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1. Introduction. Let (S) denote the class of functions analytic- and
univalent in the unit disc E (|2| < 1) and of the form

F(z) =2z4+ay22+ ...

By a convex function F(z) we will mean F(z)e(S) whose range is
a convex set. Such a function satisfies the differential 1nequa,11ty

Ref{eF" (2)|F (2) +1} >0 for all zin E.

Denote this subclass by (K). By a starhke functzon F(2) we Wlll mean
F(2)e(8) whose range is a starlike set with respect to the origin. Such
a function satisfies the differential inequality

Re{zF'(2)/F(2)} > 0. for all z in E.

Dehote this. subclass by (8*). A trivial consequence of the above-
mentioned is that a function F(z) is convex if and only if zF”(2) is starlike.
By a close-to-convex function F(z) we will mean F (2) ¢ (8) whose range
is close-to-convex set. Denote this class by (O’) If F(2)e(C), then there
exists a g(2)e(S*) such that '

Re{eF’ (2)/g(2)} >0 for all z in E.
The class (O) has been mtroduced by Kaplan [1]. Note that
(E) = (8%) = (0) = (8). ,
Recently Libera {2] proved that if: f(2): is -a- member of (0), (8% o
(K), then
14
F(2) = (2/2) [f(t)dt
.0

belongs to (C), (8*) or (K), respectively. Livingston [3] has studied the
converse problem and obtained sharp results. Specifically; he has shown
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that if F(2) is a member of (C), (8*) or (K), then f(2) = }(2F(z))’ is a mem-
ber of (C), (8*) or (K) for |2| < r, = }, respectively.

The object of this paper is to improve upon most of Livingston’s
results by involving the second coefficient in the power expansion of
F(z). All results are sharp.

2. We need the following lemmas:

LeMMA 1. Let ¢(2) = b, +byz+ ... be an analytic map of the unit
disc E into viself. Then

lp(2)| < (161 + [21) /(L +1b4] [2])  for all z in E.
This lemma may be found in [4], p. 167.
LEMMA 2. Let w(2) = 2p(?) = b2+ b,224 ... be an analytic map
of the unit disc E into ttself. Then
| (re®)] < (r + (7)) (L — 7] (re®) ) /(1 —77).
Proof. Since w(z) = 2p(2), o’ (2) = 2¢'(2) +¢(2), and so
lo’(2)] < rlp’ ()| +lp(2)], |2 =r.

Applying the maximum principle, one can easily show that [g(2)] < 1
in the unit disc E. Hence (see [4], p. 168)

P (@) <(1—Ilp))/(1—r*) for all z =ré® in E.
Substituting this estimate, we obtain

o’ (2)] < r(1—lp(2)*) (1 — %)+ @ (2)]
= (r+le@) )1 —rlp(2)) /(1 —r?), !
valid for r < 1. The proof of the lemma is complete.

Remark. We remark in passing that r+ |p(2)| <1+7|p(2)| for all
r <1 and |¢(?)] < 1. Thus

o’ (2) < (r+ lp(2)) (1 — lo (2)) /(1 —7?)
< (1= lo ()1 —1).

The right-hand side of this inequa,lity is the well-known estimate
for the derivative of the function of bound one in the unit disc. Lemma 2
i3, therefore, an improvement on this known estimate when w(0) = 0.

With no loss of generality, we will replace the second coefficient @y
in the power expansion of F(z) by |a,]. We proceed to prove the following
theorem:

THEOREM 1, Let F(2) = 2+ 2p22+ ... be a member of the class (S*),
f(z) = ‘HzF(z))'. Then p <1, and f(2) is starlike for |z| <r,, where r,
is the least positive root satisfying 2pr®+3r:—1-= 0. This result is sharp.
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Proof. Since Fe(8*), it is well known that 2p <2 or p < 1. We
also have Re{zF'(z)/F(z)} > 0. Consequently, there exists a function
w(®) = —pz+ ..., |lw(?)| < 1, regular in F such that

