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Primes represented by quadratic polynomials
in two variables
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H. TWANIEC (Warszawa)

Dedicated to C. L. Siegel

Introduction. Let P(#, y) = axz®+boy + ¢y® - ex - fy +¢ be a primitive
quadratic polynomial with integer coefficients. If P(wz, ) is reducible
in Q(x, ) the question whether it represents infinitely many primes can
be settled easily using Dirichlet’s theorem on arithmetic progression.
It P{w, y) is irreducible in @[z, ¥] an obvious necessary condition iy thab
P should represent avbitrarily large odd integers. The aim of this paper
is to show that if P depends essentially on two variables (i.e. 0P/0% and

" @P/#y are linearly independent) the above condition is also sufficlent.

We prove
TueorEM 1. Lt

Pla,y) = azt+bay +ey-+ew +fy +ge Bl v,

degP =2, (a,b, 0,6, f,9) =1, P(s,y) be irreducible in @ [z,y], represent
arbitrarily large odd nwmbers and depend essentially on two variables. Then

(i) NlognN < > 1 if D= af*—bef+eet+(b2—dac)g =0

PN or A4 = b*—4dac is a perfecl square
2B (w1 perf q 3

(ii) N]og—mw < Z’ 1 € Nlog™*N if D #0 and 4 15 different
—I’(r,w) | from a perfect square. :

The estimation (ii) has been proved in [4] for e =f = (.

A proof of (ii) for the case, where 4 is a fundamental diseriminant
has heen outlined in [3]. The proof of (i) i based mainly on the theorem
on arithmetic progression for the fields ¢ and Q(V— ). The proot of (ii)
involves in an essential manner the method of §-dimensional sieve, Bom-
bieri’s mean value theorem and algo Lemma 12 which allows one to reduce
the problem. of representation of integers from suitable arithmetic pro-
gressions by P(w,y) to the problem of representation of certain other
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integers by the quadratic form az® - bay + ey The difficulties in obtaining
an asymptotic formula are of two kinds. Firgt, Lemma 12 allows one to
count only primes p represented by P(z, y) belonging to special arithmetic
progressions. This difficulty could be overcome by using fhe arithmetic
of ideals in Z[V4] as in [3] and besides the method of Bredihin and
Linnik {1]. The other difficulty, much more serious congists in the incapa-
bility of the {-dimensional sieve fo give the asyvioptotic value of the
estimated guantity. Therefore 1t does not seem possible to obtain on the
present lines the asymptotic formula in (ii).

On the other hand an asymptotic formula in (i) ecan be obtained by
improving Lemma 11 on the lines indicated by . Tecko [2]. Tn tho case
of A< 0 he hag actually formulated in [2], p. 48, the statemont which
eagily implies Lemma 11 with an asymptottc formula in place of the
Inequality.

Let I(x) = Q)+ L{w) + g @z, ..., 5, ] and deglf' == 2, where &(x)
and I (x) are a quadratic and linear form, respectively. We say that F(a)
depends essentially on at least two variables if there exists mo affine
transformation £: E® — E" which transforms F into a polynomiad in one
variable. Theorem 1'implies the following exfension of Theorem 1 of [6].

TemorEM 2. Lot F(x) be a quadratic polynomial, integer valued (i.e.
taking integer velues in integer poimts) amd irreducible in Qlory ey ]

Let F () assume positive values prime to an arbitrary given non-zero intoger. -

Then if F{x) depends essentially on at least two variables, it represemts
infinitely many primes.

‘Proof. By Lemma 1 from [6] the coefficients of 2F () are integers.
Let fle GL(n, @) transform & to a diagonal form. Let B # 0 be an integer
such that the elements of BF are integers. By the assumption there oxists
an integer wveector @ such that (F a}, 2B B C(2G)) =1, where G(2G)
is the content of 26, thus we can assume that (g, 2R"|Z|C(26)) =
Let r be the rank of & and put @ = 2REy. Thus the polynomial

— a2 D byt

gzl

Foly) = F(@) = agyi+ .. + a2 — iy —
is irveducible with integer coefficients, (g, 2a,, 2as, cony 2a,) == L and
F.(y) assumes arbitrarily large values. By Lemma 2 from. [6] it follows
that I, (y) assumes integer values prime to an arbitrary given non-zéro
integer. Since polynomials equivalent by an affine transformation depend
essentially on the same number of variables, F,{(y) depends essentially
on at least two variables. Clearly every integer represented by F,(y)
is represented by I (a). Therefore, it is enough to prove that there exist

 infinitely many primes represented by F, (y). We distinguish the following
two cases: '
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a) There exists an ¢ > r, i < % such that b; 5= 0.
Tt ¢ = (6y, ..., ¢,) be an integer vector such that (F,{e),d;] = 1.
Then

D iz X 1 = a(N, b, Pyle)) > Nlog™' N
pEN wsN
p=F1(y) D=F(C1, cens O 1, X4 G415 11 Oy

b) For each @ > #, i <

Since F,(y) assumes arbitrarily large values, we have !> 1. Since
Fi(y) depend essentially on at least two variables we have r>= 2.
If r = 2, the polynomial F,(y) satisfies all the assumptions of Theorem 1.
Hence it represents infinitely many primes. If r > 2 then at least one
of the polynomials P,(w, v) = Fi(x, ¥; 2i0,8,, 0, ...,0) (i = 0, 1) satisfies
all the a%sumptmns of Theorem 1. Hence it represents 1n;f1mtely many
primes.

As pointed out by P.A.B. Pleasants (written communication)
Theorem 2 combined with the method of his paper [6] gives the following.
improvement of the result of that paper: If ¢{ay, ..., %) 45 & non-degen-
erate, irreducible cubic polynomial in n variables w&th nz=9 and if for
every integer m > L there is am integer point x for which ¢(x) 0 (modm),
then ¢ represents infinitely many positive prime numbers for indeger
values of the variables.

