1973

FASC. 1

ON THE RADIUS OF UNIVALENCE OF CERTAIN ANALYTIC FUNCTIONS

 $\mathbf{B}\mathbf{Y}$

HASSOON S. AL-AMIRI (BOWLING GREEN, OHIO)

1. Introduction. Let (S) denote the class of functions analytic and univalent in the unit disc E(|z| < 1) and of the form

$$F(z) = z + a_2 z^2 + \dots$$

By a convex function F(z) we will mean $F(z) \in (S)$ whose range is a convex set. Such a function satisfies the differential inequality

$$\operatorname{Re} \{zF''(z)/F'(z)+1\} > 0$$
 for all z in E.

Denote this subclass by (K). By a starlike function F(z) we will mean $F(z) \epsilon(S)$ whose range is a starlike set with respect to the origin. Such a function satisfies the differential inequality

$$\operatorname{Re}\left\{zF'(z)/F(z)\right\} > 0$$
 for all z in E.

Denote this subclass by (S^*) . A trivial consequence of the abovementioned is that a function F(z) is convex if and only if zF'(z) is starlike. By a close-to-convex function F(z) we will mean $F(z) \in (S)$ whose range is close-to-convex set. Denote this class by (C). If $F(z) \in (C)$, then there exists a $g(z) \in (S^*)$ such that

$$\operatorname{Re}\left\{zF'(z)/g(z)\right\} > 0$$
 for all z in E .

The class (C) has been introduced by Kaplan [1]. Note that

$$(K) \subset (S^*) \subset (C) \subset (S).$$

Recently Libera [2] proved that if f(z) is a member of (C), (S^*) or (K), then

$$F(z) = (2/z) \int_0^z f(t) dt$$

belongs to (C), (S^*) or (K), respectively. Livingston [3] has studied the converse problem and obtained sharp results. Specifically, he has shown

that if F(z) is a member of (C), (S^*) or (K), then $f(z) = \frac{1}{2}(zF(z))'$ is a member of (C), (S^*) or (K) for $|z| < r_1 = \frac{1}{2}$, respectively.

The object of this paper is to improve upon most of Livingston's results by involving the second coefficient in the power expansion of F(z). All results are sharp.

2. We need the following lemmas:

LEMMA 1. Let $\varphi(z) = b_1 + b_2 z + \dots$ be an analytic map of the unit disc E into itself. Then

$$|\varphi(z)| \leq (|b_1| + |z|)/(1 + |b_1||z|)$$
 for all z in E.

This lemma may be found in [4], p. 167.

LEMMA 2. Let $\omega(z) = z\varphi(z) = b_1z + b_2z^2 + \dots$ be an analytic map of the unit disc E into itself. Then

$$|\omega'(re^{i\theta})| \leqslant (r+|\varphi(re^{i\theta})|)(1-r|\varphi(re^{i\theta})|)/(1-r^2).$$

Proof. Since $\omega(z) = z\varphi(z)$, $\omega'(z) = z\varphi'(z) + \varphi(z)$, and so

$$|\omega'(z)| \leqslant r |\varphi'(z)| + |\varphi(z)|, \quad |z| = r.$$

Applying the maximum principle, one can easily show that $|\varphi(z)| < 1$ in the unit disc E. Hence (see [4], p. 168)

$$|\varphi'(z)| \leqslant (1-|\varphi(z)|^2)/(1-r^2)$$
 for all $z=re^{i\theta}$ in E .

Substituting this estimate, we obtain

$$|\omega'(z)| \leq r(1-|\varphi(z)|^2)/(1-r^2)+|\varphi(z)|$$

= $(r+|\varphi(z)|)(1-r|\varphi(z)|)/(1-r^2),$

valid for r < 1. The proof of the lemma is complete.

Remark. We remark in passing that $r+|\varphi(z)| \leq 1+r|\varphi(z)|$ for all r<1 and $|\varphi(z)|<1$. Thus

$$|\omega'(z)| \leqslant (r+|\varphi(z)|)(1-|\omega(z)|)/(1-r^2)$$

 $\leqslant (1-|\omega(z)|^2)/(1-r^2).$

The right-hand side of this inequality is the well-known estimate for the derivative of the function of bound one in the unit disc. Lemma 2 is, therefore, an improvement on this known estimate when $\omega(0) = 0$.

