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1. Introduction. Let 7= 2 be a natural number and let @ (%) = Q(u;)
[

= Y azum be a positive detinite gquadratic form with a symmetrie
dol=

coefficient matrix of determinant D. For & > 0, denote by 4 {2) the number
of lafitice points in the region @ (») < # and by Viz) = Trgm;/ﬁ(%-l—l) VD
the volume of this region. Finally, Iet

(1) P(x) = Az} V()

be the usmal lattice remainder term. O- and Q-estimates of the funetion
P(2) were investigated in many papers (see 6.g. [1]-[6] and the references
given. there),

In the following, we shall restrict ourselves to the special forms

(2)  Q(u) =@ Qr(ty, ooy W)+ Qo (% 4y, vos Uhpypy) oo
”f—@an (%r1+r2,...,rd“1+1}'"7’”’1‘)7

where a; are positive real numbers, ) are positive definite quadratic

. forms with integral coefficients, r; and o are natural numbers,j = 1,2, ...

vy @ and ¥ ow p-Try e By, These forms were studied by Jarnfk in
f sories of papers. A baric vesult is givenin [4]:if o =2,y 2 dand r, = 4
then,

LORTE ghpe z
(3 Ploy = 0@ 7 ), Pp)=Q 7 )
for each &> 0. Terve (and in the following), ¥ = y{ay, 4y, ..., a,) denotes

the supremum of all numbers § > 0, for which the system of inequalities

a; - .
—-"—g»-p,-J<q B, §=1,2,..,0
oy

* This paper was written during the stay of second named author at the Uni-
varsity of Illinois, Urbana.
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has infinitely many solutions in natural nwmbers g Py, Poy .oy Po (for

y = oo we pulb x = 0). A generalization of this result te the case ¢ > :
¥

made some difficulties. Jarnik shows in [B] & very fine theoren:

If wo put
Plw
fo = Ii»uj {:EP Hﬁi(ilj
then it holds '
r T
(4) Ewﬂﬁfcz»{gﬁ"l

for each @ of the form (2), wheve 1, = 4 for j = J, 2, ..., 0. On the other

e . T
hand, Jarnik shows that to an arbitrary value f, —2- —o L f ) — 1, there

exists a form @ of the type (2) for which f = f and he even delermines

the Hausdortt dimension. of all these forms. The proof of the last assertion

was a purely existential one. For a concrebe form (2) with 1y 2> 4, § == 1, 2,
: . r

.., 0, it only follows from the Jarnik’s paper [B] that fy == rY -1 for

¥ L ¥
y = o0 and, in general, the mequal]ty fo= Y 1 wj— Algo fo =— —0

b

for almost all forms € in the sense of Lebesgue measure in X,

In 1968, the first of the anthors succeded in extending the validity
of (3) to the case o> 2. It was, however, necessary to assume that #;

2 1 - ]
;—(?-}j——)-, j=1,2,...,0{). In the same year, Jarnik published his
7} .

last paper on the lattice point theory in which, in conformity with known
result by K. Chandrisckharan and . Navagimhan, he turned the whole
subject inte another direction.

Put Pylx) =P{w) and let for ¢ > 0 bo

Lof
(5) . P0) =5 f P (1)Lt

Trom a series of results in [6] we shall sbafie only the following two:

1
H o> ~g~ ~5 then for each form (not only of the type (2))

(6) Py(x) = O(a* * %), Plo) = Q" *'3),

(%} As a matter of fact, this result was proved in the guoted paper for the ense
)y are sums of squares only. It is easily seen that it holds in our general case also.

Latiice point theory of multidimensional ellipsoids 201
IHo<eo <§ —2 and if ¢ has integral coefficients, then

Pow) = 0@ ), Py(z) = ).

1
For "2_ -2 <m2— —3 there are no deflmtwe results known, not even

for integer forms; for ¢ =0 we obtain actually the classical unsolved
cages = 2, 3 and 4 (for a more detailed discussion see [6], pp. 141-142).