I conclude by expressing my thanks to Professor A. Schinzel for
reading and criticism of the manuseript. I owe to him Lemma 11 and
some valuable suggestions. '

# we have b, = 0.

§ 1. Some remarks about quadratic. polynomials. Let P (z, y) = ao® -

- bay+oytem-t fy+g and P (w,y) =a'w*+b'ay +oy+e'w+f'y+g be

polynomials with integer coefficients. We shall say that P’ is represented
by P if there exists an affine transformation z(#,y) = (6,% -+ G2¥ 1 a5,
byw--byy +bs) such that P(z(®,y)) = P'(z,y) (the numbers a,, aqy, &,
by, ba, by, are integers). Clearly, every integer represented by P’ ig repre-
gented by P. Set 4 = b*—4ac (small diseriminant), D = af? —bef +ce®+-
+ Ag (large discriminant), e = bf —2¢ce, f == be—2af. Hasy calculations
fhow that

1) © a4’ = aa}bab, -+ b3,

(2} b = Qa0,8, +b{a b+ ay0,) +20b, by,

(3) o' = aad -+ bagby,+ b2, '

(4) ¢ = 2aa, @y +b(a by -+ a3by) + 2¢b, by - ea, - by,
(5) F = 20ty b{ayby - agby) - 20byby + eay +fby,

(6) g' = P(as, by),
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(7N A" = (b —ayby)? 4,

(8) D = {agh—ayhy)?D,

(9) a’ = (“152““%?’1)((% by — @b} A+ abz“‘ﬁmz)r
(10) pt = (%51”“152)((@31’1_“153) A4 abl*ﬁ“ﬂ)-

We shall say that a polynomial P is equivalent to P’ if P is represeuted
by P’ and conversely. Hence P is equivalent to 2’ if and only if .1’(11(:)0, 1)
= P'{m,y), where v{®,y) is a unimodular affine transformation. The
formulae (7)—(10) show that equivalent polynomials have the same hoth
diseriminants and also the same parameters » = (o, §, 4). Hvery integer
represented by P is a constant term of a suitable polynomial P’ equivalent
to P, in fact obtained from P by translation.

. Let Gp{w,y) be the homogeneous part of P, ie. Gp(w,y) = aw?--
- by +ey®. We have

(A1) AP (@, y) = Gp(duta, Ay )+ 4D,

which implies the following identities

(12) - 2a0-1-bf = Ade,

(18) 208+ ba = Af,

(14) Gplay f) = —AGp(f, —6),
(15) g4*—Gp(a, B) = 4D.

LeMna 1. 070w and OP [0y are linearly dependent if and only of 4 = a

=f =0. _
~ Prooi (due to A. Schinzel). It 4P [0n = ¢, L(x, y), 0P [0y = coL{w; ),
where L{z, y) is & linear form, then for a suitable ¢, Pz, y) — 6,.L {, ¥)
has both. partial derivatives 0, hence it iz constant and it follows Lrom
(T)-(10y that 4 =a =8 =0. If 4 =da = § =0 then Pz, y) i8 equiv-
alent to polynomial P’ (w, %) = a'@*+¢'w-+y+¢, where o =g = 0.
Hence o'-f = 0 and either f' =0, 8P jiy =0 or o =0, 0P [on--
—¢ 0P Jay = 0. It follows that 0P/dx, 0P/dy ave lincarly dependent.
We shall say that o polynomial P (xz, ¥) belongs to the class o if for
every integer A £ 0 P represents an integer prime to A.
LoMma 2. 4 polynomigl Pw, v) = am® - boy -4 ey 4 e - fy -+ ¢ belongs
to # if and only if
(16) (@, b, Gy &y f: gy =1,
(mn © e, e b, 9] 2 (e f,0,0](mod2).

Proof, This lemma follows from Lemma 2 of [6].
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Lewa 3. If P (x, y)e # amd A" = 0 then P'(x,y) represents a poly-
nomial Pz, y) — ax®+bay +oy?+ew+fy+ge such that .
A = (a, b, '3)24’7 (ay B) = #,
D = {a, b, D, (g, 4)=1,
{ac, 4) = (a, b, €)%, (a, b, )16, ).

Proof. Since P'{w, y) represents integer prime to A, P s e%uivalent
to a polynomial P(z,y)= a'pt by eyt e+ 1y +4 Whefle
g # D[4 and (g, 4") = 1. Hence by (14) and (15} we obtain GP,,(f ,
g’} % 0, thus |6+ 1f"t #0. Let u and v be a solution of the equation
uf’ Loe’ = (¢, f"). The unimodular transformation

e, y) = (f"](e", [ +vy, —e” (6", f") e+ uy)
transforms P (#, %) into the polynomial
P (5, y) = P (elm, u)) = aoF 0wy 0y (€ fY S0

where @’ = Cpu( [, — ) (e, J)% = (D' —A'g")[(e”, f)2. Pub o= TW,
where (U, &, 0", &) = 1, p|W = pila’, 8", ¢'"). The trgnsforg}amon
olm, ¥) = (@, yW) transforms P (@, y) into the polynomlaa_ll? (m,,f:;’)
= W((a" |W)a2+b" my " Wy*+(¢”, Fy)+g”. Clearly (o'W, b,
¢ Wy =1. It follows from (7) and (8) that the s}mall andI Vjnhe Ia;rg(?
discriminant of PT(w,y) are equal 47 = W."lfﬁl le{, Y= WD
respectively. Since the form & pv(=, o}/ W ig primitive, P~ 18 equivalent

9

to a polynomial PV (x,y) = ez’ + by oyt e +fy+g, where (a, b, 0)

=W, (ac, 4Ty = W?, W|(e", 7). Set |47] = [12%, (¥, V) = []p* and

solve the system of congruences

[6, 0] (mod p) | TR

C|[—2a¥/4Y, —267 /AT moedp) AL gy = > O
[, Bl = [ —b/2a, 1] (modp) o> vy > 0,0 #2,
[1, 1] (mod p) it oy, 0,p =2

Hence ™o 0 (a7 +-a, A, g7+ by 4%) for p147. It follows i%}mtvthe{\'re
exist integers @, b, such that (a7 (@ +a ANV AT, 87+ (B 02 87) e l] 4%
Lot @y = G+, A, by = b+0,47. Hence P {a,, by) = PV (i, bs)
=¢" [mod [] p). The translation o(®, ¥) = (a/f—t—aa, o+ by)  transforms
PY into a?mp.volynomia.l Plx,y) = an®-bry + oy oo+ fy+g, where A
= A7 = A,W'z: D =DV = DIWz, (ae, A4) = (@, b: &% ((,‘r., b: G)v!(ea‘f)v g
= P¥(ay, by). By (9) and (10} we get a= o t+a, A7, p= ¥+ by 47. Hence
(a,ﬁ)}ﬂ,(g,ﬂ)=1,_P(:l‘},'y)ejf. . .

