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1. Summary. In the present paper we shall investigate the problem
of finding asymptotic expansions for sums of reciprocals of additive
functions, in the light of probabilistic number theory. Our first obser-
vation ig that for a large class of functions f(n), termed as prime inde-
pendent, the asymptotic formnla

(1) - V1) = o[1+0(1)][F(2)loglogn]

nEL

I8 immediate from known results, where 3’ denotes summation over

those values of # for which f(n) 3£ 0. We ghall then point out the signi-
ficance of obtaining a second term on the right hand side of (1), The first
part of owwr paper is therefore a complement to the recent work [1] of
the first named author. In the second part, an asympiotic expansion
is given for the sum of the reciprocals of loge(n), where o(n) is the sum
of the divisors of . This part has two essentially distinet features from
the paper [1]. First of all, no reference is made to any deep result, and
secondly, the expansion is in powers of 1/logw. The digcussion in the
firgt part will reveal that the increase from logloge to logs in the asymp-
totic expansion results, in general, in additional difficulty.

2. Swms of reciprocals and probabilistic number theory. Lot w(n)
denote the number of different prime factors.of n. A classical theorew
of Eardy and Ramanujan states that “for almost all” «, w(n) ~ loglogmn.
By giving an accurate meaning to the expression “almost all”, we shall
be able to oblain the desived agymptotic Tormula (1) for the case f(n) = w(n).

"Hinee the theorem of Wardy and Ramanujan has several extengions, we

are able fo slart with a general set up. Our class of funclions f{n) can
include, roughly speaking, all funections for which f(n) ~Iloglogn for
“almost all’ n. This iz made possible by the function loglogn being slowly
varying in the sense that o

(2) loglogn = logloge-+0(1), =< n<r, m—:—-{—_do'.
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Tet now f(n) he a given arithmetical function and let f(») be. a posiive
function tending to -+ ce. Let 4 (x) denote the number of positive integers
n < 2 for which the inequalities

(3) loglogn — R(z) < f(n) < loglogn -+ I? (&)

fail to hold. In view of (2), for f(n) > 1 for all those values of n when.
f{n) # 0, we evidently have
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(4) and (5) imply (1) for any fanction f(n) having the property thab

Az} = o(zfloglogw) with  R(z) = o(loglogs).

This is known to hold for a large elass of functions. As o matter of fact,
the large deviation theorem of Kubilius [B] on p. 161, fogether with
the remark on p. 168, implies that, when (3) is applied to f(n)/f(2), where
fn) is additive with f(p)} = f(2) s 0 for all primes p,

(6) A7) = o( R(w) = (loglogm)**e,

==
(loglogw)?
where ¢ is an arbitrary fixed positive constant. Applying (4), (b) and (6)
to the function f(n)/f(2), f(2) # 0, satiglyving the agsumption above,
we geb

’ 1 - m m S
" E Fin) ~ f2)logloga * 0((10g1()g';g)'é/z~a)-

REL

(Tyis a sormewhat stronger sltatement than (1) by specifying the orror
term. We add that the ervor term. can be glightly improved on thig line

ol attack, but the order of magnitude x/(loglog®)*™® can not be achieved

a8 it easily follows from the asymptotic normality of

(f(n)—~F(2)loglogn) f(2)(loglog n)'

(see [b], p. 61 and the inequality in [2]). Therefore, essential new in-
formation can only be achieved by determining the exact order of magni-
tude of the second term on the right hand side of (7). The finite asymp-
totic expansion obtained in [1] goes further than this. '
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We remark that asymptotic formulas, similar to (1), can easily be
obtained by the present approach for sums of ratios fm)jg(n), if both
Jin) and g(n) arc ‘close’ to loglogm (in the sense of the previous discussion).
(1) canx also be extended to the case when the argument »n goes throagh
given sequences of integers (others than the consecubive ones). This is
made pogible by the probabilistic approach of the second named author
to distribution problems of arithmetiea] funetions; see [3], [4]. For this
case, however, o niuch weaker ervor texm is obtained than the one in (7).

A major tool in proving (7) was the property (2) of the function
loglogn. When the role of loglogn is veplaced by a function growing too
rapidly o --oe, our method may fail. To determine the ovder of maghi-
tude of the sum in (1) remaing, however, a simple problem for most fune-
tiona.

3. On the sum of the divisors of n. Tet o(n) denote the sum of the
divigors of m. It is a classical vesult of probabilistic number theory that
logo(n) = logn-+0(1), for “almost all #”, ses, e.g., [B], p. 74. D. Rearick
aglked. (personal communication) it an asymptotic expansion is valid for

2 Ljlogoe(n). The asymptotic formula

2 o
Z Lloga{n) = [1+o(1)]z/logz

ENIE i
can be established by the approach of the previous section. The error
term. by this approach, however, can nobt be properly estimated. On the
other haund, by an analytical method, we get the following agymptotic
expansion.

Turonnm. Let « be an arbitrary positive infeger. Then

x o
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i log o(n) = {loga) {loga)

where my == 1 and, in general,

;= (- 1)jd1_1{“(jhl)(.t)lz==-u: '

with
. b )
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Proof. Let us tivst estimate Y o(n)! for ¢ < 0. By the elemenfary

pLoe et

property of o(n) being multiplicative, we have the following product
representution of the Dirichlet series of [o(n)/n} for s = u+iv, v > 1
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Dividing by the Riemann zeta function, we get
Lo ﬂ( — v
3 (1~«—~){1+Z———(1+~4 +—-—)i
L P

n=1
B
>ﬁ, ! ; )‘:‘ £{s)g(s,t), say.