2F' (2)|F (2) = (zf(z)— ] f(t)dt) [ [fwdt=(1—w(@)/1+o() for|l<1.
0 0
Solving for f(z), we have

f(e) = (2 /(z(1+w(z)))) [ fwma.
A computation yields 0
l1-w(z)—20'(2) 1l—ow(z) _ 2w’ (2)
1+ w(2) 1+w(z) 1+4o(2)’
To show that f(2) is starlike in |2| < r,, we must show that
Re{zf' (2)[f(2)} >0 in |2| <7,.
This condition is equivalent to
1) Ref(l—w(2)/(L+ (@)} > Refew (2)/(1+w(2)] for |z] <r,.
On the left-hand side of (1) substitute
Re{(l—o(2))/(1+ w(2)} = (1—lo(@)?)/1+ o),
and on the right-hand side of (1) substitute
Re e’ (9)/(1+0(2)] < |20’ (/14 0 (2).
Inequality (1) will be satisfied if
2 (L—le@P)/IL+o@P> ko @1+ for ] <,
From Lemma 2,
o’ (2)] < (r+ lo(2) 1) (1 — lo (2)]) /(1 —r?),

where w(2) =2p(2) =2(—p+...), 2| =r. Hence inequality (2) will
be gatisfied if

(1—lw(@)P)/1+ o @)} > r(r+ lo(2)]) (1 — o (2)])/(1—7r3)1+ w(2)|
for |2| =r<r,.

' (2)[f(2) =

Simplification of this yields
(3) (L =73 [r>r+lp(2)l.

But Lemma 1 gives the estimate |¢(2)| < (p-+)/(1+ rp), so inequal-
ity (3) will be satisfied if

(1—=r?)fr > r+(p+7)/(1+rp).
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This reduces to 2pr®43r%—1 < 0, which gives the required root.

When p =1, 2r*+3r* —1 = 0 implies r, = 1/2 which is Livingston’s.
Simple analysis shows that, for p <1,7,> 1/2.

To see that the result is sharp, consider the function

F(2) = 2/(1—2pz+22) = 2+2p22+ ...
On one hand, we have
2F' (2)|F (2) = (1—22)/(1—2pz +2?)

1—u(z)

= —1+4+2/1+2(z—p)/(1—p2)) = 1+u(z)

?

where u(2) = 2(z—p)/(1—pz). Since p <
lu(2)| = |2(2—p)/(1—p2)| <

This shows that
Re{zF'(2)/F(2)} > 0.

Thus Fe(8%). On the other hand,
1(2) = HEF @) = #(1—pa) (1 —2p2+ 222,
Consequently,
of (2)If(2) = (1—322+2p2) [(1—p2) (1 —2p2-+2%),

and thus 2f'(2)/f(z) =0 for 2 = —»,. The function f(2) is, therefore,
not starlike in any circle |2| < r if r > r,. This completes the proof of
Theorem 1. | 5
THEOREM 2. Let F(z) = 2+ p2%+ ... be a member of the class (K),
f(2) = 3 (2F(2)). Then p < 1, f(2) is univalent in E and is convezx for |2| < r,,
where r,, i8 the same as in Theorem 1. This resull is sharp.
Proof. Since F(z) is convex, it is well known that p < 1. Consider

. 2f ()[eF (2) = [ (2)|F'(2) = 1+3(eF" (2)[F' (2)).

It follows that Re{zf (2)/2F (2)} >1+3(—1) =} >0 for 2z in E.
Hence f(2) is close-to-convex (relative to the starlike zF'(z)) and, there-
fore, is univalent in FE.

To show that f(z) is convex for |2| < r,, we note that

(4) of'(2) = }(e(zF" (2))) .

Since zF"(2) is starlike in E,; Theorem 1 and (4) show that 2f'(z) is
starlike for [¢| < r,, where 7, is the same as in Theorém 1. Thus f(z) is
convex for || <7,.
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This result is sharp for the function
F(z) = (4isin 0)10g‘((1 —zg—"")/(l _zeio))’

with p = cos0 < 1. For this function we get 2F'(z2) =2z/(1—2pz+22),
p <1. As for p =1, we consider F(z) = z/(1—=). In both cases, how-
ever, we get

2F'(2) = z/(1—2pz+22%), where p<1.