§ 2. Integers represented by quadratic forms. Let qa.(m, ffj) = az® -+
L hay -cy? be a primitive quadratic form with the digeriminant 19{3
— b2 — dae different from a perfect square, @ > 0, (4, §) = 1. Put |§{= [Ip°P
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{0y =0 for almost all p), k(6)=sgnd [| p — the square-free kernel of 8.
274,
Thus %(8) #1, 6 =0 or 1 (mod 4). Tiet

7 = {pma); (7“;5)) ml},

r=la; d= Il
0|
DR, o< by =0 ey
DR, 82> By o e
5g+2< Dy 2]y
£t 1=0g e it (B} ad (Mo d 4)
ey =g = (d]) 225 (mod 8)
gy Gy Ro(i) =1 {mod §)

Then for de I' we have k(d) =

).

and &, 14 -1
ﬂpéeﬂg-e-lq-(ul)ﬂal(modz)p ® i }Q( 1)

* ﬁp.w min{e, -+ 14(—1)% »,) = 0 (mod 2). Let us seb for de I

Ly ={0< L [8]; (L, 8) =1}
ak(S)L
DFY ey (T) =1

DAY ap=0 =1 (mods) or - atke

_ 13=3,3Hc(r3)211,()<33=9550(motlz) "( ;:d)L“)“I
2920, P9 =2, 4|k(8) -+ L= arie(dh) L= 1 (mod 4)
£a=0, By=d=ali{d) L=l or 1-X(d) {mods)
8y 7=0, g == dm gRo( )L 1 (0 €1 4)
£z 8y — 5 = ak(@) L2l (mod 8)
<pg =ty 4= ak(d) Less (mod )
0<eg ==ty — 8= ak({d) Lem1—Ji(8) {mod 8)
D<ag="Dy—2==0 (ta0d2) = (@) L=~ 1(8) (ol 4)
0<ty="2y—2=1 (mod 2)=-ak(d)Le—1 or &{3)—1(mod §)
U< agmdy —~ 1w dak(d) L=} (1—k(3)) (mod4).

Levma 4. Faff each Le %, the Kronecker symbol (J@)—) is  defined
and equals 1. ’

Proof see [4], Theorem 4.
Let B, be the genus of g. T s l
) - ». Thenumbers v (a2, ¥), where pe R, (s =
will be called represqmed_ properly by the genus’ ﬁ’cp. el 0,3) =1
p!dimﬁmfhﬁ. Lef n = dm >0, where m = L (mod (8]}, (L, 6) =1,
= PO Lhen n s represented properly by the genus of B, if and only of

(18) de I,
(19) o Legd_,
(20) Plm =>peP.

Proof see [4], Theorem 3.

L rbitrary
BMMA 6. Let A be an arbitrary integer s« 0. Thers ewists an integer R

prime to A such that if n is represem

: presented properly by th R, then R*

= plan, o) el (z, 1) | . preperty by fho g By thon fw
Proof see [4], p. 231. |
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§ 3. Lemmata from the analytic number theory.
LEMMA 7 (Bombieri’s mean value theorem).
LiN

< Nlog™*N.
7 (%) ¢

(N, by 1) —

max
kY Flog— 15N 1, 4wt

Proof see [B].

TmmMA 8 (The 3-dimensional sieve). Let 4 be o findte set of integers,
My = {me H; Am}, | A, the number of elements of #,, T a positive
integer, ¥ a rveal number, n(l, #)= |} — ¥ (AT), P a set of primes with
Dirichlet's density 1[2, of (M; 2) = |{me s (m, []p) = 1}|. Let

p<l%

peP
(21) > Mogp = Hloga+0(1).
i
nel ’

Then for 1. < s<< 3 <y we have

P '

o (M5 4) < zg/w— —  Ylog My +0(Tlog )+ D Inlh ),
n @(T) . =
DjAepel

oA (M5 Y%

& ¥ : dat 1
— Ylog My +0(Xlog*Fy) — 2
>§/n i@y | e Yo YO

A<y
p|A=peP

In (i, ),

T . '
where € = Iim (1— —(P(—(pT)))log”zz. The constant in O is independent of
@

L ]
pelP

s, 4 and Y.
Proof see [4], Corollary 3, p 224, .
_ TEmMA 9. Tet 0 £ @y = d-ay # 0,0, 5= by, (2 b)) = 1fori=1,2,
B = a,a,(a,by—ayb,) and w{p) be the number of solutions of the congruence

(G -+ Dy) (@2 +By) = 0 (mod p).

Them, if wip) < p we have for N 22

Z 1<H

TN olE
Vgt by| — primes for =12

1 w(p)—2
(1 — ———) Nlog™®N,
P : .

where the constant in the symbol < s absolute.
Proof see [7], Theorem 4.2.
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Leyaia 10. If am dnteger 4 = 0,1 (mod 4) is different from a perfoet
square then there exists a constant ¢ = ¢(A) such that for all z > 2

1 @ 1y
> wtog (a2 [T1-2) 7 < clog#2a.
2. og ( + m) ) . < clog™*x

N

¢|H= (%)21

Proof. The lemma follows easily by partial summation frem the

estimation
\ ! - 142 ~ . 1 1 . [yt
msax gim g_:<x 3 pritom /
g1 (—Q-):l (_2_)_ -1 (s‘)m:l

- LemMMA 11, Let F'(w, y) = ax®-+ by + cy® be am irveducible quadratic
form, a >0, mn 0. If F(mz+r, WY+ 8)e H then

2 1> Nlog™'¥.
PEN
p=F{matr, ny+s)
Prooi (due to A. Schinzel). Let 4 = b* —dae = k2 Ay, where 4,

is a lfunrlzbmental discriminant. Adding if necessary to r and s suitablo
multiples of m and % we can assame that (B (7, 8), Bakmn) = 1, B'(r, §) > 0.

