Jeffreys [14] and Pellew and Southwell [21]. A comprehensive account
of the contributions of many authors who have subsequently studied
this problem has been given in the monograph by Chandrasekhar [10].

The effect of a magnetic field on the onset of convection in a viscous
fluid layer was studied theoretically by Chandrasekhar [6] and experi-
mentally by Nakagawa (see [15] and [16]). The effect of rotation on this
stability problem was investigated theoretically by Chandrasekhar [7],
Chandrasekhar and Elbert [11] and experimentally by Nakagawa and
Frenzen [19] and Fultz, Nakagawa and Frenzen [12]. The simultancous
effect of rotation and magnetic field has also been investigated theoret-
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ically by Chandrasekhar (sce [8]and [9])and experimentally by Nakagawa
(see [17] and [18]). It has been found in all these cases that in certain
ranges of the governing parameters the fluid layer becomes overstable,
that is, instability sets in via oscillations of increasing amplitude. In the
greater part of the range overstability takes place before steady convee-
tion. Overstability is possible in the presence of constraining cffects of
rotation and/or a magnetic field because these effects give an elastic-like
behaviour to the fluid enabling it thereby to sustain appropriate modes
of wave propagation. It is, therefore, expected that if we study the problem
of stability in a wviscoelastic fluid layer, it can become overstable due to
heating from below alone.

Recently, Vest and Arpaci [23] have investigated the stability of
a horizontal layer of a viscoelastic fluid heated from below. They have
evaluated the conditions under which thermally induced overstability
occurs in a Maxwell fluid. They found that elasticity has a destabilizing
influence both in the sense that oscillatory convection can occur at a lower
critical Rayleigh number than stationary convection, and that E, for
overstability decreases with the increase in elasticity. Green [13] has
carried out another study of overstability in a viscoelastic fluid layer
heated from below. Analysing the case of a two time constant model
due to Oldroyd [20], he has discussed the problem for the case of two
free boundaries. In both these investigations the effect of rotation or
magnetic field has not been included.

Since both rotation and /or magnetic field impart
an elastic-like behaviour to the fluid, it would,
therefore, be of interest to include the effect of
rotation and/or magnetic field on the stability of
a viscoelastic fluid layer heated from below. More-
over, the simultaneous effect of a uniform rotation
and a uniform magnetic field on the onset of thermal
instability in a viscoelastic fluid layer is of particular

interest in geomagnetism and geophysics.
o

In an attempt to solve this rather complicated problem the author
has considered together with P. K. Bhatia the separate effects of rotation
and magnetic field on the overstable mode of convection in a viscoelastic
fluid layer (Maxwell fluid) bounded by two (i) free, (ii) rigid isothermal
and non-deformable boundaries.

We have shown that, for both types of boundaries, the effect of
rotation is destabilizing [2] while the effect of the magnetic field is sta-
bilizing (sece [3]-[5]). The effect of elasticity was found to be destabilizing
for both cases. Two new results were thus found:
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(a) rotation has a destabilizing influence, in contrast with its stabi-
lizing influence on an ordinary viscous fluid;

(b) rotation and magnetic field have conflicting influences, in con-
trast with their stabilizing influence on an oridnary viscous fluid.

These results werc obtained by numerical computation for a wide
range of parameters. Clearly, as it is impossible to perform the compu-
tation for all the values of the rotation or magnetic field parameters,
it is necessary to derive analytic asymptotic expressions in the limit as
these parameters tend to infinity.

Consequently, the subject matter of this paper is to derive the
asymptotic behaviour of the critical constanis for the onset of overstability
in the very rapid rotation limit. The corresponding problem for the magnetic
field will be considered in the near future.

2. Formulation. Consider an infinite horizontal layer of a viscoelastic
fluid of depth d rotating uniformly about a vertical axis with angular
velocity . Suppose that the fluid is heated uniformly from below. Assume
that the viscoelastic nature of the fluid is described by the Maxwell con-
stitutive relation [23]
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where p;; is the viscous stress tensor, v,(u, v, w) is the velocity vector,
t, is the Maxwell relaxation time, and p is the coefficient of viscosity.

