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Arithmetical properties of function fields (If)
' The generalized Schur problem

by -
MroABL D. Frep (Stony Brook, N.Y.)

Let K be a field, with E* a fixed algebraie closure of K. Lef
¥ 5 P1{K") be a connceted finite (branched) covering of algebraic curves
where P1(XK*) denotes projective 1-space over K*. Suppose that ¥ and
g are defined over K, and that K (¥) is the field of functions on ¥ defined
over K. Thus, E(Y) =E(P)y) =Kl(2,¥) where K(P) = K (x) with
» transcendental over K and y is a primitive generator of K(¥) over
K (PY). We denote the conjugates of y over K (x) by Yy =Y, Yzs -ors Y-

. P .
The Galois elosure of K (¥)/K (x), denoted E(Y) (or Qg in the text) is
E (@ Y1y --es Yu)- The arithmatie monodromy growp of (¥, @) denoted

. o~ _
Mon(Y, ¢, K), is the Galois group @ (B (Y)/K (P} equipped Witll}\al perm-

tation representation class I’ obtained by the action of G{K(Y) /K(P.l))
on the set {¥;, ..., ¥n). The general -motivating problem for this paper is:

TYTENSION OF CONSTANTS PROBLEM. Let K denote the algebraic closure

N R
of I in E(X). Describe K.

Obviously, as stated, the extension of constants problem is oo im-
precise to generate a resesrch plan (sec, however, Section 5). Therefore
we deseribe an illustrative special case of the general problemm.

: P P

GENERATIZED ScHUR PROBLEM. The group GE (YY/E(PY) is con-

T ] T ol F
toined in G (K (Y)/K (PY)) as @ subgroup of index [K: K] Assumo that:
(0.1)  K{z,yy) is a regular extension of K(x) {4.e.

tE (o, g Kiw, )] = K KD

and also that

- yn breaks wp into strictly
Fas - - .
smaller (shorter length) orbits under the action of G{K(Y)/K(x, Yy))-
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We say that (¥, @) is 2 wirteally-one-one cover over I 3f (0.1) and
(0.2) hold. Describe the virbually one-ohe covers over A

We menfion an arithmetic (and diophantine} application of the
notion of virtual-one-one-ness. Suppose that (¥, ¢) has an wifine modol
given by the zeros of a polynomial gz, y)eH e, y| (where projeclion
onto the @ varinble corresponds o the morphism @), Condition (0.1,
in thig ease, is that g(e, ) is obsolutely irreducible over K. Assume also
that B == L is @ finite field. Then (Proposition 1 of [8]) (1, ¢) is viztmlly-
one-one over L if and only (Y, ) deflues & one-one wmap for dnfinitely
meny finite field ertensions L' of L. That i, there exist infinibely nay
- finite field extensions L7 of T such that:

(0.8)  for each myel’ U{ocl, there cxista a unique yeedi U{oc} sucl
that gy, 4ot = O.

We come closer to the state of the literature with further speeinli-
zation of the generalized Schur problem to:

GENERALIZID SCHUR PROBLEM FOR RATIONAL TUNCGITONS. Leb felU(y)
be o vational function in one wariable. We say that f is virtually-one-one
(called exceptional in [157; we find the term virtually-one-one 1moro
suggestive) 4f
0o JW-1& vl irvedueible fuc
(0.22) ”""’};‘”“-"’" has  mo  absolutely . drveducible  factors over K

(Delinition 8). Classify virtually -one-one vationol functions.

In [3] (the paper preceding this one) we considered n goneral class

of problems about value sels of polynomials. Tn this paper we foeus owr

attention almost entirely (except for Section 4, where we finish some -

loose ends from [3]) on the generalized Sehur problem for rational funetions.
For the relation between the generalized Schur problem for rational
funetions and the work of Wells and Tidl, see the infroduction of [8].
For previous literature consult the exeellent bibliography prepaved by
Charles Wells (with the aid of W. Nabauer [15]). : :

_ Bventually these problems should be treated as purt of a generalizod
Riemann existence theorem. We are being heweistio heve, but roughly:
suppose we are given a sob of clements oy, ..., g, in the syimmebdde group

” .
on  lefters with. [[ o, = Id. We might hope to have a combinatorial pro-

feml
cedure where wo could £ind oub if there exivts o fiold K and o cover
Y5 PLICY (s above) with a deseription of its brameh eyeles given
by oy .50, smel that (¥, ) i virbually-one-one over K. The importart
thing is that this desired procedure should involve only finite computa-
tions with the elements oy, ..., o,. The problems, theorems, and exanmples
of this paper give etpirical data toward a formulation of such a generalized
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Ricmann existence theovem. In Seetion 5 we give a formulation (eon-
jeetural) of such an existence theorem, and then, assuming its truth,
show how fhe gemeralized Schur problem would be reduced to group
theory (albeit, very hard group theory). .

Jontinuing the results of [4], we show in Theovem 1 that if f(y) is
a tame (Delinition 4) virtually-one-one polynomial, then fis-a composition
of eyelie and Chebychev polynomials (expressions (1.16) and (L.17)).
Binee i iy possible to decide which compesitions of cydic and Chebychev
polynomialy are virtually-one-one over a given, finite field, the generalizod
Behue problem can: be congidered solved if we vegtrict ourgelves to tame
polynonzials.

Preceding Proposition 1 is & discussion of a procedure for computing
the nature of the ramifieation over the place o == co on the curve
Fly)—a = 0for feL[y] (f is no longel assumed tame). See [7] and Section
VIIL of [16]. Suppose feL(y) is a virtnally-one-one rational function
with. :

9
04y f= p—(—qi)— where p and ¢ ave relatively prime polynomials,

q(y)

and we detine #(f) = deg p — deg g. Proposition 1 shows that ¢ has no
Jrrational zervos and if (’ﬁ;( f), char L} =1 then L can contain no non-
firkvind % f)th roots of 1 (in particular, since —1leZ, B(f) must be odd).
Also, i f is & virtuslly-one-one polynowmial, woe have the following partic-
ular consequence of Proposition 1. Suppose that

f {gj) == P M0 g8 | Jovwer ferms where char L = p,
and o .
(0.5) (@(0),p) =(d(1),p) =1 and p"V-d(0) >d(L).
Thoen,

{d(0)—a(Ly, p—1) >1.

T Theorem 2 we consider F{y) e L(y) (as in (0.4)) such That f is o vir-
tustly-one-one, tame funetion (actually the proef meeds only that the
cnrve dofined by fiy)—a = 0 iy tame over # = oo). Ay a partieular
consequence (Corollary 1) we obtain: for 1< deg ¢ =5 9 there oxist onky
finitely many infegers % (the bound o % 8 indepondent of L) such that
ihere exists feli(y) a4 above with #({(f) = #.