Thus, these regults essentially formulate a new problem. Namely,
to determine the dependence of the value

Sfole) = limsup log_lggﬂ
&<} co loggg

not only on the form ¢ but also on the parameter o. The aim of this paper
is to investigate this question for forms @ of the type (2), or more exactly,
to extend the result (3) to the case ¢ > 0. We shall prove the following

Marxy THROREM. Let @ be a form of the type (2), where Qy, @y «.v\y O,

. r
are- integral fo:rms, put Yy = (g, @y, ..., 0, and let also ) —2>02=0

2(9% 1)y +1)

ang ¥y z -t » y ] =1,2,...,0. Then
r o1
Jole) = 5 —1— ===,
| Y

In paper [7] {Theorem 4, p. 273} it iz shown that if there exist sequences

{Gutiers Wimbeey § = 1,2,...,0, of natural numbers such that g, — oo and
1

nlog*g,”

41

—&L—j—gnijn < i=L2 ,08=1,2,..,
1

where a 2= 0 and £ > 0 are constants, then for the forms (2) always holds

r g+l efel)

o e L

Py = Q7 log. P ).

1§ ¢ w1, then by the sume paper (Theorem 1, p. 266) we always have

Py = Q& ).

In view of the mentioned results in [1] it follows from this at once
that for the proof of the Main Theorem it will be sufficient to prove the
following two staternents.

8 — Acta Arlthmetlca XXV.2
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THEOREM 1. Let § be of type (2), where Gy, sy .10, O, are integral
f T
- forms., If 0 < g <3 — 2, then

.
L.}

(7) Px) =0 ).

TuarorREM 2. Let the assumpitons of the Main Theorem be satisfied.
If v < 4oo and oz 2, then for each s> 0

(8) Pw) = 0@ 7).

For the proof of thege two statements we shall use the Jarnik’s method
(gee [8], [4]) in combinatiod with a metric lemma from [1].

2. Proof of Theorems 1 and 2. We shall have always ¢ > ¢ and @
will be a form of the type (2) with @, @,, ..., @, having integral coeffi-
cienfs. We shall denote by the letter ¢ (in general, different) positive
constants, depending only on ¢ and @, # will be sufficiently large, # > c.
For ¢> 0, by e(¢) we shall denote positive constants which again, in
general, will be not the same at each occurrence and may depend only
on g, @ and e. Instead of |4] < ¢B we shall write shortly 4 €< B. T 6> 0
and B is an interval with endpoints ¢, 8, a < 8, then é8 means the interval
with endpoints do and 4. ' '

For a complex s with Res > 0 put

o0 .
N\ @ BRI e e )

(9) O(s) = Bqls) =

M Wgr 0 e ey Wp==—00

The function (9) is obviously holomorphic in the half Plane Res > 0
and, as it is known, for each a > 0 is

a--ico
1 Fg)e™
(10) - Fla) =5= | =g s,
' a—ico
where
'
i1 o e ———
(s} = O(s) T

and the integration path is the line Res = a. Let ns remark that by P,
f > 0, we mean that branch of the function s° which is positive for positive
values of s, : :

Now, we shall make use of known transformation propertics of the
function (9) (see e.g. [7], Lemma 1, p. 264). '
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LummaA 1. Tet b be an integer and & a natural number, g.e.d. (b, k) = 1,
Res > 0 and lel the form @ have integral coefficionts. Then

nzﬁ(ml, Mysess ,m,.)

m - : i o~ 220)
(1) Bgls) = - y 8 € x
— T ok, o)
VD (3 _ Erih ) a0, T —co
G

where @ is the form conjugate to Q and S i tmy = Sk, tmay ...y OTC
generalized Qaussion sums defined by

anif 2
& TQ{bl,bz,.‘.,bf)-}-i;-

.

& myb;

Sh,k,(m) == 2 e =1 s
bl,bz,...,bj.El

For these sums always holds the estimate
(12) ‘Sh,]‘c, (m) < T,

Let us mention that for » = 6 and ¥ = 1 the relation (11) is true
for any positive definite form .