With no loss of generality, we will replace the second coefficient a_2 in the power expansion of F(z) by $|a_2|$. We proceed to prove the following theorem:

THEOREM 1. Let $F(z) = z + 2pz^2 + \dots$ be a member of the class (S^*) , $f(z) = \frac{1}{2}(zF(z))'$. Then $p \leq 1$, and f(z) is starlike for $|z| < r_p$, where r_p is the least positive root satisfying $2pr^3 + 3r^2 - 1 = 0$. This result is sharp.

Proof. Since $F \in (S^*)$, it is well known that $2p \leq 2$ or $p \leq 1$. We also have $\text{Re}\{zF'(z)/F(z)\} > 0$. Consequently, there exists a function $\omega(z) = -pz + \ldots, |\omega(z)| < 1$, regular in E such that

$$zF'(z)/F(z) = \left(zf(z) - \int_0^z f(t)\,dt\right) / \int_0^z f(t)\,dt = \left(1 - \omega(z)\right)/\left(1 + \omega(z)\right) \quad \text{for } |z| < 1.$$

Solving for f(z), we have

$$f(z) = \left(2\left/\left(z\left(1+\omega\left(z\right)\right)\right)\right)\int_{0}^{z}f(t)\,dt.$$

A computation yields

$$zf'(z)/f(z) = \frac{1-\omega(z)-z\omega'(z)}{1+\omega(z)} = \frac{1-\omega(z)}{1+\omega(z)} - \frac{z\omega'(z)}{1+\omega(z)}.$$

To show that f(z) is starlike in $|z| < r_p$, we must show that

$$\operatorname{Re} \left\{ z f'(z) / f(z) \right\} > 0$$
 in $|z| < r_p$.

This condition is equivalent to

 $(1) \quad \operatorname{Re}\left\{\left(1-\omega(z)\right)/\left(1+\omega(z)\right)\right\} > \operatorname{Re}\left\{z\omega'(z)/\left(1+\omega(z)\right)\right\} \quad \text{ for } |z| < r_p.$

On the left-hand side of (1) substitute

$$\operatorname{Re}\{(1-\omega(z))/(1+\omega(z))\} = (1-|\omega(z)|^2)/|1+\omega(z)|^2,$$

and on the right-hand side of (1) substitute

$$\operatorname{Re}\left\{z\omega'(z)/(1+\omega(z))\right\} \leqslant |z\omega'(z)/(1+\omega(z))|.$$

Inequality (1) will be satisfied if

(2)
$$(1 - |\omega(z)|^2)/|1 + \omega(z)|^2 > |z| |\omega'(z)|/|1 + \omega(z)|$$
 for $|z| < r_p$.

From Lemma 2,

$$|\omega'(z)| \leq (r + |\varphi(z)|)(1 - |\omega(z)|)/(1 - r^2),$$

where $\omega(z) = z\varphi(z) = z(-p+...)$, |z| = r. Hence inequality (2) will be satisfied if

$$(1-|\omega(z)|^2)/|1+\omega(z)|^2 > r(r+|\varphi(z)|)(1-|\omega(z)|)/(1-r^2)|1+\omega(z)|$$
 for $|z|=r < r_n$.

Simplification of this yields

(3)
$$(1-r^2)/r > r + |\varphi(z)|.$$

But Lemma 1 gives the estimate $|\varphi(z)| \leq (p+r)/(1+rp)$, so inequality (3) will be satisfied if

$$(1-r^2)/r > r + (p+r)/(1+rp)$$
.

This reduces to $2pr^3 + 3r^2 - 1 < 0$, which gives the required root. When p = 1, $2r^3 + 3r^2 - 1 = 0$ implies $r_1 = 1/2$ which is Livingston's. Simple analysis shows that, for p < 1, $r_p > 1/2$.

To see that the result is sharp, consider the function

$$F(z) = z/(1-2pz+z^2) = z+2pz^2+\ldots$$

On one hand, we have

$$zF'(z)/F(z) = (1-z^2)/(1-2pz+z^2)$$

= $-1+2/(1+z(z-p)/(1-pz)) = \frac{1-u(z)}{1+u(z)}$,

where u(z) = z(z-p)/(1-pz). Since $p \le 1$,

$$|u(z)| = |z(z-p)/(1-pz)| \le 1$$
 for $|z| \le 1$.