Lot LY be a fixed algebraic elosure of L. It i possible that f{y)«L(y)
i indecomposable over £, but decomposable over I". Thus, unlike the
cage where f(y) is & tame polynomial, in general we arve not able to reduce
to the case where f iz virtually-one-one and indecomposable over L*.
In Scetion 2 we consider this gituation nnder the additional assnmption:
that f(¥) is tame. The work of this seetion iy continued in [6] and iy mainly
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a contribution to the computation of the lattice of fields hetwoen ()
and Z*(f(y) in our situation using Riemann surfaco technigues.

Tn Section 3 we give a list of fame rational functions (over €} of
prime " degree (following some computations implicit In [12], we give
an unusual characterization of those functions via modular funetions)
which must confain the tame virtnally-onc-one rational functions of
prime degree. See Section VII of [16] for the conclusion.

Section 4 containg problems and eounterexamples related to the
“Polynomial conjecture” diseussed in [3]. A good portion of the signitictnt
worlk in this paper is contained in the problems and examples pluced
at the end of each section.

Mozt of the results presented here were known to the author ovel
four years ago, and this paper is an updated version of & paper wrilten,
at that time. A word of warning is in obder. This is a very down-to-enrih
paper (say, in relation to [7] o [167). Mowever, it is not a simple paper,
as T have been willing to use difficult combinatorial arguments whoere
general arguments seemed not to work. The idea of the paper is to hridge
the present literature with the extension of eongtants problem by giving
some solid results and problems from which rosearch direetion might
be indicated. The reader, I hope, will come to appreciate the task, and
bear with me whatever meager success results.

‘We thank Don Lewis for suggesting the fitle virtually-one-one cover
a8 in- (0.2). Also, Roger Howe gave us the p-group counterexample of
Example 9.

1. Generalization of Schur’s conjecture. Let T be an arbitrary perfoct
field, and I* o fixed algebraic clopure of L. Unless otherwise stated, all
funetion field extensions and polynomials will be assumed to be separable.
Leb f(y)eL(y) where f(y) == p(y)/g(y) and p, geLly] are velatively prime
polynomials. ‘ :

DermwrzionN 1. I fly)eLiy) i of form p(y)/¢ly) where p, q ave vel-
atively prime polynomials, then degree f is by definition the maximum
of degree p and degree ¢, This notion of degree is rultiplicative with
respect to composition of functions,

Drrmvrrron 2. A rational function f{y)eL{y) I8 said to be decome
posable over L if-we can write f(y) == f (fa(y)} wheve fy and fp are radional
funetions over I of degree greater than 1. Then fy and fy are called com-
position factors of 7 over L.

DrwinreioN 3. Lot Az, y)el(z, y) (where 2 and y are algebraically
igdépendent indeterminants). Then deg,h is by definition the degree of
kg8 an element-of M (y) where M = L(a). If tho algebraic cwrve deswribed
by setting A equal fo zero is irrectucible, we say that & is an drreducible
wational funclion in two variables. : ' S
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Liet f)eL(y) be of degree n. We denote bY ¥4, ..., #, the zeros of
Fly) . Asin [¢] we let Dy, = L(yy, ..., #u). Then G(Q, /L (w)) denotes
the Galois group of Qp (L),

DEFINTTION 4. We say that o rational function f(y)eL(y) i3 tame
over I il either
(1.1) The characteristic of I is. zevo,
or
(1L2) The abstract Riemann surface of f{y)—o is tamely ramified.

gver the @-gphere.

Condition (1.1) automatically implies condition (1.2). Let 7 = deg p —

—deg ¢ = B(f). For the problems that concern us we may replace f by

af(y)+b |
: ——Z—— for b,e,de<h
(1.3) P for  a,b,e,de
Cguch that ad—be s= 0. Py suitable choice of a, b, ¢, d we may assume
af +b )

DEPINITION 5. We say that fy)eL(y) is virtually-one-one (called
exceptional in [15]) over L if

{1.4) ﬂy;:l}z—)— = @y, ) has no absolutely irreducible factors over L.

Let R be either the ving of integers of a number field K of & finite
field. We denote by Res(E) the collection of finite field extensions of
rosidue class fields of B. We say that f(y)eE (y) (where I is the quotient
field of R) is virtually-one-one over Res(R) if (1.4) holds for infinitely many
LeRes(R). Let ¢ > 0 be a constant. We say that Flw) is virtually-ong-one
over Res(R,0) it f is virtually-one-one for infinitely many ZLeRes ()
with chaxT > 0. .

TeMMA 1. Let hiy, 2)el{y, ?) (rational function field in two indeter-
minates y and 2) be drreducible over I, Then h(y, 2) 1s absolutely irreducible

over L iff

(1.5) M AL =1

where M is the function field of the ewrve h(y, &) = 0.
Also, wo obtain equalily in the eapression

(L.6) (i) 2 G-I Y)
where 1T is the Galois closure of MIL(y), iff .
(L) . A =1L | -
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Remark 1. Sinee the elements of 2, ave all rational fonetions in
Yy veey Yy With coctficients in L, the absolufe constants 4 of L., lie in
any field ohtained by adjoining to I the coefficients of Puisenx expansions
for iy, ..., ¥, Over any rational tamely ramified place of the w-sphere.
If ael O {00} corresponds to u place of the w-sphere, call the field just
described I,. Tn porticulay, if ¢ = oo and fix a polynomisl tamely ranificed
over oo, then L, = L(£,) where , iy primitive ath rool of 1. From
Hilbert’s irveducibilify theorem, in the case where Fo= K is o number
field we hawve (M) &, == I (see Seetion VIT of CLeT.

g hl
- We infroduce some notation to be retained throughout this paper,
Let §, be the symmetric groap on o lettors, An cloroent oed, can o
written as a product of digjoint eyclos

7
1.8) o= H v, where  lengbh of 9 ds 9(3),4 == 1, ..., 7.
i1

We will gometimes abuse standard notation and write

(1.9) o = H(H(i)) o (s(L)){e(2)) ... (s(r)-

Then we have, order of o = [8(1), ..., s(r)] (Leam. of s(1), ..., s(#) wnd

ind o = 3 (s(i)~1).
FESN -

Lmyna 2. Let flon) e L[y] (f 18 a polynomial), with (deg f, char L) - L.
Then the lattice of fields between L(y) and L{f(y)) is isomorphie (as a-latiice)
lo the lattice of fields between I*(y) and I7(f(y)) (Lemma 1 of [97).

ToworeM 1. With the notation of Definition B, let K be the guoticnt
field of R. Lel LeBes () and f(y)eL(y). Suppose

(1) f =f1(f2(...(j‘z(y)).,.)) where  fel(y) for i =1, ..., 1.