, 1 '
Tt now we have h =0, k =1, § = ~ +4t, t €278 then by (11)

) _ (MY, Moy ity

{s) e il 3
= [
g — -E+g+1 e
£y
1)312 +eti - _ waQmy mg, ey my) 'é§+e+1 cx
577 -
<< . > P 1457 < . e 1428
i.,_ﬁl - g_!_g__-]-_l !
(1+a2g2)* 2 (1 a2yt ®

stnce @ (my, My, ..., M) > mi+md4...+md and from 1 < V2 it follows
that @ L4226 {3 denotes the sum extended over all inbegral numbers
Wiy Wiy ooy Myy MRy +... -bomg > 0). For A =¢ (it will be useful to

2

AT
choore A == max~—) we have thus
iy
- (13)
= )—i—ff—: —f: :
& 1 E » +1 cx r 2
1 T(s)e™ L8 x \r+dl - I+l
2 R 14?2 32
Al { 0 <o J 1+ a8 ? A
1 B
m"’ﬁ

~ since 867 <1 on the interval [0, - oo).



204 B. Divid and B. Novik

By (10) and (18), it will sutfice for the proofs of both theorems to
estimate the corresponding integrals

1,4
7+ R
I’(;e)e*‘"‘g - L I(8)e™ de
= omi f got! 5, J= Xmi f getl T
—+i . %mioa

J and J are obvmusly complex conjugate numbers, Thus, for the proof
of Theorem 1 #; will suffice to show that under the assumptions of Theorem 1,
holds

(14) J €t
¥
(since 0 < g < %——2 imnplies %—{— % << 7 1), and for the proof of Theorem

2 1t will be sufficient to show that for each &> 0 (under the asswmptions
of Theorem 2)

. .—t—l—— o+l 48
(15) J Lt v
" ] .
(the assumptions ¢z=2 and 7= uiwwj%w_:[“_l imply v2rtr,
4(o-+1 1 . 1
2——-~m~——(9+y)(y+ ) and hence gulh!——ag;l‘ >w~|‘e>m—l"—)

Let us now considler Favey fractions corresponding to ¥, ie. all

L ‘ .
numbers of the form 7 where h and % are relatively prime integral

V. With each such fr a,cmon we associate the inferval

' Ro-hy Bty
By = |2n 3
_ ]’_7 [ " T4k’ T Ia—l-kg)’

numbers and 0 < k<

hy
7 T 7{ is a triple of consccutive TFarey fractions under
1 2

consideration. As it is well known (sec e.g. [6], p. 152),
h y j ’
E: [2n-i_ e S ),
[ ko wVa

2wh
i i‘:’:‘“, and

kVm

Let us mention alsa. that for s =

Where < Gy, Py < 27 Henee, if te By, then 14—

<

27th

_if 1¢8B,; ,, then 3 —

H/m ’

icm
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1 b ;
= 5 HihteByp and > 0 4 o < Jo| <. We have further obviously

fw, +oc) = L Br, s
B0, 0<h<VE
2 c e
for w = m, where the union is disjoins.
o

For simplicify, we shall always assume that the nuwmbers » and &

are natural and relatively prime and %< Va (similarly, the same about
the pairs by, ki ke, ke .o by, k). We shall make use of the sbove mention- _
od facts without furthm reference.

Il now ¢ is a form (2), then obviously

= H@Qj(a,js).

=1

(186) | Bq(s)

To prove (14), let us notice that

5) € Q) 1@, (ay8) |71+ [s)"R.

F=1
Becauge of

B L
(17) ] <1,
and,
- di r < d "pe
j W = mg - [l £ +1 < ﬂ‘i‘ 2
— +E+1 Jo .{.9
Ale +?»6 AT (l—l—uz)’*
it will suftice for the proof of (14) to estimate the integrals (s = — + it)
|9, (a;8)™
(18) Ij = f e é(.'_'l""l L (ff

AWz

1
93;. pod o=t

2)7‘_.1}2

By Lemma 1, we have for te

mrjfz
27ch
a;lo

(19) B, (ay8) €

kil ( !
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-

. 7T
and thus (here we can see why we made the choice 4 = xx;axm)

&;
2 L o1
2)9'12 (7;) at

5< > f _:0_2_7=7{

nE Lg, Jof’2(1+a, {

ﬂ':jk
[+
e
. du v 1
12 £ a1 N e < gL,
< _.2 Bt k”"”'ﬂ‘ J Aradyn =% 4 T
R, Je 0 k&

sinece g-—~ o—1>1. This proves the relation (14) and thog completes

the proof of Theorem 1.
For the proof of (15) we ghall need a finer estimate of the function

F(s) than we have used above. Liet pairs by, &y, j = 1,2, ..., ¢ be given.