The function 2F"(z), as is given above, is a member of the class (8*)
which has been verified in the proof of Theorem 1. Using (4) and a similar
calculation to that performed in the proof of Theorem 1, one obtains

o (2)[f' (2)+1 = (1 —3224+2p2%) /(1 — p2) (1 — 2pz + 2%).

Hence zf"’(2)/f'(2)4+1 =0 for 2 = —r,. This completes the proof
of Theorem 2.

THEOREM 3. Let F(z) = z+p2®+ ... be analytic with Re{F (2)} > ¢
for |2l <1, f(2) = }(zF(2)). Then p <1, and Re{f'(2)} > 0 for |2| < r,,
where r, is the smallest positive root satisfying

ré4+-3pr3+2r2—rp—1 = 0.

This result is sharp.

Proof. Let F'(2) = o(2) =1+2p2z+ ..., where Re{p(2)} > 0 for
|2 < 1. Then it is well known that 2p <2 or p <1 (see [4], p. 170). We
also have

of (2) = 2F (1) +2F" (2) = 20(2)+2¢ (2)-
Hence, to show that Re{f’(z)} > 0 for |2| < r, is equivalent to-
(5) 2Re{o(2)} > |20’ ()| for |2] <7,.

Since Re{o(2)} > 0, there exists a regular function w(2) in E such
that |w(2)] <1 and '

(6) (o(2) —1)/[e(2)+1) = w(2) = 2p(2) = p2+ ...
It follows from (6) that

0(2) = (1+w(2))/(1—w(2)).
Thus _
0 (2) = 20 (2)/(1 — w(2))*.

From the estimate of Lemma 2 and. the above-mentioned fact, we
have

(7) le"(2)] < 2(r+ lp(2)1) (1 = | (2)I)/ (1 =) |1 — w(2) ,
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‘where ¢(2) = p+ ...a81n (6), |2| = r. On the left-hand side of (5) substitute
Re{o(2)} = (L—lo(2)’)/11 —w(2)P,
and on the right-hand side of (5) substitute the estimate in (7). Therefore,
inequality (5) is satisfied if
(8) 2(1—lo(@)l)/I1—w @ > 2rlr+ @) (1— o (2)])/(1— )1 — o)
is valid for |2| < 7,. Simplification of (8) yields
(L= fr > (r+lp@I)/(L+7lp(2)]).
Applying Lemma 1 to ¢(2) = p+ ... in the above-mentioned ine-
quality, we then have after simplification
(1 =7 /r > (p+2r+pr2) /(1 +2rp +1r?).
This reduces to
r¢43pr3+-2r2—rp—-1<0,
which gives the required root r,,.
When p =1, r24r—1 = 0, thus r, = }(6"*—1), which is Living-
ston’s.
The result is sharp for F(z) for which

F'(2) = (1—22))(1—2pz+22) =1+42pz+ ...
For this function
Re{F'(2)} = Re{(1—22%)(1—2pz+722)/|1—2pz+ 22|%}.
Thus Re{F'(2)} > 0 for [2| <1 if
Re{(1—2%)(1 —2pz+22)} > 0.

Let = Re{z2}, r = |¢|. Then the above-mentioned inequality is
equivalent to
{9) 1—rt—2px(1—7%) > (1—r3)(1+r2—2pr)> 0.

Let g(r) = 1+ 72— 2pr. The function ¢(r) attains a positive minimum
at r = p with p <1. Thus (9) implies that Re{F’'(2)} > 0 for |2| < 1
and p < 1.

For p =1, F'(2) = (1+2)/(1—=2), and, therefore, Re{F’'(2)} > 0
for |2| < 1. Thus Re{F'(2)} > 0 for [2| <1 and p < 1.

From 2f'(2) = 2F'(2) +2F" (¢) we have, by substitution,
, (1 —22)(1 —2p2z+ 2%) +2(p — 22 +p=2?)
fle) = I .

(1—2pz+2%)

We then have f'(2) = 0, when 1 —pz—22243p2®—2* = 0orz = —r,.
Thus Re{f'(z)} » 0 in any circle |2| <7 if > r,. This completes the
proof of Theorem 3.
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