‘ — bV
Then the ideal a = {ar - (b-- Vi y8/2) (a, ——%—-—-) is prime to 2akmsn.
By the theorem on arithmetic progresgion for the field Q(I/Z) we have

2 » 1» Nlog™' N,

" P Ay
Np<N,p prime of degroe 1
pa~la(e), pnit
e=1 (mnod 2akinn)

bVa

where Np denotes the norm. Set e(a.r—%- s) = (@ 3,'1/?[:,) /2. Sinee

¢> 0, mé—AoyB =4I (r, s} Ne > 0. Hence 22— Agy? = 4N (p(a, “b -;VA ))

_ pE -yt -
= 4a¥p and the number of Is a prime. On the other hand,

since ¢ = 1 (mod 2akmn) we have

& +1/Z.y = 2ar + (b I/_A—).'s —i—ZaJcm%(f + ul/zro)
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where £, u are integers. Tt can easily be verified that

w2 — Ayy?

» = F{mn(kt —bu)+r, 2amnu +s),

which completes the proof.

§ 4. Proof of (i). In this section we consider polynomials with the
small diseriminant being a perfect square or the large diseriminant being
zero, Dirichlet’s density of primes represented Dby these polynomials is
positive. _

ProrostrioN 1. Let Pz, y) be am drreducible gquadrafic. polynomial
with indeger cosfficients and the small diseriminent being o perfect square # 0.
If Plo, y)e # then

D 1 Nlog™'V.

DEN
=Pz, v)

Proof. SBee [6] proof of Letmma 16, where the gqualitative form of
Dirichlet’s theorem is to be replaced by the quantitative.

ProprosITroN 2. Let Pz, 4) be e quadratic polynomial with integer
coefficients and the small discriminant equal fo zero. If Pz, y)e F and
Pz, y) depends essentially on two variables then

M 1» Nlog™'¥N.
DEN '
p=P(2,)

Proof, Since the small discriminant of Pz, 4) equals zero, Pz, )
is equivalent to a polvnomial P'(z,y) = a'w?+da+fy-1g', 24 It
follows from Lemma 1 that f° = —2a’f’ = 0. Since P'(x, ¥) is primitive
there exigts an integer m, such that (a'w;+e'my+g’, f) = L. Hence

Y= Y 1z 3 i=al ] e g+entg) > Nogl¥,
PEN PEN nEN .

B=P(z, v} n=P"{x, v} =Py, %)

which completes the proof.

Prorosrrron 3. Let Pz, y) be a quadratie polynomial with integer
coefficients, the small diseriminant different frowe a perfect square and the
large discviminant equal to zero. If Plx, y)e # and P represents a posilive
nteger then

1» Nlog™'WN.

PN
p=Pz,y)

Proof. Pz, y) is equivalent to a polynomial P'(x, y) == a’a¥+b'wy +
+eyidewtfy+g, where ¢ >0, (¢, 4 =1, B =0b'¢’ —2a'f = 0.
Sinee D =D =a'f2=bef+6e*+A¢ =0 we have ¢4 If]| #0.
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G (o, 0 —AQp(f, —€ A*g’ .
Hence o' % 0 and 4’ = P(?Z’ ) P(,{’ ) ,‘g . Bince o’
a [£1 o
‘%
is an integer and (¢', 4) = 1 we have (a'/(c’, 4), 4) =1 and »(;;,-ciz)—z——{g’.
?

Hence 4| (a’, 4) for b'a’ = Af. Proposition 3 follows now from
Lemma 11 and the identity

N @\
Py = (et )
+ bia', A [ 4 ot a O
A\, ), ay) e

§ 5. Reduection of the problems of representation of integers by qua-
dratic polynomials to that of representation by forms. Let G(x, y) == ax® 4
+boy oyt A = bi—dao %0, (ac, 4) = 1, Fim,y) = G, y)-+er-+fy,
a = bf —2ce, § = be—2af. Since Zan-bf = de, 2ef-4-ba = Af we have
(20, 4)= (28, 4). Henece (§, A)|(a, 4Y or (a, 4)|{8, 4). Assume that
() 4){m, 4) and set a; = af(B, 4), B, = (5, 4), 4, = A/(8, A).

It follows from the identity

dall(m, y) e = (Zaw - by +-6)2 — dy? — 28y

and from the formulae (11) and (13) that if » is represented by F(w, ¥)
then 4an - 6% i3 a quadratic residue mod (28; 4) and = satisfies the system
of eguations ‘

(22) a Ai“+g(alr £.) = G(», ),

(ya Al) == 1.
For each d| 4 and 4 % 0 we set
L ad A .
rg = (4d, 4/d), g4, = "3:;*?"‘*'17(1 and  Z(4) = 19y -

dld oy dd|
A0 (g Ad)m1

‘We ghall prove
Leywa 12. Let A be an arbitrary integer 0, @ == 1 {mod (44)%)
and @ =0 (modZ(A)). Then if the number dan -+ ¢® is a quadratic residue
mod (28, 4) and n is solution of the system of equabions
Ain4-Goy, §) = PG, y),
(y, dy) =1

(23)

then n is represented by F.

icm

Primes represented by quadratic polynemials 445

COROLLARY L. Let A and Q be such as in Lemma 12. Then of the number
dan - 6* is a quadratic residue mod (28, A) and n is o solution of the system
of equations :

' 3 —1)endn
dim+6(a, f) ~ @6 (2 )

(24)

(X: Y: A:L) =1

them n 48 represented by F.

Proof of Corollary 1. We have from (24,) 4i(4an-+e*)—A4f5
= Q? (((3 (1)) g X 4 bY)"' — AYﬂ), whence for p > 2 we get p1( X, 4,),
gince otherwise p | X confrary to the assumption (24,). Similarly for p =2
we have 24(Y, 4,) since otherwise we get from (24,)

34(—1)n

_ 34(—1y
2 2

aﬁquamhm)ﬁe( Xm)= " X (mod 2)

whence 2fa;, 2|X against the assumption (24;). Thus (y, 4,) =1 and
L — 1 ylend)
the nuwmwbers o = Eii)——— X,y = Y satisfy the system (23).

2
3+ (—1)fr

B &y y)1 Hw,y)

CoROLLARY 2. Let us set g(o,y) — G(
3 - ( — 1))

9 .
= WF(w;y)+yg, 6:( ) A-diseriminant of the form ¢, Ay

= W24 small discriminant of the H(w,y). Let us assume that W >0,
(g, d) =1, (0, f)| 4 and ¢ is positive define if 6~ 0. If n = g{mod W),
da(n—g)| W+ e is a quadratic residue mod (28, 4) and moreover the equation
e

w
then n 18 represented by the polynomial H(z, ¥).