ZTthj 1 .
_—— b i3 _ T == 1 2 raw
Let ¢ +m§ te EB,,, {bhug 1% " J Z Yi:,-l/ac), j p ,' ) O
Using (16) and (19) we obtain
wr/z
Ools) < zmhj il
1{fure]e-
j=1

(1-4dow| > 14-2u]). Since we have also

o2

T W 7~RR 1 ] Lo

> s, gy, BTVE ke
B @ @

. ¢ 1
for our s and j =1,2, ..., ¢, we obtain finally for teﬂ-&m%hj’kj
w1

: ) & LIE
1
(20) P(s) <m"le ! By tmin {1, —=———ey
i ) 2717;?@
ok

We shall decompose the integration path 4 /‘l/.; it =< oo into

1 oo
intersections of the intervals amﬂihj,kj, g1, 2y 000, 00 With regard To
j .

y 211}‘&3

the factor

gections yet further. For that purpose, let ns introduce the following .
notations. If we are given numbers kb, k; (remember that these arve still

in (20) it will be useful to decompose these Inter-
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pairs of natural relatively prime numbers, % 1/03) and non-negative
integers 7y, Ny, ..., N, let us denote by

Mk, Ty 0) = W(hyy Rgy oeny bogy Fyy Fas oeny Koy By, Mgy veny )
the set of all ¢, which lie in the infersection of the intervals i%;,j y and
2 .

- - L j
satisty the inequalities

‘ 1 @, h 1
21 R e B B L N
(21} a1, Vo B ; 2””.7,]/93 y J=1,2,..,0

Obviously, the wnion of all the sets M(k, &, n) covers the whole interval

[4 /V%, +o0) with the exception of countably many pairs hy yj =
1,2,..,0 Tor 8 =— —i—zt with te M(A, &, n), we have by (20) and (21)
(22) T(s) € H min'# [— 2%V, :c)

i=1

We shall split the system of the gets i(k, k, ») into classes as follows.
Let integral, non-negative nwmnbers I, my, My, ..., Mg, 5y, Hgy eeny g DO
given. We shall say that the set I(R, &, n) belongy to the class N(I, m, n)
= Rl Mgy ooy Mgy By, oy ) i 20K Ry < 2940 and 2™ KRy < 2 for
J=12, .., 0 It Mk, k& n) is a set of the class N(I, m, n), then for
8§ = % 44t and te Pilh, &, ») we have by (22)

(23) (8) <€ H mm’:”‘( 2”11/93)
jerl

Hince ;< VY, we may restrict ourselves to those my; for which 2™ < Va,
F==1,8...,0 By (21), the measure of o set Mk, k, n) of the class
N(L, my n) iy ab most 62"~ "g~ " and if ¢ les in such a set, then

(24} 18> 2™,

Algo, we rhall make use of the following lemma from [1] (p. 135).
Timvma 2. Let e> 0 be given. Then the number of non-empty sels
Mk, &y w) of &ho clase ML, m, n) is ab most

(g o b o TremI T
-iTg s e E .
U(lym,n) = o(s)2 ’ s @ %

where f = y+-e
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Let W = U1, m, n) be the tmion of all sets Mi(h, &, #) of the class
R, m, n) and s = x 1-it. Becanse of symmetry, it suffices to estimate
@

the integral

[‘F(s)am

e

u
only for systems of nwmbers I, My, «ooy Mgy By ooer Hg sutigtying
(25) gmrteL 5 gty | OMet e
and, by what we have gaid above,

(26) Vg, m<Ve, ., 2M<Vo.