Then there ewists an indew § sueh that '

(1.13)
- (1.14) _ f s not virtwally-one-one over 17,
- Also, (1.13) holds if '

(1.10)

i is ot viviwally-one-one over L, iff

(LAB) - f; ds dndecomposoble over L* and GL Ry W1 () s doubly-
' transitive on Yo (1), ..., Yuy (1) (the zeros of fy— ).

S'Lf@j?os'e F)eL[y] is a tame polynomial over L. Then (L.14) holds
unless f is p composition of polynomials of the Jollowing type:

(1.16) ay”+b . (eyelio polynomials)

icm
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and
(1.17) Taly) =27y + " + O+ (g (" - 47)"]

{(Ohebychey polynomials).

. Now asswme feIl(), and {1.12) and (1.13) hold (see Problem 1)
with L reploced by IC. Then theve ewists a constant C >0 {dependent on f)
such that [ is not virtually-one-one over Res(k, O).

Proeof, There gre many woys to proceed. Weé bave chosen the moyt
expedient, not the most clementary. From. tho generalization of MacCluer’s
theavern (Proposition L of [8] or [18]) f describes a one-one map on
Ly o oo~ Iy Qoo for Infinitely many ficld extensions IyeRes(L) iff
F i virtunolly-one-one. However, f is one-one (and therefore onto, since
I is o finibe field) on L, O oo iff f; 18 one-one on Ly oo fori =1,...,1
(% in (1.12)). Thus (1.13) is equivalent to (1.14). Nete that (1.15) implics
that gy, &) = &(—i{ﬁ—f—{lﬁﬁ— In abgolutely irreduecible, Decanse the zeros
of r,m,;(g/l('.i), ::) wre 2 = Yy(d) 5 ooy Yuey (9)- L f(w)e Lyl 1s a tame polynomial
then Liomina 2 implies that f can be decomposed (over L) into polynomialg
which are indecomposable over L¥. Then Lemina 9 of [4] shows that these
ecomposition factors of £ must be linear changes of polynomials of type
(1.16) or (L1T). :

U fell (), and (1.12) and (1.13) hold with L replaced by XK, then
Noether’s lomma applies as in Theorem 1 of [4]. =

Lot L be a finite field; L{{L/z}} the ring of formal power sevies in
1w with cocificients in I; # = L((1/z)) the quotient field of Z{{1/c}}.
We have the following exact sequence

(1.18) Los @EROI._, Gm‘ith'_%--G(L*/L)%l

whare G(M" /), and G =G(.M*/I' ((lf:v))), Lot @i be
the Galois group of the maximal tamely ramified subfield M, of 2%

Gn.rif;h. —

- Then _ -
My'= U .I;‘*(((l/a,-)“'”)).
(n%‘:-l
Lt o () e@(L*/L) Do the Frobeniny generator of = o{l7){w} for ael”

(wlere g is tho order of X). We define o(F)«Giny to be the element

obtained by operating on the coefficients of Puiseux expansions (elements
of My by o(B). We fix, once and for all, a compatible system of primitive
roots of 1; that iy, a collection {{:n}gfz})nl whero.

(1.19)
and
(1.20)

L, is a primitive nth root of 1,

(Cam)™ m‘. crz-

tor all #,m ‘such th&t_ (m-m, p) = 1.
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Weo define o{Br)eG|{M,/L*((1/w})) by
(1.21) o (Br) (Liaf™ = (£, {L/z)}".

Then &(F) and o(Br) are topological generators of Gimms -with the
single relation '

(1.22) (o(Br) e (F) = ¢(F)a(Br).

Tet f(y)eL{yl. We introduee some concepts for the computation
of the Galois closure of L{(1{@))(y) over L{(1/x)] where f(y) = @ Theso
computations are eavried on extensively in [7], which containg a goneral
treatment of wild mnnhca.tlon Suppose dog f{y) = d = 4(0)p"™ where

(@(0), p) = 1. Write fE(f” 0 " wheve
s

(1.23) deg fr, = d(k), {d(k),p) =1,
and
(1.24) "™ is a strictly decreasing funetion of k&, with p™¥ == 1.
Sueh an expression for fis not unique. '
Let e(0) be the ordered two-tuple of integers, (€(0)p"@; p*™) and
define ¢(4) inductively by '
(1.25) 6(i) = ((Z( )i“” E) s prVial)

where by is the least integer smel that

H
>k and a(pt —aeg( N (Ra)™®).
' ’ Resly oy ol1 o

DeprvirIoN 6, We call the collection {e(¢)}i.., (with ity ordering by
slze of coordinates) the ramificetion dafe (over o) for the polynomial
FlyyeL[y]. See [7] or [16] for other interpretations of {e(4)}., (which
In particular show thut {e(d)}., is an invariant of the valuated ficlds
L{(L{x) ()L ((1/m). Lot o (e(d)) (respectively my{e(d )}) be the first (res-
_pcc’mvely the second) coordinate of e{d).

Consider the lines

(1.2()) Zk: ==y (f;(k))
Denote the

“;(Xw%l)pq’(""‘)’ T o 0‘, '“.’ N

¥-axlg

(v_1,}r1(e<kn)

(=t,mylethtm))

X==1" w X—axls

icm
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X-coordinate of the intersection of I and § by I (e(2), e(§)). Let B(0) = ¢(0)
and define B (?Z) inductively by

(L.27) H (‘b) 2 the winimum of e(l) < H(i—1) such that the minimam
valuo of L{H(i—1),e(k)) is achieved.

Then the ovdered two-tuples
(T (s o)y ooy (B — (L4 T (B, By} ma BN

ae the ‘eirners’ of the outer coneave hull of the Iines {4,}5..,. The collection
(B (@)} generalizes the notion of higher ramification indices. The fol-
lowing computation shows, in particular, that if L((‘_L/m)} (y) is Galois
ovel JJ((.’L/w)), fihen, the quantities I(H;, F,,) are higher ramification
indices (so in this ease, they are integers).