Since < 0, g(1,t) is absolutely convergent. By the formuln (1.10.29)
on p. 47 of [6], we therefore have

s
Y i, t _—
(8) E’ dinyn =u 2 hn,Y) + Ol max |H(d, 1)),
2L nw =1 ” dse

where the constant in 0(...) is independent of £, and

.I{(di, 1) = > hn,1).

nad

‘We now show fhat (8) can be extended to

T (9) Z d@)n~t =wg(l, £+ 0@ *loga),

SNy

uniformly inte (—1, 0). For this purpose we prove that |H({d, {)| = 1L +logd,
independently of ¢ Indeed, by the definition of A{n, t), it is multiplicative
and at powers p? of primes

Ml 8y = (U427 97 e p T (L p T e T

Thus |[k(p?, §) <1 and hip, 1) = (L+1/p)f—1 = —Ljp for all te (-1, 0).
Since h(p, ) < 0, we got that |h(p, )] £ L/p, and therefore

H(d, < M [ [inp) < Z[Il/p

n<sd pln mid D m”rﬂ

o<l Lef-logd

The following estimate now completen the proof of (9).

\;11:.{?2,, £) “\ * N d(m, 0 = N oigr ot
Lod W o y L ) [ &5 0
prisip =gl :
1 (G- D log2 41 log e
< 2.: Y =0

where in 3" we sum for all integers j > (loga)/log?2.
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Affer extending the definition of a(n} to all real nunibers in an obvious

megf/ Lam f ht('p Tanetion, (9) and integration by parts yields that, for
-3/ <t < 0, say,

- .
(10) ‘};‘ Gt(%) == E(J_f(n) nint — C](:L t) t+1—[-0(ﬂ)1[2+i10gm)—-

BT i Reitls

’ i
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e (1 i b9, 8 ty(l, ¢ ]
e g (L, £ttt ———Hi_l_’l - gt m‘i :’1) + O (2 log )
I ACTE TR 16 U
S T O gy,
Obrerving thut
[3 ',..T 4 - 1 0
(11) J #/}J ot (n)dt = 2 f Ayt = N
B4 Lz s — 5 231-/%/ loga(n} li=a
U 7
=L
pE loga ) %@ (1 loga (n)’
and- that by (9)
Y
(12) )
| et () 1og 5 ()
\7 1 < gl L gt ni () {58
) + 2 A (n)loga(n) 0@,
w"“m Vi Yaan<e

wo now easily obtain the desived expansion by integrating the right hand
side of the outermost equality in (10). Indeed, putting B () = g(1, 1) Ji4+1),
repeated intogration by parts yields

] 0

(L3) ] B et dt e f H(hatds

it 8
f”(f)'b‘f 0 " ( ) o | E”(f,)mf’ [
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Since the integral in the lagt terny of (13} is bounded in @, putbing e
= (=1 BV ()], (18) Decomes

] o ,
. g e MY ol
(14) f Bpethas = D)ol - ( log i
—3/4 J=1
The integral of the ervor term in (10) gives
0 ] .
P logw f ddl = 0@, and fﬂf}(ﬂ)dt = O(L),
—34 — M

which, combined by (10), (11), (12) and (14}, completes the proof of the
Theorem. |
The constructive remarks of the referec ure pgreatly apprecinded.
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Introduction. Tu this paper we shall prove a number of theorems
coneerning the arithmetic properties of functions which we shall denote
an B-Tunetions. This class of functions includes many well known functions
of classical anplysis,

DurINerioNs, A function g(#) is an A-function if there exists an effec-
tive algorithm for computing a positive constant y and a finite set of
ordered puirs (¢, f;), where each a; is an algebraic number (*) and each g,
fs a non-negalive integer, such that g(z) may be written s a finite sum
of functions of the forn

) H(&) = 29 (1og (&) g,, 4, (4

where: (a) The function Y5, (2) is amalytic at & = co. (b) Bach derivative
of Gus,p;(2) ot % = o0 ig algebraic. (¢} There exist T;(n), a non-vanishing
Gaussian integral valued function defined on the positive integers, and
& positive integer M, guch that (i) My <y, (ii) [T;(n)] < 3" for all n = 1,
(iii} M, ga;,0,(00) and each Zy(n)(nl)™ ﬂﬁﬁj(oo) are algebraic infegers,
and (iv) the absolute values of the conjugates of M_,;gﬂj, 5j(oo), and each
Ty (n) (n!)~* fj;’ #y(o0) are less than p and »", respectively.

Wo shall say that o function g(z) is & B-function if there exists an
effoctive algorithm for calewlating not only y and o set of (g, ;) as above
but, also, u positive constant y, such that, for a set of f; a8 above, g(?)
ne %‘(J/j where eath e O and each o] <<y,

Our first resull is: _ _ _

Tienowwsr Lo If y(e) is o solution of (e, y) = 0; wheve ¢z, y) 2 0
8 polynomial in & and y with coefficients in G (3), then y(2) is an A-function.

(1) By offeolively computing an algebraic number a; we mean heing able to
approximate it offectively to within any proassigned error by on element of Q(4)
ag woll as belng able Lo efleotively compube a non-zers polynomial eguation with
coolfielents in §) (i) which iz satlsfied by ;. (Given a;, ay; oy, 2nd a, which have been
effectively ecompuied wo may effoctively determine, for example, i o 4-a, = a3 4ay.)