Following [2], the linearized perturbation equations governing
small perturbations are
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Here D = d/dz (z-axis taken vertically upwards), P = v/x is the
Prandtl number, I' = t,»/d’> is the eclastic parameter, o is growth
rate, ¢ is the wave number, @ is the perturbation in temperature, W is
the z-component of v,, Z is the z-component of vorticity, while g, a, 8,
and » denote the gravity, coefficient of volume expansion, adverse tem-
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perature gradient, thermometric conductivity and kinematic viscosity
respectively. Further, we have scaled the physical variables using d,
d@[v, v|d and Bd as length, time, velocity and temperature scale factors,
respectively.

3. Asymptotic solution for large Taylor number. As pointed out
earlier, we suppose that the fluid is confined between two free, isothermal
and non-deformable boundaries. Hence the boundary conditions to be
satisfied are [2]

(2) W=DW=60=DZ =0 atz=0,1.
Applying the operator
(D*—a*—Po)[D*—a*—o(1+ I'6)]
to equation (1), we can eliminatc ® and Z to obtain an equation in W,
8) (D*—a*—Po)[{D*—d*—o(1+6)}(D*—a®)+T(1+ I'c)*DIW
= —Ra*(1+I'o)[D*—a*—o(1+T0)]W,
where R is the Rayleigh number defined by

d4
R =997
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and T is the Taylor number given by

40°
T="2""g8,
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Equation (3) together with the boundary conditions (2) constitutes
an eigenvalue equation of the eighth order. Furthermore, a close exam-
ination of the equations reveals that also D'W = D°W = D*W = 0.
By differentiating equation (3) an even number of times, we can conclude
that all the even order derivatives of W must vanish for both z = 0, 1.
These considerations suggest that the proper solutions for W belonging
to the lowest mode must be

W = const-sinrz.

Substituting this solution for W in (3), we obtain the characteristic
equation

(4)  (n2+ a2+ Po)[{n?+ a2+ o(1 + I'o)}2(n?+a?) + n2(1 + I'0)2T]
= Ra*(1+ I'c)[n%+ a2+ o(1+4+ ['o)].
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Remembering that ¢ can be complex in this equation, we make the
transformations o = ¢0;, ¢ = a® and b = =n?-}-a? It is clear from equation
(4) that, for an arbitrary o,, R will be complex. But, from physical con-
siderations, R (Rayleigh number) must be real. Therefore, the condition
that R be real implies a relation between the real and imaginary parts of
o,. But as we are interested in specifying the critical Rayleigh number
for the onset of instability via a state of purely oscillatory motion, we
suppose that o, is real in the above-mentioned equations and try to obtain
the conditions for such solutions to exist.

Assuming, then, that o, is real, equation (4) can be separated into
real and imaginary parts, both of which must vanish separately. This
leads after some simplifications to the pair of equations

b[b*+(I'b—1)Po®—PI%6}] =T [b*+(1—I'b)Po}+ Pl

(3) R =

2(14+176%) 2[0*+(1—20b)oy+I"al]
and the cubic equation in o3,
(6) Agot+Ay0t+ A0+ 45 =0,
where
Ao - F4b,

A, = —I*b(3Ib—P—2)—r*I"T,
A, = b(3I*0*—2I'Pb—3Ib+ P+ 1)+ I*(I'b+P—2)T,
Ay = —b3Ib—P—-1)+=*(Ib+P—1)T.