This shows that

$$\operatorname{Re}\left\{zF'(z)/F(z)\right\} > 0$$
.

Thus $F \in (S^*)$. On the other hand,

$$f(z) = \frac{1}{2}(zF(z))' = z(1-pz)/(1-2pz+z^2)^2.$$

Consequently,

$$zf'(z)/f(z) = (1-3z^2+2pz^3)/(1-pz)(1-2pz+z^2),$$

and thus zf'(z)/f(z) = 0 for $z = -r_p$. The function f(z) is, therefore, not starlike in any circle |z| < r if $r > r_p$. This completes the proof of Theorem 1.

THEOREM 2. Let $F(z) = z + pz^2 + \ldots$ be a member of the class (K), $f(z) = \frac{1}{2}(zF(z))'$. Then $p \leq 1$, f(z) is univalent in E and is convex for $|z| < r_p$, where r_p is the same as in Theorem 1. This result is sharp.

Proof. Since F(z) is convex, it is well known that $p \leq 1$. Consider

$$zf'(z)/zF'(z) = f'(z)/F'(z) = 1 + \frac{1}{2}(zF''(z)/F'(z)).$$

It follows that $\text{Re}\{zf'(z)/zF'(z)\} > 1 + \frac{1}{2}(-1) = \frac{1}{2} > 0$ for z in E. Hence f(z) is close-to-convex (relative to the starlike zF'(z)) and, therefore, is univalent in E.

To show that f(z) is convex for $|z| < r_p$, we note that

$$zf'(z) = \frac{1}{2} (z(zF'(z)))'.$$

Since zF'(z) is starlike in E, Theorem 1 and (4) show that zf'(z) is starlike for $|z| < r_p$, where r_p is the same as in Theorem 1. Thus f(z) is convex for $|z| < r_p$.

This result is sharp for the function

$$F(z) = (\frac{1}{2}i\sin\theta)\log((1-ze^{-i\theta})/(1-ze^{i\theta})),$$

with $p = \cos \theta < 1$. For this function we get $zF'(z) = z/(1-2pz+z^2)$, p < 1. As for p = 1, we consider F(z) = z/(1-z). In both cases, however, we get

$$zF'(z) = z/(1-2pz+z^2),$$
 where $p \leqslant 1$.

The function zF'(z), as is given above, is a member of the class (S^*) which has been verified in the proof of Theorem 1. Using (4) and a similar calculation to that performed in the proof of Theorem 1, one obtains

$$zf''(z)/f'(z)+1 = (1-3z^2+2pz^3)/(1-pz)(1-2pz+z^2).$$

Hence zf''(z)/f'(z)+1=0 for $z=-r_p$. This completes the proof of Theorem 2.

THEOREM 3. Let $F(z) = z + pz^2 + \dots$ be analytic with $\operatorname{Re}\{F'(z)\} > 0$ for |z| < 1, $f(z) = \frac{1}{2}(zF(z))'$. Then $p \le 1$, and $\operatorname{Re}\{f'(z)\} > 0$ for $|z| < r_p$, where r_p is the smallest positive root satisfying

$$r^4 + 3pr^3 + 2r^2 - rp - 1 = 0.$$

This result is sharp.

Proof. Let $F'(z) = \varrho(z) = 1 + 2pz + \ldots$, where $\text{Re}\{\varrho(z)\} > 0$ for |z| < 1. Then it is well known that $2p \le 2$ or $p \le 1$ (see [4], p. 170). We also have

$$2f'(z) = 2F'(z) + zF''(z) = 2\varrho(z) + z\varrho'(z).$$

Hence, to show that $\text{Re}\{f'(z)\} > 0$ for $|z| < r_p$ is equivalent to

(5)
$$2\operatorname{Re}\{\varrho(z)\} > |z\varrho'(z)| \quad \text{for } |z| < r_p.$$

Since $\operatorname{Re}\{\varrho(z)\} > 0$, there exists a regular function $\omega(z)$ in E such that $|\omega(z)| < 1$ and

