FASC. 1

EVERY LATTICE IS EMBEDDABLE IN THE LATTICE OF T₁-TOPOLOGIES

BY

RICHARD VALENT (BOULDER, COLORADO)

In this note we answer one of the questions posed by R. Duda and stated as P 749. As usual, $\Sigma(X)$ denotes the lattice of topologies on a fixed set X, and $\Lambda(X)$ denotes the lattice of T_1 -topologies on X. R. E. Larson has already solved the first part of Duda's problem in the affirmative:

Every lattice can be realized as a sublattice of $\Sigma(X)$ for some set X (see P 749, R 1, p. 161).

Our solution depends on Larson's result and on the following theorem: Theorem 1. For any infinite X, $\Sigma(X)$ is embeddable in $\Lambda(X)$.

Proof. It suffices to prove that, given an infinite set Y, there exists a set X such that |X| = |Y| and $\Sigma(Y)$ is embeddable in $\Lambda(X)$. It is convenient to break the proof into steps.

(1) Let Y be an infinite set, and let $\{J_y|y \in Y\}$ be a family of pairwise disjoint sets, each of countably infinite cardinality, such that $J_y \cap Y = \{y\}$ for each $y \in Y$. Let $X = \bigcup \{J_y|y \in Y\}$, and let $\mathscr D$ be the T_1 -topology on X whose open sets are

$$\{\emptyset\} \cup \{A \subseteq X \,|\, (X-A) \cap J_y \text{ is finite for each } y \in Y\}.$$

For $B \subseteq Y$, let $B^* = \bigcup \{J_y | y \in B\}$. Define a function $f: \Sigma(Y) \to \Lambda(X)$ by $f(\mathscr{I}) = \mathscr{D} \vee \{G^* | G \in \mathscr{I}\}$. We claim that f is a 1-1 homomorphism of $\Sigma(Y)$ into $\Lambda(X)$. The following fact is useful in establishing this:

(2) For $\mathscr{I} \in \Sigma(Y)$, $f(\mathscr{I}) = \{G^* \cap D \mid G \in \mathscr{I} \text{ and } D \in \mathscr{D}\}$. To see this set \mathscr{A} equal to the latter set. Because $\mathscr{D} \cup \{G^* \mid G \in \mathscr{I}\} \subseteq \mathscr{A} \subseteq f(\mathscr{I})$, it suffices to prove that \mathscr{A} is a topology on X. Note that \mathscr{O} , $X \in \mathscr{A}$, and that \mathscr{A} is closed under finite intersections. Let $G_i \in \mathscr{I}$ and $D_i \in \mathscr{D}$ for each $i \in I$. Then

$$0 = \bigcup \{G_i^* \cap D_i | i \in I\} = G^* \cap D,$$

where

$$G = \bigcup \{G_i | i \in I\}$$

and

$$D = (\bigcup \{J_y \cap \emptyset \mid y \in G\}) \cup (\bigcup \{J_z \mid z \in Y - G\}).$$

Then $D \in \mathcal{D}$ and \mathscr{A} is a topology on X.

(3) $f(\mathscr{S} \vee \mathscr{I}) = f(\mathscr{S}) \vee f(\mathscr{I})$ for all \mathscr{S} , $\mathscr{I} \in \Sigma(Y)$. Because f is monotonic, the relation \supseteq holds. Let $\emptyset \in f(\mathscr{S} \vee \mathscr{I})$. By (2),

$$0 = \bigcup \{ (G_i^* \cap D_i) \cap (H_i^* \cap D_i) | i \in I \},$$

where $G_i \in \mathcal{S}$, $H_i \in \mathcal{S}$, and $D_i \in \mathcal{D}$ for all $i \in I$. It follows immediately that $\emptyset \in f(\mathcal{S}) \vee f(\mathcal{S})$.

(4) $f(\mathcal{S} \wedge \mathcal{I}) = f(\mathcal{S}) \wedge f(\mathcal{I})$ for all \mathcal{S} , $\mathcal{I} \in \Sigma(Y)$. By the monotonicity of f, the relation \subseteq holds. Let $\emptyset \in f(\mathcal{S}) \wedge f(\mathcal{I})$. By (2),

$$0 = G^* \cap D = H^* \cap E$$
 for some $G \in \mathcal{S}$, $H \in \mathcal{I}$, and $D, E \in \mathcal{D}$.

For any $y \in G$, $J_y \cap H^* \neq \emptyset$, so $G \subseteq H$. By symmetry, G = H and, therefore,

$$\emptyset = G^* \cap (D \cap E) = H^* \cap (D \cap E) \in f(\mathscr{S} \wedge \mathscr{I}).$$

(5) f is 1-1. For suppose \mathscr{S} , $\mathscr{I} \in \Sigma(Y)$ are distinct; say $G \in \mathscr{S} - \mathscr{I}$. Then $G^* \in f(\mathscr{S}) - f(\mathscr{I})$; otherwise $G^* = H^* \cap D$ for some $H \in \mathscr{I}$ and some $D \in \mathscr{D}$. But then $G = H \in \mathscr{I}$, a contradiction.

This completes the proof.

COROLLARY. Given a lattice \mathfrak{A} , there exists an X such that \mathfrak{A} is embeddable in $\Lambda(X)$.

Proof. By Larson's result, there exists an X such that \mathfrak{A} is embeddable in $\Sigma(X)$. Since $\Sigma(X)$ is embeddable in $\Sigma(Z)$ for any Z containing X, we may assume X is infinite. By Theorem 1, the statement follows.