Proof of Leémma 12 Consider first the simple case y = 4 f;.
By (12) and {23,) we get

+Glay, By) = @ ol y) has a solulion z, y such that {z,y, 4;) =1

A (dan+ 6% — AFE = Q*{(2am + by — Ay} = (24 £ $:b)" — 48] (mod A%
which Irplies

b (—1)
2ar4bp, = 4d,e (mod —+—(2-w)~— |A1|).

Hence using again (12) we have

| 314(—1)4
ZaleF o)) = Zex LS, — A, E(}(mod ._Hz )—.141{), .
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whence » = +a, (mod |4,}). Thus the numbers » = (+£Q (8, 4)X —aq)/ 4
Y == (:I:Q(ﬁ, A)Y——ﬁ) } A are integers and as it can easily be seen, satigty
% == F{z, ¥) which completes the proof for this case. Assume therefore
that y? = 8.

Tet dan 462 = 8 (mod (28, 4)). Then wo get from (23,)

n 4
(25)  (2am-pby)— Ayt — B = (4,8) (m aﬁlf_éﬂw IA)

Set (4] = []p®, &y =& — (= 1)" =1, | 44| = []p™, [y~ B;
= [1p’, 2ax+by{= [[p» (v, = oo il Z2az-by = 0).
we have
| wpdy =0, if p > 2,
o << &g, 2*51% (g > 1 = Ay v iy =1 << Ay), il p == 2,

- 1[17”19 I"/ "‘F‘ﬁl
Ii.(m.(,u if w,> 0

We divide the set of all primes into six clagses

= {p; 5,> 0, %, 22 Nyl
= {P; Ny > 0, 2, < 7, Ay 2= My},
G“{Pa'ﬁp>0 o< My Ap < Ty By 2 8k sy Ak
{19?77_1:>0 <771nl <71p22“’ <8 "|"” + gy Ap %}J}i
B = {p; Ty > 0y 2, < Yy Ay < gy 29 <& p+ %+ A "‘p<’q’p}a
. P ={p; np =0} ={p; ptd,}.
By_(25) we geb
Nty if peduBuDull,
20y eyt =0 (mod 2) if  ped.
The proof of the lemma will be performed in 4 steps.
I. Construction of the number d. Put
0, - it pedul,
;s it pekB,
Op = 1 (g —1p-+2,)/2, if  pe0,
By = %y it peD,
eyt Ay =y, it ped,
0, . i pedouBuld,
1y = (& — 10y — Ayy) |2, i ped,
ﬁﬁ_%p‘}‘lp“{'l_{‘_(z—l)ir i peDull,

icm
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Thus the numbers 8y, tp ave integers and it can easily be seen that

0< o, <e, did,

0 <y <y 10 = (4 4) [ [ 02| 4(200+by).

II. Congtruction of the number y. Let

v 2ar4-by £ 4.8 m_zd(Zam—i-by:]:ﬁl,G‘}
YT T T ey =) A+ 5

It follows from (25) that for pe« DUE, p»|| 4,8 thus the nambers y=, y,
are p-adic integers and ome of the numbers y*y.,9Ty_, v ., v ¥
is not divigible by p (for p = 2 exactly one). Similarly for pe € we have
from (25) pEat et®) A, 8 thus numbers y*, ¢, are p-adic integers. For
every prime p we define auxiliary numbers y,,:

0, if pedoBuF,p =2 =3z,
T, i pe AUBUR, (p # 2)vie,# 2);
it peDy iy,
T i peDipivt
it pe 0, pie,
T, i peliplags
o 1y, i peB, pty,,
e 1fy_, if peE,p|y+.

Hence for p< DuF we have piy,. Since y, are p-adic integers there exists
a positive integer y < | A4 satisfying the system of congruences

pld,
pld, ptd.

III. Proof of the formula (g, 4d) = 1. It is enough to show
that for pi4 we have : .

y =y, (mod p) for
3 =0 (mod p) for

(26) P14y, -
I pe AuBUF, (p #£2)v (s #2) then
4d A 4d
Qay, = R "y #0 (1110(119)

It pe AVBUT, p =2 = 5, then

Qay, = ”&"ﬂ = 1{mod 2).
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' 2y—paa . N
It ¢ then the number o = ———— 1is a p-adic uwnit, Wo
pe drgly — B ¥

get from (25)

_ 2(%aw-+by) (2aa-+by 4, 8) 29y — )4
Yok = araly —Bo)?

_ l(2am4-by)* — A (5" ~53) ~ (4,8

drg(y — )
_ 2(2aw+-by) (2am -+ by - 4, 8)
T drg(y — By)?

2 T Do - by q‘z’ﬁ__l——fr}— 2 -+ b?j Gatr-
- 2__ 2 pay 7
Iy B) A (B WP A
d?‘d(y-"ﬁl)z

Hence if 2v, > 6, +w,+ 4, 0r 8w, = 8,42, +4,, p = 2 the first congruence
gives Qe = —of ¥ 0(modp) and if 2w, =a,-4x,+4,, 2 %2 the
second congruence implics that one of the nombers ¢ ot is not divisible
by p. This proves (26).

If pe D then d,< g,/2 thus

—ay (mod p™r ),

4d
Gy, = Td'-y;g 2 0 (mod p).

I pe® then 4, > 2,/2 thus

4
Qayy = — = 2 0 (mod p).
Y .
IV. €enclusion of the proof. Put
. [ 4d A4 420y - ba)
27 B e %—
(27) (Td Y ‘|‘ d’)”d)% r TV
. 44 A 4 (Bam - by)
28 Y= |— |y + L
(28) (?,d ¥ drd)y + . Y-
It is easy to verify the identity
(29) G, ) = @@ y) (g =qgq).

The number ¥ is an integer since 7y |4 (2ax -+ by). Since ral A and (@, 4)=1

it follows from (29) that X' is also an integer. We shall prove the con-
gruences '

(30) o X' = gu, (mod |4,)),
(31) Y =gp, (mod |4,).