Tet us choose mow a positive, sufficiently snmll_mlmber ex>0, e <e
(an explicite value of this constant can easily be determined at the course
of the proof). By what has been said above, by (17), (23) and (24), we

1
have for § = P -+t
(27). N

F(g)e™
f sott % <
i

Olearly, it suffices fo us to restrict ourselves only to such systerns ¥, my, ...
ceey Myy gy ooy B, for which U(1, m, n) = 1, Le.

. 2 .
2(”)'1—4)(@4"1) U(Ey ", ’”t) ] Imin""f"z (Ws oM V.’L‘).

n -+ 1y "
2 Va Pl

U T o R 1

(Mgt oo mg)(1+8)+ 3 . w-«z—ﬁ

(28) 2—E(I+s) <<2

For given my and ny, § =1, 2, ..., ¢ the summation of (27) over the cor-
responding I does yield us by (28) for the integral J an estimate of the

form :
v 1 fg~s
| I
(29 ele)e 2 M M. M,
Hyew ey Hlgy
??rl,...,'ll«,,
where
. o efl - . :
M, =2—m1(? ¢ ”‘1"’"“)) e min® Vg, 20tny :
1gdd ¥
e e ! — . )
M; =2 i plte :) min®® (Ve 2™ty § =2,3,...,0—1,
and '
Cotgy Ng g—&
AL em | o e [ Lo i -
MG — Zm"(gl_ 2) [ ( ) 1+a) minram(]/m: 2ma-1-n,,) .
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To the following computations, it will be convenient to use the fol-
lowing conveuntion: if we have a pogitive function of the varigble s defined
on certain interval 0 < ¢ < ¢ and having limit zero for ¢ — 0+, then in-
stead of its explicite expression we shall write usually simply p. Thus,

for example, we can write p insteacd of & or z0, we can write —ég- — i in-
v

e gt 8T :
glead of 55 ete. This (somewhat unusual) notation will gimplify a lit-

e bit owr suecessive results, Lot us mention also that we assume ¥;

2(p-F1)}p -1 4
= ___(.g_m_t..,_).! and thus ¥y > m 7' =1, 2, viey O

y ﬁ LI

For § =2, ..., ¢ we put

=M= 3 e 3 M-8,

g iy My PR PR

where the sunmation rung over all natural numbers m;, n; for which (25)
and (26) holds. Thus, we have , '

r 1 g+l

(80) T TV S ang, L8,

717,1, ny

Rirgt, let § = ¢. Then (we omit the econdition (25))

g+l 7o ~— Te  pl
SU1< 2 Zmu(ﬂ-i-l)_nn -__(l-l-s)ﬁ_wz_)<< Z (]/m)2+12na(_2.—(__1+3)ﬁ}
: ——~—2na
Mgt Ry o Mgy
et Yo {e+1)E-+1) Te pal
I Lo _ {etDE+HD Yo )
<w R 2 2%(2 7 }-.u) <w4 zy'“‘,
2PV E
‘o 1 -m( 1 ?‘6) a-———"“l'l
B €t B gmeTT oy
rd
2m,,+n,r>l/a;
LA g Ty fome ) gl
< Z zaatg(n|.1..-2~)(2 U)(L]-a)ﬂ
sy z
fo_ et N (e-+1)(B+1) Te gl
<<,:m4 ] - 2:1 9 md{ﬂ“—_T—' +#)<m—&-——z—?—+ﬂ-

MgV

It follows from ﬁhese estimates that

(1) g o
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Secondly, let 1 <j < 0. First of all, we have (again without (28))

1, +1 +TL W mj(olJ-I 5) l/.’,v 13!2
8, < Z 9'”‘3(9“* +,E 143) < \ s ( )

X

U e 2”‘14”;

. "J (r+1)(a+1) t—)
< o' 2" 2 ity <€ 2,

m L < ]/-"U
For the estimate of 8, let us notice that by the definition of 8, and by
(25} we have Vo < 2Mt L oMt We oblain (with this summation
region)