Tt o IF((L/y)~ U L1y Dbe a field embedding, fixed on

n,p)—el

IX{(1./2)) sueh that for some integer n > 1

oly) =y 3wy

Fomme (1)

(1.28)

Tvom the eguadion

(1.20) Flo(y)) = fly)

wo indluetively  solve J'or the cocfficients {8} - From (1.26) and
(1.27) it

T{E(m), B(m-4-1)) < jn < I{B(m-+1), B(m+2)) for m<ti-1,

then « appears in the term where ¥ has coefficient g(a;) and exponent

(1.30) 7oy (B (m)) — (-i— +1) 7y (B ()

im the Tofh side of (1.29) (and & does not appear in the coetlicient of a tierm
of highuer degree). In addition

(1313 .
andl Bois w universal H(!l)}h]‘.‘i;hl)]@ polyfumni:nl (dlopendent only on f) with
coctficionts i L' Te gy «oor @} Also R has the property that '

m(]f (m)} B

Tty (U (m l-l))
1, otherwise.

g(aﬂ') [ ]! ((L“l(f‘(m I 1)))

it g == I(]ﬂ(m)', IU(M-1~1)),

(1.33)  degh ==

~(—l—)— eli(y) be virtually-one-one over L,

q(y}

Provostrion L. Let fly
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wheve p, ¢ are relatively prime polynomials, end {(as in (L3))

T(f) = deg p—deg g2 1.
Suppose :
(1.38) @), p) = L.
Then :

(1.34) L contains no non-trivial 7 (f)-th root of 1, and y{y) has no geroy
in L.
In pavticular, since —J el B(f) ¢ odd,
Assume now thet f(y)eL[y] 18 virtually-one-one. Lhen (in the notation
above)
(1.35) the g.e.d. of (B tml))_nl(]fj(t)) and ey (Bt «-‘L)) ------ 1.
iy (B (1) = 1) is greater than 1.
In particular, let F(y) = y?"" 4O 4 py®® o Lower tevins, wheve {d(0), »)
= (d{1),p) =1, b £ 0, and v(0) 5 0.
Then, if f ts virtually-one-one over L,

(1.36) (@(0) (L), p™ 1) - 1.,

Proof. From MacCluer’s theorem (Theorem 1 of [B]) i f(i) is vir-
tnally-one-one, then there is at most one L-rationad place ol L(y) over
the place © = oo (where () = ). Sinee F(f) 1, ¥ = co I one wueh
Irrational place. IE g (%) has a zevo in I, then wo wonld obtain an D-rational
place by sefiting  equal to this zevo, Thus, ¢(y) has no zeve in L,

Again, since ¥ = oo In an L-rational place, one of the Puiseux ox-
pansions ¥, for fly) = @ about this place, Is an clement of er(( Joer) "(’)))
for some ael. If L contains a non-trivial B(Hth toot of 1, then some
conjugate of y; (say yu) over L{(1/z)) is also in .E(((IL/(».?!)”E”})). Trony,
Lemma 1, f virtually-one-one implies that
(1.37) Ly, ye) O L 5 L.

But this contradiets the faet that

L{(( /mm)mf/])) ) L. ~: f.

Thuy we Rave demostrated (1.34),

Now suppose that fly) s a virtuatly-one-one pobynomial, 'Wo iwe
the notation preceding Proposition L. In (1.28), lot a == 0 for < o
ef . . . FU
= I{B( -1}, B{). We seb o (B (t-1)) ~m, [B (1) = », for 4= 1,2, Wo

¥ ’ :
have I(B(1—1), B() m;ﬂ ~1." Hrom the procedure described in ox-

pljessions (1.28) through (1. .52) there are ng(L'(cw«l)) digtinet solations
for ) and inductively we solve uniguely for a, for i > w. X (5, 1) == 1,
then some non-zero solution for e, cotresponds to an clement y, # ¥y

#

{where
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©owhero

{1.38) Yoelds (((fi_/a,g/)m'ﬁ))

From Liemma 1, fovivtually-one-one implies that

Lor some constant oell,

(1.39) ‘ Tlyg, ya) O IF 4 L
But thid conbradiets the fact that

(140 Ly g0l = JJ(((ii./a;u)”’"ﬂ]) NI e I

Thug we hove demongteatiod that (1.30) holds. =
Toamwea 3. Lot » =0 be ony fimed indeger. Then there exist only finitely
many (dopendent on ) inbegers w sueh that: n = degree f for some rvational
fla) ~f(z

ply) . and fly)—f(2)

! has an
TN y—=

Junction feli(y); and dog q ==» where f =
irredueible factor of (IPJG(‘B Lo 2,

Proof. Suppose fy) = fi(f f.'/} The quantity #(f) is the rami-
fieation jndex of the place ¥ == o (of the function field L*(y)} over the
place @ == oo (wWhere f{y) == 2). By linear fractional change of = = fy(y),
we ean gnarantee fhat the place ¢ == oo lies over the place 2z = oo in
the funetion field 1* ( Foly ) From the multiplicative properties of rami-
Tieation, im’l'i('rm, wa obtadn #(f) T (fu) = 7(f). Since n—R(f) = g0y —
e () F(f) == v, Dot 2y and %y, must be bounded. Thus, we may
pertriet our attention o indecomposable rational functions f(y)

()~ 1 (2

The ease where f(}: f ()

iy eauily disposed of by noting that f(y) must be linearly velated

¥

has an Irreducible factor of degree 1

to o eyelic polynomial. Now suppose

—_p

hag an irredueible
factor of degrae 2 (in both variables from the symmetry in y and ), say
qu iy 8% Tk f(y,) == @ andl gy (3, 20) == 0. Then the function fiekd L*(y,, 2,)
i of genus zovo, Thos there existy te L¥(yy, ) such that L* (1) = L*(y,, &)
Weom L8« L)) = 2 and [ZX(8) : T {#,)] = 2, there exist auto-
morphisms o, 7 ol A ( ) sueh that the fixed ficld of o is L) and the

CAixed ficld of 7w I*(#y). From Taroth’s theorem ummovtmu Taetors

of, /(fﬁ/) ('ml('H]ml)d. B the subfields of I*(y,) confaining L (@), Thus,
i L* () o D) o4 L), then f would be doeconrposable, contrary to
arsumption. Thus, we have shown that the fixed field in L*(t) of the
grmm wunurn. ted by o and s L7 (). So L*(1) in the Galois closure of

Ly ) LY (). However, this implies that H s q JL¥(e}) is & finite group
of Tinesr fractional transformations. From the characterization of such
groups {see [2], Theoverm 3, p. 133), excluding the case where [ s o cyclic
or Chebyohev ]mlynumml there are ouly finitely many sueh groups. =
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TamorEM 2. Let L be a finite field. Assume thal flnel:lay and that
fly) = ,jém(%l with (1, q) =1 is tame (Dedinition 4y In addition, asswme
that f is wirtually-one-one over L. Then
(1.41) (ILl~L,7(f) =1, ond

Let g., = (W) (5(2)] ... (s(#)) be the branch eycle over oo for the curve
fly)—z = O over the w-sphere. Then ¢ither

q(y) has wo seros in I

{1.42) A(f) =2 doge g,y
ar
(1.43) F(f), s(i)) =L Jor =2, .7
CoroLLARY 1. With the same asswmpbions as Theorem 2, for
(1.44) ' 1 < degree ¢ =

there exist only findtely many valuss (tndependent of L)) of % such that
there exists feL(y) satisfying the above eonditions with T(f) == .