(6)
$$(\varrho(z)-1)/(\varrho(z)+1) = \omega(z) = z\varphi(z) = pz+\ldots$$

It follows from (6) that

$$\varrho(z) = (1 + \omega(z))/(1 - \omega(z)).$$

Thus

$$\varrho'(z) = 2\omega'(z)/(1-\omega(z))^2.$$

From the estimate of Lemma 2 and the above-mentioned fact, we have

(7)
$$|\varrho'(z)| \leq 2(r+|\varphi(z)|)(1-|\omega(z)|)/(1-r^2)|1-\omega(z)|^2,$$

where $\varphi(z) = p + \dots$ as in (6), |z| = r. On the left-hand side of (5) substitute

$$\operatorname{Re}\{\varrho(z)\} = (1 - |\omega(z)|^2)/|1 - \omega(z)|^2,$$

and on the right-hand side of (5) substitute the estimate in (7). Therefore, inequality (5) is satisfied if

$$(8) \quad 2(1-|\omega(z)|^2)/|1-\omega(z)|^2 > 2r(r+|\varphi(z)|)(1-|\omega(z)|)/(1-r^2)|1-\omega(z)|^2$$

is valid for $|z| < r_p$. Simplification of (8) yields

$$(1-r^2)/r > (r+|\varphi(z)|)/(1+r|\varphi(z)|).$$

Applying Lemma 1 to $\varphi(z) = p + ...$ in the above-mentioned inequality, we then have after simplification

$$(1-r^2)/r > (p+2r+pr^2)/(1+2rp+r^2).$$

This reduces to

$$r^4 + 3pr^3 + 2r^2 - rp - 1 < 0,$$

which gives the required root r_p .

When p = 1, $r^2 + r - 1 = 0$, thus $r_1 = \frac{1}{2}(5^{1/2} - 1)$, which is Livingston's.

The result is sharp for F(z) for which

$$F'(z) = (1-z^2)/(1-2pz+z^2) = 1+2pz+\ldots$$

For this function

$$\operatorname{Re}\{F'(z)\} = \operatorname{Re}\{(1-z^2)(1-2p\bar{z}+\bar{z}^2)/|1-2pz+z^2|^2\}.$$

Thus $\text{Re}\{F'(z)\} > 0 \text{ for } |z| < 1 \text{ if }$

$$\operatorname{Re}\{(1-z^2)(1-2p\bar{z}+\bar{z}^2)\}>0.$$

Let $x = \text{Re}\{z\}$, r = |z|. Then the above-mentioned inequality is equivalent to

$$(9) 1-r^4-2px(1-r^2)>(1-r^2)(1+r^2-2pr)>0.$$

Let $g(r) = 1 + r^2 - 2pr$. The function g(r) attains a positive minimum at r = p with p < 1. Thus (9) implies that $\text{Re}\{F'(z)\} > 0$ for |z| < 1 and p < 1.

For p=1, F'(z)=(1+z)/(1-z), and, therefore, $\operatorname{Re}\{F'(z)\}>0$ for |z|<1. Thus $\operatorname{Re}\{F'(z)\}>0$ for |z|<1 and $p\leqslant 1$.

From 2f'(z) = 2F'(z) + zF''(z) we have, by substitution,

$$f'(z) = \frac{(1-z^2)(1-2pz+z^2)+z(p-2z+pz^2)}{(1-2pz+z^2)^2}.$$

We then have f'(z) = 0, when $1 - pz - 2z^2 + 3pz^3 - z^4 = 0$ or $z = -r_p$. Thus $\text{Re}\{f'(z)\} \gg 0$ in any circle |z| < r if $r > r_p$. This completes the proof of Theorem 3.

REFERENCES

- [1] W. Kaplan, Close-to-convex schlicht functions, The Michigan Mathematical Journal 1 (1952), p. 169-185.
- [2] R. J. Libera, Some classes of regular univalent functions, Proceedings of the American Mathematical Society 16 (1965), p. 755-758.
- [3] A. E. Livingston, On the radius of univalence of certain analytic functions, ibidem 17 (1966), p. 352-357.
- [4] Zeev Nehari, Conformal mapping, New York 1952.

BOWLING GREEN STATE UNIVERSITY

Reçu par la Rédaction le 3. 12. 1971