Primes represented by quadyralic polynomials - 448

Let pe A. Then

. 24 4{2ax+ by)
R e

Let pe B, Then

=0-4-0+4+0 = 0 (mod p™).
a

O 4040 =0 (mwod ™).
T

&d
Y —gpr= —q(y+F) oyt
Letpe CuD. Then
drg(y — BT —qfy) = (8d(y —~ o) v +2a0 +by)* — (2az -+ by + A (3" — )

= (24(y — Bu) v + 200+ byf — (2a0 +by)P - Ay — 1)
= (4, 8) — (2az -+ by)* + 4 (y* — £7) (mod 1981’+m(‘*ﬂ+"29+%'2"p)) .

Hence by (2b) we get
L e
811, -I-———;———
(32) draly— (X' —gBy) =0 (modp” " * ).
Rt

Since pw- T |dry(y—p,) we have

¥’ —gf, = 0 (mod p").
Letpe . Then

(33) *3-%(@1 B (X —aB)

- 4,,2[(_{ v+ 5 +2m+by) — (200 by) + A (5 —ﬁ%)]
2dy .

»———ww[( / (y+51)+2am+by) _ (Zan+- by)udwfwﬁi)]
: 2dyp

— dyA[( A, 8) — (2am + by)2 -+ A (3" — B ] (mod ppt Pyt +EIT).
Hence by (25) we get

'AT ra(y + 1) (X' —gfy) =0 (mod p‘?+”p'*'1+(—1)”) .
£

Since 132(“19““’“Fl}p)"‘ﬂ”%m(?] 4 By) and 2w, + 1+ —1)F) — A, < gy + L +(—1)7

we have ¥’ —¢f, = 0 {mod p"). This completes the proof of (31).
It follows from (23;) and the identity (29) that

G(le Y’) == ng(w: ¥) = qngf}(m, )] 7
= @A+ G oy, B)) = £G(ar, B) (mod.A}),
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whence
(20X +DX)P —AT? = ¢*((4,6)' — AB}) (mod (24,)%).
Hence by (31) we have

, . 3(—1)" , B (~1)"
20X +0Y = dy¢ ].110(1»~:]:~£—3w2«- |A,|), bY' = bgpy (mo(l ~-|—(—£-)~ IA],I).

We have proved in 1Y that ¢|Q thus the nwubers X == (8, A)QX /g,
Y = (f, 4)QX'[q are integers and it is easy to verify thad
X = (f, Mg quy = Qu == a (mod |A]),
Y = (8, 4)Qlg-9fy = QF = § (mod |4)),
G(X, ¥) = (B, DQIGG(X", X') = ({8, 4)Q)2G{m, y)
= (8, D) (4in+G {0y, By)) = 404G, B).
X—a ¥ ﬁ)

Hence # _F( T
§ 6. Primes represented by a polynomial f (z, ). The main lewima
in the proof of part (ii) of Theorem 1 is the following
Lasaara 13. If the small diserimvinant of a polynomial H (i, ) is differemt
from o perfect square and the large discriminami is different from aere thenm
umder the assumption of Corollary % to Lemma 12 we have the inegialily

1> Nlog™ 2N,
BN
CB=UHe,y)

Proof. Let B and @ be integers defined in Lemmata 6 and 12 re-
spectively for the number 4 = 4, Dy = Wi g2 — WG (a, f)), wheve Dy,
is the large diseriminant of H(w, y). Then ((, Ay Dy) =1, where (

3—(—1)*Pr . ‘
= ——j—ém——QR. Since (4, )14 we bave (ay, f,) = 1. Hence the

number 6{ay, f;) is represented properly by the form g(@, ). Lot d bo
the greatest divisor of G(a,, 8,) all prime factors of which divide & and
define . by the congruence (2L =s Glay, f)fd (mod |8]), 0« L< |8,
Then del’and Le#,. Tt follows hence by Lemmata 6 and 7 that nwubhers
C*dm, where m =L (mod |4]), plm = ped? are of the formy QPp(w, ),
where (@, ¥) | B and o fortiori (x, y, dy) =1,

Rince 4al(ay, §;) = Ate' — A8 we ‘have (4%, A)|(4, A)d. Tence
{25, 4) 431444, From the detinition of d and I we get (3dL = G{ay, 8,)
{mod |4d|) thos i
LA —Ca, )

34 ' 4
(34) L 7

= (mod (26, 4)).

- Put in Lenuna 8
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ds C*dL -G '
Let T =CW I—Azi and [ =W _ﬁﬁEM +g¢. It folliows from
- ih 1

(34) that for % =1 (mod T) the number 4a(n—g)/W +6% is a quadratic
residue (mod (28, 4)) and » = g (mod W). Put ‘
M= Amy B(p—g)[W -G (ag, B;) = C%m, p =1 (mod T), |4]< p < N}

For me.# we have m = L{mod |d]). Hence by Corollary 2 to Lemma 12
wo get

(35) 2 1= >

PN meds
‘ p=Hix, ) plm=peF
The sum ' 1 will be estimated by the method of the }-dimensional
3J|11:fpuf§’
sieve. For e # we have
(36) (my, ADg/W*) = 1.
Let _
(3, AD /W =1, I, = | mod 19D,
i . = =
o a ' ’ 0 {mod 4]}
and put
A4, — @&
=W ) 0('1111 B4 1 g.
4; .
Hence .
(37) - (L, AT) = 1.

Let .#; — {me.#; A|m}. By the definition of I, we get

My = {m; A p— @)W+ 6oy, fr) =.C*dm, p =1, (mod AT), |4] < p < N}.
Hence the number of elements of .4, equals _

(38) L] = a0 AT, B (4], AT, L),

C{B(S)

Y = LiN, y =VN[Tlog®N, P ={p 14D W ( P )= -_1}'

Since %(8) %1 P has the property (21). If (4, ADy/W? =1 we get
from (38)

7y ) = m{ N, AT, L) —ae(| A, AT, 1) —LiN [ p(11).
Hence by (37) and Lemma 7 we have the estimation

3 nth, )] < NlogN.