Proof. We have (lL|—1,7A(f) =1 if and oaly if L contaivs no
#{fith roots of 1 (other than 1). Thus (L.41) follows from Proposition 1.
Now suppose neither (L.42) nor (1.43) holds. The numbery §(2), ..., ¢{r)
are the multiplicities of the zevos of g(y). Then there oxisls 4 (say ¢ == 2)
snch that (o)™ is fixed on one of the zeves of f(y) -, and has a eyelo
of order % on % of the zeros of f(y) —o. Thus, one of the absolubiely itre-
dueible factors of @(y, 2) (expregsion (L.41)) has degree at least % Howeyer,
since f is virtually-one-one, there are ab least two absolutely irveducible
factors of g(y,.2) of degree at least 7. By assumption #(f) = deg g so
27(f) = deg f. However, dtﬁgz(tp(?/,ﬂ)) = (eg f—1 which eontradictys our
dednetion that deglp(y, ) = 23(f).

Now we prove the corollary. We exclude the finite number of values
of B sueh that % = ¢. Wo know from Propopition L that %(f) can never
- be even. Since we assume that

(L.45) a(f) e dog ¢,

Jhen (L43) holds, Alse, since ¢ly) ean have no zevos over I, for cach
value of 254y '

(1.46) there must oxinb § 44 such that 8(3) = &(j).

By simple combinatories we can inspeet the possible values of #(2), ...
"'.’-'S.(T) for degree g = 1,2,8,4,8,7,8 to sep that there do nob oxist
corresponding rational functions f. Also, if

(L47) ~ . deg g =6, then () = s(3) = 3,
and if
(1.48)

deg g =9, then §(2) = 5(8) = s(4) = 3.
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From Lemma 8 we see that there are only finitely many rational
functions with deg ¢ pregeribed, such that ¢(y, 2) has a factor of degree
1 or 2; and, in Iaet, these are casily delineated. The case (1.47) and (1.48)
are similar, so we assume (1.48) holds. Then @ = 3-% for some integer &.
The permutation {o,)® hay transitivity classes of length

(1.49) ok, k1,1, .., 1

0 Lmes

on the zeros of £(ir) —m. Lot g, be o zero of f(y) —a. Then these 12 transi-
tivity classes are subsols of tho teansitivity classes of G{£2_./I" (%)) on
the zoros of f(y)—o. Again woe uso that o(y, 2) has at least two absolutely
irreducible factors of degree 3, it it has one of degree t {and # 2 3).

Thuy, for k large, we konow that there are no trangitivity classes
of length 2 among Yo, ..., ¥, under the action of G QoI (32)), amd
there must bo as least two classes of a given length, if there is one elass
of that length. From this information we combinatorially see that the
only posyibility is that G(Q._,/L"(y,)) has transitivity classes of length
To, %, I, 4y 4 00 Wy, vy Yy b gy, -0y Y Do zebos of fly) —2 whose Pujsenx
expangions whout the place # == co start with ¥ One of these (say %,
is actualty & Louvent series in o=V % with, coefficients in L (versus in I*).
MThen, ay in (L18) through (1.22), the action of the Frobeniug symbol
& (F) iy obtained by operating on the cocflicients of the Puiseux expansions,
and. & (1) reprosents an clement of G{Qy /Ly I k>4, & (I 18 transi-
tive on the three transitivity classes of length F; transitive on the two
transitivity classes of length 4; and maps the collection ys,..-, ¥z into
itgelt. Suppose one of the transitivity claszes of length % (under the action -
of 69, /L (y,)) contains k—1t members of the set {4ay -y Yi} Then
30 does cach of the other transitivity classes of length k. Algo, each of
the {ransitivity classes of length 4 contains 31/2 members of the set
{Yas -+; ¥iib- Thus ¢is even, and ¢ == ¢ or 2. However, among the remaining
nine zeros of f(y) —a, an odd number must Kppear AMONZ the three transi-
tivity clusses of length &, This is 2 sontradiction to $ even; and finishes
the case degq == 9. m

Examenn 1. Tn Heetion VIIT of [16] we describe all virtually-one-
one prime degree polynomials over L. For now, we give one example
wlhere f I8 not w composition of cyclic and Chebychev polynomials, but
iy virtually-one-one over L. Take L = Z|(5). Then L
does not contain V2. Let fly) = ¥t =1 4297 +y. We obtain

' 1V - 1+V2
Py, 2 ==((:u~-~-ra)”~+~1/2(:t/»|~z)+w--~;5—)((y-z)z—i/z(yﬂ—z)nt. 2 )

Tn the next set of problems K denotes an algebraic number. field.
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Proermy 1. From Theorern 1, if fy) « Ky] is virtually-one-one over
Res (@, ) for all ¢ >0 (where @y is the ring of integers of &), then
fis a composition of polynomials of type (LI6) and (L17). Doey the
game conelugsion follow it f(y) el [y] 18 virtually-one-one over J0%

ProBLEw 2, Let v 2 1 be any integer. Can Theormn £ he strengthened
te: there exist only finitely many integers # (dependent on #) sueh that

Py )( 1.07)
)
with dog ¢ ==#, % = %(f). The reader will note that the combinatorial
arguments used io the proof of Theorem 2 are applicabie to the ense
deg g 2 10. Bub they do not suflico to demonstrate Theorem 2. The case
dog g = 10 itself is tractable by making sowe arithmetic observadions.
Moweyver, we have not yet found the proper absteact selup (for penetal
funetion fields) whereby these compubations hecome w simple spocind ease.

fihere exigh tame rational vivtoally-one- one Tenetions fy) =

2. Decompesability of rational fonctions. Tu this soction wo consgider
rational funetions f{y)eLiy) where

(21) fis indceompambm aver Ly, Dot f i decomposable over L

For most of this section 7 euuh[ be any perfeet field, Tromn Lennng 2,
cither

(2.2) f ix not & polynomial,
or .
(2.3) ' (Char L, deg f) # 1.

For a general fwnetion fleld K (X¥)/K (z) (as in thoe introduction),
the condition of indecomposability cormhpmulﬁ o the condition thatb

AN .
G(If (Y)[K (@) is a primitive permutation group when represented. on.

the letbers o, ..., %, (Lemma 2 of [47).

The general 1}'1‘0 atment of condition (2.1) is ditticult, and i a sonves
of arithmetic problems (versus purely group theovetic or Ricmann, saidaee
type problems). We sball in order: nor mudizo the problom, indieate im-
portant special cases and related problems, snd then give rome rosulis

‘related 1o some of the special eases. The purely combinatorial :mxpm M

of these problems are left here and taken up again i [6],

Suppose £ == £, (fi) eL{y) where f”fgef.: (%) By replacing [ by @ Unear

fractional transformation of § we muy assume that Wy = 0. Himilardy,

- thereds s linear fractional tra wmsformation w(fy) (of fy) such that 7 7 [t Sa)) = 0.