We now derive the asymptotic behaviour as T — co. In this limit
the roots of equation (6) can be represented as

2 3 i 02)52 4 .
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Substituting for (¢}); from (7) and (8) into (5), we get, after some
lengthy calculations,

R, B .
(9) Rf=T(Rio+Tl+ T: +) (¢ =1,2,3),
where
72 2n2(I'b+P)
Ry, =0, Ry =7(Fb+P)’ R, ZW’
10 2P% b[(I'b+P): — P*(I'b-+P)—2P*Th]
( ) Ru = Tz 21 — 2 ’
Iz I*(I's+P)x
% [, PYP—1)
B = nt [ [b + I ]

It is clearly seen from equations (9) and (10) that, in the limit as
T — oo, the solution R, corresponding to (¢?); has the lowest value. Con-
sequently, the required asymptotic behaviour of R and ¢} are given by the
equations

2P%b 2b® P2(P—1)
11 R = 7! T
(1) Iz + [ [b + Ir: ] 0™
and
7 2
(12) 0} =T+ — (1b—P)+0(L7).

The critical wave number (a,) can now be obtained by minimizing
R with respect to . The required condition dR/dx = 0 becomes, after
some simplifications,

8 *(P— * 2(P— P’T
a:“—}——3—n2w3+[27:4—I-P—(3~F2ﬂ]m2—%[7t4+ﬂ;2—1)]—ﬂ4( 3 )=0,

from which it follows that, for sufficiently large 7, the critical wave
number has the following asymptotic behaviour:
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Substituting for x, (x, = @) from (13) into (11) and (12), we finally
obtain

2P2 2T ~-1/4 4 P2T —1/2
(14) R, = [1+ 4 (P—) +—n2( ) +0(T~3/4)]

T 37\ 3 3 3
and
. 3m (PT\ 1 (Pr\TH
1 24P>  3P*(P—3) P2T)—1/2 _
- T 2 O T_S'M' .
+36{ S T By }( 3 +0( )]

Equations (13), (14) and (15) are thus the required analytic asympto-
tic expressions giving the critical wave number (a,), Rayleigh number
(R.) and frequency (o,), for the onset of convection as overstability in the
limit T — oo.

Finally we conclude with the following remarks:

(i) For large enough values of 7, the critical constants for the onset
of overstability obtained from these asymptotic expressions are in
excellent agreement with the results obtained by the exact solution [2],
illustrating thereby the correctness of both solutions. This agreement
is typically illustrated for a particular set of results corresponding to
P =100, I' = 1 and a few values of T in the following table:

Exact solution Asymptotic solution
T
ac I logyq (07)c | log;y B¢ ac logyy(07)c \ log;y B¢
10¢ 25.936 2.0966 4.3115 25.279 2.1072 4.3086
107 35.962 2.4464 4.3058 35.698 2.4497 4.3053
108 48.593 2.8120 4.3035 48.435 2.8134 4.3034
109 65.015 3.1844 4.3024 64.953 3.1848 4.3024

(ii) It is apparent from equation (14) that the critical Rayleigh number
(R,) decreases as the Taylor number (T') increases showing thereby the
destabilizing influence of rotation on the overstable mode of convection
in a viscoelastic fluid layer. This result is in contrast with its stabilizing
influence on a wiscous fluid [10].
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WPLYW SZYBKIEGO OBROTU NA NADSTABILNA SKEADOWA KONWEKCJI
W WARSTWIE CIECZY LEPKOSPREZYSTE]

STRESZCZENIE

Celem ninicjszej pracy jest wyprowadzenie wzoréw asymptotycznych (dla
duzych liczb Taylora T) na krytyczne wartosei liczby Rayleigha R, liczby falowej
ac i czestosei o, w przypadku nadstabilnej konwekeji w jednostajnie obracajacej sie
lepkosprezystej warstwie cieczy, ograniczonej dwiema powierzchniami swobodnymi.
Wartosei otrzymane z tych wzoréw éwietnie zgadzaja si¢ z wynikami numerycznymi
[2]. Znalezione wyrazenie dla krytycznej wartosei liczby Rayleigha potwierdza réwniez
destabilizujagey wplyw obrotu na stabilnag skladowa konwekeji w warstwie cieczy
lepkosprezystej [2], w przeciwieristwie do jego stabilizujacego wplywu na ciecz lepka.