Ay .
Did=pel

2 — Acta Arvithmislica XXIV.0.
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It follows by Lemma 3

(39)

oMy N = 1/26? f oy NlogmalgN% 0 (Nlog™"* ),

]/w

where

_hm ]] ( )I/og~

gy
_id . ~1/
=gl (1————-——1 ) (1_ i) (el /] (1 —1-) > 0.
LA 12 (p—1)? P ; P

ptADg/W? BlADg R

I:n)—~

[ T(8 :
Sinee 4] is the conductor of the character (—i—)—) wo have by Lemmsa 4

k{d)
L
prime factors of m not belonging tio & iy even. In particular if 1 s« 2

and N is large enough we have

. k(S . .
for me # the equality (——(W;—)—) x( ) == 1. Thus the number of the

@0) D A=l W) B (s N,
med! NS <p,
Pplinw-ped D1, PP
Put M = (4} —g)+W&(ay, f,))/WC*d. Then for me 4 wo have m < M
hence
(41) D)ty N
N gpy<py
1?1.15'06})

< > 2

msMN—;!s N g VB

PN :
g m=gs pyeP ;nsazi,lm(modplm:ﬂ) ‘

A=)+ oy, D)= WOy o,

The inner sum can be written in the form

(42) Z, = > 1.
WV iy ml
171‘PTET‘”+1_@ LlJrimﬁ
A zplﬂ;-{ FVG(ul B} .'.‘11{]

1812 +
TR apym

prie

Put in Lemma 9

l Ailplm‘{‘WG(au B1) —
WOk dp,

a4y :?i'm'Ty bl == Iplm: Gy = |al’ by =

icm
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Then # = p,mI Dy *|AW® = p,mHB,. Let us remark that for p|m we
have w(p) = 1. Hence by Lemna 9 we gef

N i -1 1 w(p)—-2
1—= 1o
P N rergr g N

»Ey
1By

where the constant in the symbol <€ is absolufe. We get from (41) and (43)

- X
()N (s B
NUYZEgp <y
113, BaeP
w(p) 2
S SEEY S e
< H ( ) Tloo N m ( ) Z ¥
By —s Blm N2 op o N2
q]m::-qs!?f p{Ep neP ‘

1
logs Nlog™¥:N. °

§5—
¢(4d, Dy, 6, W, d, C')]/

. - dt ,E/s#
i —_— > 2
Since lf -1 >

for a sufficiently small number s—1 =s(4d, I, §, W, d, ) we get
Y 13 Nlog™®*N which completes the proof of Lemma 13.

neA
B|mepedF

§ 7. Proof of the part (ii) of Theorem 1. We have to prove

ProposrtioN 4. Let Pz, y) be a polynomial of degree 2 with integral
coefficients, the little disoriminant different from a perfect square and the great
diserimvinant different from zero, If P(x, y)< 3£ and P represents arbitrarily
large positive integers them

Nlog N < Z 1 <€ Nlog™®N.

PN
p=P(z,¥)

it follows from (39)-(41) and (44).that

Proof. By Lemamata 4 and 15 we get
M1y 3 1» Nleg™ty.

PN
P=P(w1)

On the other hand by (18)

3= > 1< > 1

PN PN DN
p=P{z, ) Ay AD=Gp(dzta, dui+f) - o ap—D } - (_‘l)=1
qtd ]

z. ] %M 2:;—'— 0<m%;fdrz : ggN’
<, o<r<v M/d = .
@3 = OB ) =g (%)ﬂ 4p=D=(d, D)ir'me

PEN
p=P(z,)

1 = ZIZZ,
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where M = |[AN—D|/(4, D). Let I be a solution of the congraence
(4, Dydrtml == —D (mod |4]) and set in Lemma 9 o, = 4/(4, D), b, =1,
ay = drim, by = ((4, D)dr*ml+D)/d. Fenee I == @ as(a:b;—ayby)
= AD)(4, Dy2dr2*m and we get from the said lemma

o (4, D) 2(M(A,.D) )
- aioh ik BntA) P ¥ ol bt Rl S
S = 2 L drzm | ) log drim | A| Fafx

2
b LRI T;z)(d,.u)

|Gy 4Dy primes tor i=1,8

1 \wlek-2 M o M Nl 1yt
X H (1—‘53—) «;daﬂﬂml% (d’w"‘m 46)]1(129) )

ADar%n Bldrin
{4, D)*

The constant in the symbol < is abgolute. Hence by Lemma 10 we get

R N M e M o3 2 Wlea—Bi2
Z 1<;2W10g (Eﬁ+3 < Mlog™M % Nlog=** XN

pEN
n=P(z,¥)

and the proof is complete.

Note concerning paper [3]. [3] confains an oufline of the proof
of (ii) for the case where the small discriminant of P(z, ¥) is fundamental.
The proof given there is based on the estimation

Z‘ 1 <€ Nlog™*" ¥,
PN
Ap4-B=Co(z, v}

where @ ig a primitive quadratic form with the: diseriminant A different

Nlog™®*N <

from a perfect square and the constants 4, B, 0 different from. zero -

satisfy suitable arithmetic conditions. Some of those condifions have
been omitted in [3] and as a result the necessary (and obvious) condition
that P should represent odd integer is missing in the formulation of the
theorem. Generalizing the considerations of §6 of the present paper wo
shall show

TueoreM 3. Let ¢ be a primitive quadratic forwn with diseriminant
4 different from a perfect squave, positive definite if A< 0 and lot 4 > 0,
B #0, 0> 0. If there ewist intoger g, by, by sueh that

Ag-+B = Conlty, b)),

_ (9, 2BAN(A, AB)) =1
then

Nlog™2 N < 2

pEN
AP+B=G"P_($E, u)

1 2 Nleg™ "N,

icm
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Put 7 == (b, 1) By @(tyy ta) = (b, ta)2dE. It follows from Lemmata 5-
and 6 that

. -
(45) Moo= 3 1 ) 1=5
pEN PN, PN
Ap+B=Cplz, 1) Ap+B=CR2y(z, ) Ap+B=Cridm
yelty, mﬁL(mgdld\)
glmn=- {E)=1

The sum % 15 estimated as in § 6 using the method of }-dimensional
sieve.
Leb us consider the system. of conditions

[Ag+B = Ortdm,

I = y

o (2)-

It implies that {4, B)/(4, B, Cr3d)im, hence
‘ : A
(47) q|{A, BY(4, B, Or2d) = i =1,

(48) (Crrdj4, B, Or*d), ABJ(A, BY) =1

gince g is prime to Bf{d4, B). Let I, be a soluion of the congruence
(A, BYL,/(4, B, Or?d) = L (mod |4]|) and put m, = m{d, B; r*d)[(4, B).
We get from (46)