S, by replacing fy by %(fy) and f, by fi (eo‘"l (y ) We LY 8§8Tme
(2.4) _ ' w(f) >0,  E(fy) >0.

For questions about value sets of rational functions these are assumptions.;

we may make with no loss.
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The proof of Lemina 2 shows thati it f(y) « L [y] and (deg f, char T) = 1,
then

(2.5 there exist a, bel* such that afs(y)-+beLlyl.

DrrrNrrton 7. We say that fel(y) i decomposably stable i tlherc
is a one-one correspondence between the lattice of fields between T(w)
and L(f(@)) and those between 1* () and L*(f(x).

Our next examples are not decomporalbly stable, but they do not
sutisky (2.0).

Joxampenin 2, T this exanple £y} = g ("t —1)7 e L [y] where L= Z /()
(p n vational prime). Then fly) == _'fﬂ(fa(y)) with fi(y) =y —y2+...+y%
Folyy = o -+ g3 -9Y. But, for ¢ any (p-+13h reot of 1, we also have

Ty = (). T, £ = glga(y)

Bxamernn 3, Heve I is any field not containing a primitive 3rd root
of 1, which wo call a. Tab

1
} where g == = Fa(u)s and go(y) = fa(ay).

_ a2?{2+2
N ay +1

98
yi+1]

) = galoa(m)  where gy = Sy gy =

KO

filh) = F) =

As In Howanple 2 we algo have

Wo how consider
(2.6)  (lasses of Pairs of Rational Functions

£, g such that: f, gel*(y) Flg) =, g(2)) == and L'(y,, 2,) is of genus
zero; wnd either

w) fl)——g{z) in lrredueible as o rational function in ¥ and =
genuy of L'y, #) does not depend on the choice of #);

)] H'WIL a choieo of y, the genns of L*(yy, 2;) may depend on the
('hmvv of the zevo 2, of g{=) == #; or

¢) f, ¢ rationad funelions sueh that there
o) = g (u).

Bomark 2 Certain sub-classes of the problem (2.6) 1) have been
freatod in the Tiorature ([12], for example). However, the very prolifer-
ation of examples seems fo demand » method of keeping track, of ﬂm
intormation. obtained by computation, which dees not exist. Assumption
(2.6) a) is more tractable, especiadly i f und g arve polynomials (see [6]
and also Bxample 5)) Let f, Fae () satisty filfo) = Fly) e L(y), where

{so the

ixists oeG (L' /L) with
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f is indecomposable over L. Then there exists oeG{L* L) such that
ff(fg(y)) = fly) and f o4 f.. Lot @ == f{y), so that we have T ()
S L fa(y), falya)) = L (). By Turoth’s theovem LS5 a), folu) s of
genus zero. Sinee fy (y;) is a zevo of f7 () —w, and fo (yy) is o zero of £ (4) —w,
we have the situation of (2.6) ¢).

Let f, peL{y) with f(y,) == & and g{ey) = @. Tieh Ay ovny Ay Ao Do the
branch points of I* (v, 2) over L¥ (). Assume thali f, g wre fame, ay in
Definition 4. We denotie DY 0y, ...y 6,y 0 e corresponding branch eycles
viewed as elements of G(Q., @y /1" (@), Tb in desirable to view the
action of the branch cycles on £y, and £, o separately. We let o{y)
(respectively o;(2)) denote the resirietion of oy to L2, (respeetively &, )
and by abuse of notation we letb

@7 o) =80, V) (s, Ty ayle) = (1F, 1) - (60, 1)),

| o, 0, 00,
DERNTION 8. We say f, ¢ have the same branching il o;(y) iy shuilar
to o;(z) for § =1,...,7r, oo,
Provogyzon 2. Let f, gel{y) and assume that

Fl) —g() is absolutely irreducible.

Then (in the above notation), the genus of Ly, #,) 48 given by p where

I

P . " lf’f’ .
(29)  2(degf+p~1) = 3 Mind(of*P(y))+ Y ind (ol (y)).
Foml

=1 i=1

In particular, if f,g<L[y], then

b
(2.10) 2(deg f+p —1) =.2 Z ind (5D () 40— (n, m)
gemal fael
where  m = deg g.

Suﬁpose [ satisfies
i@

{2.11) gy absolutely drreducible.,

. y _...Az

Then, if 4y, ya ave gevos of Fly)—x, the genus-of L(y., y,) is given by p where

_ U loo
(212)  2(degf+p—2) = 3 Ylind(*#(y))+ 3 ind (oI (y).
Jeml

faml fae)

Proof. From (2.8), [L(yi, 2,) 1 L(2,)] = deg f. The Riemann—Flarwits

formula gives the genus of L(y,, z;) as p where

(2.13)- 2(deg f+p—1) = 3 (s(p)~1)
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where the pummation is over places of L™ (y4, #y) and e(p) is the ramifica-
tion index of sueh a place over L(e,). Let p be a place of L*(y,, ). IE
p iy ramified over I* (@), then p lies above one of the branch points (say 4,)
of T(yq, ) over L{w). Let p (respectively p) be the restriction of p to
L) (rospectively L{(z4)). Then p (vespectively p) has ramification index
3(1,u) for some L<Cu<k (respectively #(1,v) for some 1ol
‘Wo computo

[$(L, w), ¢(L, )]
1, »)

(2.14) e{p) -1 = —1.

‘ "
The sum over places lying over 3, iz casily seen to be ¥ ind %9 (y).
o fmsl
Formula (2.9) iy obtained by smuming over all places L* () and substi-
tuting in (2.13).
T¢ f, geLly], then o, (y) = n-cyele, and o,(z) = m-oycle. Thus,

foo

Thig proves {2.10).
Suppose f satisties (2.11). Then [L(yy, ¥s) : L(y)1is »—1. The argu-
ment shove applies almost without ehange to Ly, ¥s) to give (2.12). &
The following corollary (expression (2.27)) shows that under the
conditions of problem (2.6) a) there is a great deal of ramification over
just one place on the e-sphere for the covers given by f(y) —o and g(z) — .
CJororLary 2. Let I, geL(y) satisfy (2.8). Suppose also that: |
(2.16) neither f nor g are eyclic or Chebychev polynomials, nor is f or g
« polynomial of degree n where n <8 (see Example &),
andl :
(2.17)
For veZ lot

r (y;, 2,) 8 of genus zero.

F  fr>1,
0 otherwise. .

~

¥ ow

Thon, there ewists a findte indew © and o finite indew J (possibly i = j) sueh
that:

Iy 4
(2.18)  m— MF(i,u) =0 or 1, and m— >¥j,v) =0 or 1.

Azl LT
Suppose f satisfies (2.11), and
{209

L* (w1, ya) 18 of genus zero,

2 - Acta Arithmetlen XXV.3
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Then, for any geL'(y) with the seme branching as I (see Definition 8) we
must have '
(2.20)  fly)—g(z) 75 reducible as o rational function in fwoo variables.