Teb1 % B g (2 0D )
R (ﬂ“ﬂ‘sm )/ N gelmyn)e” Y v
sz<50r9!4242 ™ o ©
Pk Bt
15; 5(7”’]+'”’_1]_
Lzt 2 7,

gince the number of those n; for which omith; 2 M g for each &> 0
at mogt ¢(s)2°M*+™-"), Together with (30) and (31), we obtain
L_exl 71 PR I3 BV N
(32) 7 <w__§___y_h,_m.,.,,( 2 grler ity mbs )
DX S P

g8 -
IRV 2"“1( g - g )~ “’)_

RN

(The factor 2°™1+™) by the second summand comes from S, j =2, ...
.., 0 —1.) Congequently, for the first sum on the right-hand. side of (32)
we geb the estimate

. g+t
Z Vm)e+ﬁ+ﬁ(1+s) fl(é-]‘) RS }_’ o’”( =gl

<
2™
Mayz : . "'Imfu,
e, QFL}“’”IW{_ g ot !
<& gt 20 {146y 2% 2ﬂ<l'“’< 4 2,
and for the other sum we have
51 k) o1
- 1 LR R N e '|'") e rhg(1m8)
By ket
B e
L R gtl gy 1~
- 2# m1~.10k H) 1
< w¢ 9 ( 9 ,3(1 = E) !7:_
“ 2
ly's .
otoe ( {0t )(B--1+ ) LN
%

: =t a1 % i
. gt 23 } 9 LTI U A

2™y
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These estimates yield to us finally

In view of the defivition of o, this proves (13) and thus completes
the proof of the Main Theorem.

Lot a8 remark that using the same procedure it is possible to derive
corbain estitates of the remainder term P (2} also without the assumption

————— (amalogous to Theorem 3, p. 138 in [11}, and to

generalize Theorem 1 from [2] to P,(2) (o > 0) as well.

Finally, it is interesting to compare the Main Theorem with the
following result (see [9], Theorem 3 or [10], p. 764):

Let # be a matural number and «,, a,, ..., ¢, be real numbers. Let
Q(u) = Q{uy, Uy, ..., %,) be a positive definite quadratic form with integral
cocfficients and determinant D). Put

r
. ami 3 oy
A@y =2 57

whera the Sumnm.tmn runs over all systems of integral numbers m,, m,, ...

oy, sabistying € (my, m, ..., m,) < 2. Letk
Tcr,’z wr[zé

Fl = A= 1/51’(%-{—1)’

where 8 = 1 if all a; are integers and. § = O otherwise. Let us define P,(x)

i
as in (D), put v = (1, o, 0, ..., ) and assume 0o <E_1__'
Then. _ y

Lc {.,|P( ) r 1 (r )
Lirnsup e N rdr-rul bl I )
o ogw 2 20y +1) e
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XXV (1974)

On a problem of Davenport and Schinzel
by

L. Szmmendnr (Budapest)

We et for every integer I: I = {0,1,...,1~1}.

DuriNrrron 1. A fanction a: N-+n is said to be an admissible N-5eqUETEE
of length N i a; + ayy, for i+1L < N (#; is the value of the function at
the place 7). :

We say that a containg an oliernating l-sequence if there are numbers
b #eand 0 <iy<... <i_, <N guch that

{l B’f = if

- < 28 < 1,

0
1
@) =b i 1<2s41<l,

Figgpn

DEFINITION 2. Ny(n) = max (N: there is an admissible n-sequence
of longth & not containing an alternating (T4 1)-sequence).

Remark. One can extend the notion of an admissible n-sequence
of length N replacing in Definition 1 the set » by an arbitrary set of
eloments. Clearly such an extension does mot affect the definition of
Ny(n). A linite sequence a: N-»X will often. be denoted by (ay, ..., ty_,>
and the set of its elements by {ag, ..., ox_1}. -

It is Ienown from [1] and [2] that Ny(n) exists for every ! and #n,
and wo hawve

(2) Ny(n) == 2n—1,

(3) Ny(m) = (1~ 4+ 3)m— O (1)
it 7 ds odd amd 1= 3, '

(4) ' Ny(n) > (12— 514 8)n—O(1)

if 7% even and ¥ > 4, where C(1) is o constant depending on I only, and

N, (1)
({7

= 8.

by - | N, (n)=bn—§, lm