1 4 Ord B
= Py — ————
S TV S N R VW)
A B ( g Ol )
T (4, B, Cr2d) (A4, B) (4, B, Or?d)
' ored 4(A, B) ( A(A4, B))' '
= . ) = 1 we get from (49
Put T = % oy (a, 4B e\ 4, 45) & (49)
(50) Or2dl, B (4, 4B) T) (4, 4B)
(4, B, Or*d)  (4,B)’ (4,B) (4, B)

(46) implies also the condition

Ortd AB

(51) 4 =5 (mod 8) = 3| TE ord AT

since 24g. We shall prove
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LEMMA, 14, We have Xy » Nlog™*2 N,
Proof of Lemma 14. Let § be a solution of the congruence

A zé(( Oredl, B )((A,B) "

(4, B) A,B,0r*dy (4, B)] (4, 4B)
By (60) we have (I, T) == 1. Put '

A B oradl
“fl:{ 4, B) (4, B,0rd)

My y

p =1 {mod 1), |AB) < p = N’}.

Then for mye 4 we have

(52) My = Ly (mod [A4]),
(53) (my, AABj(A, B} =1.
Let (4, AABJA, B} =1,A> 0, #; = {tyc #;A|m}. The system of
CODETNENces
I, = '
(54) 1 =1 (modT),
A I = —B (mod Or2d
(4,B) " (4,B) (4, B, Ord)

iz consistent and has a solution I, determined uniquely moduloe AT.
Cleaxly

(55) (L, A1)y = 1.
It is easy to see thatb

Pt B _ Cr2d
4, By Y T B T A, B, oray

My = {mleﬂ,-
p o= Limod AT, [AdB| < p < N}.
Hence - | '
|#,] = =(N, AT, 1,)
By (47) and {b2) we. have .
(k(ﬂ)) _ (75(4)) N k(4) )
m ) T\ Ly )T ( (4, B) L, ) ‘?( L )“1'
(4, B, Ord)

—m(|AB], AT, 1,).

. o
(B7) o (Ml N) = ]/i

=
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. ' . AJAB A
It follows that the number of prime factors P ¢P = pt —r A, By ; —1}

of m, is even. Hence, as in § 6 we get for se (I, 2) and N large enough

(56) E, = of (M N¥) A

132}131>N11,28
Pr.PF

In order to estimate of (4; N'*%) we shall nse Lemma 9. We sel in the
gaid lemma

_NIIJS)

bifts 3

AAB [AY
=TiN - V SN =1
Y =LiN, vy =VN/Tlog®N, {er(A B)z:(p) }
AAB
Since 4 is not a perfect square P has property (21). I ( (A By )

we have

9(A, H#} = m(N, IT, ;) — =(|AB], AT, 1;} ~ LiN [p(1T)
thus by (65) and Lemma 8 we get

E n(A, #)| € Nlog™* N,
A<y .
DlAnpeP

Therefore, by Lemma 9

_Nlog""“’zN +O(Nlog 5N},

= (T} 1/”—

where

_ P (1) ) n,

% = lim i i (l———~— log'*z.

sca 24 (1) '
pi44Bd,B)~2 (%):-_1 '

Tt follows from (51) that € > 0. Tt remains to estimate 3. (A, ; N1).
Put M = (AN +B)(A, B, Cr2d)j[(4, B)Cr*d. Thus for mie 4 we have
0 < 7y << M, hence

(58) ol (M, N”“)

Pypy NS
1.t

< > > 1= 55X,

m < MN—18 N1[23<391<]/M DEN, Bl o, (mod Py 1)
qimy g L 4 . B Or2d -
:m’ BB wmodg
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The inner sum ean be written in the form X, = 2> 1, where
: a Nipym T
|egz-by| Primos for =1,
A(4d, B, Or2d)T (B—Al, . )

oy =pimnT, by =y, @ =

(@, B)Y0rd T U, ByOrtapym,

ABA?
x{4, B, Or3d) hence I = ay@{@t by~ a,8,) = mq}h’ml- It follows
from Lemma 9 that (4, )
(59)
— w(p)—-.. 'w(?J)-B
e A 1 N o M ) I =
pemy Tlog*( N [pym, T !
nlmy
(.{.f AB)2 ) " JLBA“
(-, AB)E
where the constant in the symbol < is abgolute. Trom. (H8) and (59 we gob
ﬂ( ;olpz? le%‘)
Pozp=N12E
P 0P
1 -2 -
< e, Nlog™ N Z ]7 WL 1
1 g »‘}J P
m<zyi—ye " pim R Y
q|m=(~§)=1 .

< e¥s —1logs Nlog™2 N

where the constants o1, ¢, are independent on §, N Thié completes the proof

- v
of the lemma since sup {]/26 f
l<e<2 i Q(T) Vt

Proof of Theorera 3. The lower estimate foll.ows. from (45} and
Lemma 14. On the other hand

2 1< 2 1

AP+§ng(m,ﬂ) g2 l-1”Ap Hg
2140 )= ( )“‘1

) _5] > 1

7
gld=g|4 ( 4B orte ) R S 5 <N Crd
4, B2 (4,8, 0dg) LB E T (ol

22 2 2

mZ<M PN
("’*2 ) -1 F 23 B‘ arld D'y
(4, By @n" BT A, .oy 2

gin, (ﬂ)=1'
ling= i

— o5V — ilogs} > 0.

1 = ZEEZ,
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where M = |AN-+B|(4, B, Or2d)[(4, B)Ortd. Let I be a solution of the
congruence

A n B — omod Credm,

= nod ———r—r 0
{4, B) (4, B) (4, B, Orid)

and set in Lemma 9

Cridm, A
qy == blr—jI, a2=m, 5 =

(4, B, 0r2q)’

(4l 4+ B){ 4, B, G’@zd)
{4, B)Cridm,

Hence
ABCridm,

E = aya.(a.dy—asb;) = (4, B (4, B, Crid)

and we get from the said Lemma

o

I = 2 TR D P B B AT
P <-(—14"3m2 o8 clr‘img—l— H _—17 )

0o N{d, B, Crid)jCrPdmy Dlrmg
| e z+byf primes for i=1,2

Hence by Lemma 10 7
| - N N

_ —-3/2 —3f2
1< dg E Y log (rzd +3) < Nlog™? N

and the proof is complete.

PEN
An+B=0p(z,4)
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