Suppose f satisfies (2.11), and

(2.21) ¥ (yy, yy) 48 of genus 1.

Then, for any gL’ {y) with the same branching as f, eilher (2.20) holds, or

(2.22) Iy, 8 48 of genus gero where ((3,) == .

Proof. Suppose m— \ 1,( 3, u) 3= 2 for allj, Bince p = 0 s tho genus
L

'llw

of. Z* (9, #,), we have 2(deg f-1) 2 3 2 ind{o;(y)) with equality ifi

=l
‘ i :
(2.23) m—‘Et(j,%) =2 for all § such that op(y) % 1;
==l
(2.24) a) ind (o, (g)) = dogf —1
{from 2(deg f—1) )_‘ ind o, (4 )—|-m<1 0o (1), and

b} ol () =1 for w == 1, ..., b el all § such that oy(y) 7 L (this
ineludes § = oo, whuo wo may replace ’( dyu) by t(4, #) in
this expression),

However, we must have equality in the above becatnse

Zmd

de=],

= (deg f—1)

with equa.llt} if and only if ind (o (4)) = dog f=1 (o, oqmmlmmly, fis
. & polynomial).
For any j such that o (y) # 1, wo un.m]y compube from (2.23) that

(2.25) | (o (2)) 35 -

We will now show that f has at most 2 finite by wnu]m pokts, and that
s(t, w) = 1 or 2 for all ¢ and « uwnless f or g vield one of the eases of
Example 4. From Lemma 9 of [4], excluding this latter possiblity, [ is
"o eyclic or Chebychev polynomial (thiz ineludes the ease when fis a pol-
ynomial with two lihite branch points whose eoiresponding eyeles are
of type (1){1)(2)...(2) and (2)(2) ... (2)). This will eoncluda the. demon-
stration of (2.18).
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With the roles of f and g switched in the above disenssion, we obtain

. IGJ
(2.26)  2(degg—1) > D [n— D) §(j, w)(ind(o;(e)))-+md (s (2)).
E) A==l :
- From (2.25) we see thatb _
r irj ’
Ly . -1
(2.97) P (%—~2-s(y,u))€4(m 0)
Feal Py | A —i

. .
where 3" indicaties that the sum is over all j sueh thab o;(y) # Id.-
i1
Let e cri(y) be the number of fized points of o; acting on ¥y, ...y Y-

Then (n— > 51 §(4, ) =tr oy(y). From (2.27) we have
=1

T m—1
(2.28) % tr{o; (1) 4( o )
Feom (2.16) we may exclude m with m <6 o obmm
,
(2.29) Dte(op(y) < 4
. _ =

Also, by the Riemann~Hurwitz formula applied to L(y,}/L{w) we obtain

[ k?-
(2.30) | D) Mty ) —1)+n—1 =2(n—1).
=1 U=l
In particular,
AR, ‘rr( (J)) _

e 2
% .
with equality iff v = 2 and o(y) is of order 2 for 4 =1, 2. This latter
ig the Chebyehev polynomial eage (exeluded Dy (2.18)). In either case
we casily deduce r == 2. Assume tr{og(y)} < tr{oo(y)) (With no loss).
We have 3 cages:

w) tefoy(y)] = 0, tr(ou(y) < 4;

) oy (1)) = 1, tr{e(y)) < d, and

¢) tv(oy(y) = 2, tr{o(y)) = 2.

In all eases, if two of the values s{i, u) are diffevent from 1 or 2,
thege values must be 3. However, if just one value is distinet from 1 or
2, thig value musb be 4. All cases are much the same (but time consuming).
We illustvate one case, leaving the remainder to the reader.

Agsume, for example, cage b) where oy(y) is of order 2 and-
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o () = (8)(3)(2) ... (2}(1)(1){1). Then, with the roles of ¢ and f swilch-
ed in (2.10) we obbain:
2 U
(2.31) 2(n—1) = > ¥ ind(cf(g)) 40— (n, m).
fml el
But -
| Pl L) i odd
ind o (y) =q 2 Yo
0 it (I, ) I8 even
and
4 it 4(2,7) is divisible by 2, Bub not 3,
-9 _
e - it (2,7 iz divisible by 3, but wot 2,
ind D y) =1 ~ -
7 —1 i “woon
o (H2,0),6) =1,
2
0 ofherwise,

This shows that (0, () - tr{oa()) < 4 and {(n, m) = n. Now g ix a cyclic
or Chebychey polynowmial if tr(oy (2)} (o, (2)) < 2. Thus, from previous
computations, g has the same branch eycles ag does f. For n = m> 8§
we compute that the vight side of (2.31) is greater than the left.

Assume feL*(y) satisfies (2.11) and (2.19) and suppose theré exists
g with the same branching as f such that f(y)—g(2) it irreducible. An
interpretation of the fact that f and g have the same dranching is given
by 14, u) = s(i, %) for all ¢ and . The right sides of (2.9) and (2.12) are
the game. The p in the left side of (2.9) (rvésp. (2.12)) is the genus of
IMy, ) (resp. L¥(yy, v)). However, since p = 0. in (2,12), we deduco
that L*(y,, 2;) has genus —1. Thig contradiction ghows that fly)-—g(e)
is reducible. The remainder of the Corollary follows from am aunalogotuy
argument. B

We now give some exampley to illustivate the non-triviality of chus-
sifying rational functions satisfying (2.6). '

ProposITION 8. Let f, geL*[y] De tame polynomials. Suppose
(2.30)  f(y)—g(e) is veducible as a polynomial in lwo variables,
and

(2.31) F is indecomposable over L*.
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Suppose there does not ewist h{y)e L [y] with degh >1 such that g(y)
= g,(h (1)) and fy)—g.(e) is reducible. Then:

{2.32) g is indecomposable and 0y . = Oy .,

(2.33) ¢ and f have the same bramching, and either flay-+0b) = g(¥) for
the same @, bel”

or, ‘

(2.34) fly)—g(z) has exactly two irredueible factors of degree s and n—s
where n—1¢(s—1).

‘ 7
Since these two factors have distinct degrees (because n —1F -z—(g- ~1))

' if f, geL[y] as above, then the irreducible factors of f(y)—yg(#) are absolutely

irveducible over I (Theorem 1 of [5]).
ExAMpPLE 4. We give two examples of polynomial pairs f, g that

" gatisfy (2.6) a). These cxamples are part of the excluded situation of

(2.16) in Corollary 2.
1) Let the Riemann surface for f(y)—« have branch cycles

(2.35) oy (y) = (11Ya%Ye) (OVeT @ = Aa)y oY) = (Ys¥Ya) (YY) (OVEE 2 = Asdy
and let the Riemann surface for g(#)—o have pranch cycles

(2.36) 0‘1(2)‘ = (,230,%) (over @ = &), 0a(8) = (@2){&%) (over & = Az)-
¢ f(y) of degroe 6 were decomposable, then Lemma 2 of [4] implies
that either {y¥s} Wa¥sh {¥a¥e} 0 {¥1¥a¥sh {Fetuys} would be sets
of imprimitivity for o, and o,. We arve using the fact that o (y) o.(¥)
=s (1fy ... 1) and similarly og(2)-ox(2) = (21 ... %) However, o,(y) fixes
y, and moves ¥y 10 4, 50 Neither system yields sets of imprimitivity.
Thus, we may apply Proposition 3 to deduce from (2.30) that f(y)—gi#)
is frredneible. A simple computation using (2.9) shows that the genug
of Clyy, &) is zelo. -

IT) Mere wo have degf = deg g = 8. Let the Riemann gurface for
fly)—@ have branch eyeles

(287) o) = (Y1 YeYs) (Yalsla) {over @ = ;)  and

ou(y) = (HaYs) (Yals) (Ys) (OVEr @ = Jy)-
Let the Riemann, surface for g(#)—e have branch cycles
(2.38)  0,(2) = (22%%) (@a2sey) (Over @ =1;) and

0y(?) = (2923} (252) (%52) (OVer @ = Jj).
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We leave to the reader the proof of the fact that f is indecowposable.
Propesition 8 ((2.30)) then implies that f{y)—g(2) is frreducible, since
Tle(s—1) implies that § == 7 or & = 1. Again (2.9) may be used to show
that C(y;, #) is of genug zero.

ExamrrE 5. We now give an, example of polynomials f, ge Cly] such
that degf =degy =T and f(y)—g¢(#) I8 veducible where €(y,, ) is
of genus zero for some 2z such that g(2) == o 'We highlight cerindn Pelo-
vant points Dheve. The production of polynomisl pairs f, ¢ sueh that
Jy)—g(=) is redueible is not in general an easy tnsk. Elowover, i f(y) -
hag branch eyeles of the form

(2.39) T (y) == (2)(2),  oaly) = (3)(3)
then f is not a cyclic or Chebychev jmlylmlmu.l and f—(ly)wm[(N) is
Yf e

absolutely irreducible (Lemma 9 of [4]). From (2.11) the :Ifiel{ii Clyyy 1)
is of genus zero. By Covollary 2 (expression (2.20)) if f and ¢ havo the satne
branching, then f(y)--g(#) s reducible. Tb is not diffioult to find two
(inequivalent) polynomials f and g with branching of form (2.39). From
Propesition 3, if f(y) —g(¢) is reducible. where deg f = dog g = 7, then
Qf—m = £,_,. Therefore, the branch cyeles for the Ricmann surface of
JW)—& can also be represented on 2, ..., (where z is given by the
seb {04y Yorrs Yugpah 4 =1, .., 7). '
Consider the case:

(2.40) o = () {(Yals) = (3132)_(%35):
' ' (Yolls) (Waln) = (2127) (%2,
oy = (W) Wsla). = (22,) (a2;).

Oy

I

The group generated by ey, oy, o has two permutation representations.
We .construet (by Riemann’s existence theorem) u polynomial f of (legree ¥
having o1(y), e2(¥), oyly) an finite branch cycles. The stabilizer of % in
G{Q;.,/C (g:)) has as ity Lixed ficld the field C(z,) where &, is a zero of
g{z) —@. Hore g is the polynomial with the same finitc hranch pointy
af f, and g(2)—a has Lranch cycles o, (2), o2(2), o3{2). Bince the 'n'mup
a (!.’21_5u /C (yl)) is of order relatively prime to 7,6 s inteogitive on, 2 1 b ) B
Thus f{y) ~g(2) is redueible, However, neither of the etrves definoed Try
the j‘:.rreduciblle factors of fly)—g(%) is of genus zevo. We must “unaulum:ai”
T‘he tranch points to obtain such examples, Denoting the bhraneh pointy
in order by 4y, 4, A we obtain two distinet examnpleé by Tirst cmuiéﬁuing
| Ay and s, then by coalescing A, and Ay These are: -

{2.41) - o1 = (Y3 Yo ls) (Yasly) == (21202y) (%375 2)
Ty = (W) (Ys¥n) = (#32,) (3,25),
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and
(2.42) o1 = (Ya¥a) Wa¥s) = (2122) (%) 5
PO 7

Oy = (Y1 ¥s¥s¥n) (Yala) == (B:232,2,) (2a2%).

Tn all these examples,
G (@ ,]Cl2,)) i transitive on the seb {yy, ¥a, va}-

The genug of C{z, y,) 8 easily computed. It is found to be p =1 in
case (Z41) and p == 0 in case (2.42), From Riemann's existence theorem
there exist polynomials {y) of degree 7 such that the Riemann surface
for h(y)—ax has branching of form '

{(2.43) g = (2)(2), oy = (4)(2), (distinet from (2.42)).
However, in this case, for I{y)«C[y] such that degl = dég h and
(2.44) h() —1(z) iz reducible,
then I(ay -+b) = k(y) for some a, beC.

Tor example, we can take h{y) to be the polynomial such that the
Riemann surface for h(y)—e (over C(z)) has branch cycles
(2.45) oy = (YY) (Ye¥s)y 02 = (Y1 Y2 Ys¥a) (¥s¥)

WRere 44, .-, ¥, ave zeros of h{y)—o. If B{y) —1{2) were reducible, then
Propogition 3 implies that 2_, = &,_, and G{0,_./C(2,)) is intransitive
0N 4y, «-., ;. This is easily seen to be false. The genus of C(yy,#) 18
0 by formula (2.10) if {{y) bas the same branching as A{¥).

Remark 3. The examples above do not exhaust the list of relevant

examples to problems {2.6) (see [6]). However, as far as the generalized

Schur conjecture is concerned, we should make & few move. comments.
ExaMPLE 6. Case (2.42) does yield polynomial pairs f, g such that
17 = g for some oe@(Q*/Q) and M = @%(y,,2,) is of genus zero (see [5];
Theorems 1 and 2). Thuy we have examples of (2.6) e). Towever, it can
be shown that in this case we cannot find a field M = Q(x) such that
M is defined over the fixed field of o and @Q*-M' = M. Such a ficld M’
would have to exist for these examples to yield rational functions which
are indecomposable over the fixed ficld of o, but decomposable over O*.
Weo do not know that Example 4 does yiold the sitmation of (2.6) e).

3. Rational fomctions of prime degree. In this section we nse a trick
involving the Weierstrass @-function (fivst employed by Ritt in [12])
to help us delineate the rational functions F) e Cly) such that
(3.1) degf =p for some prime p,
and.-

(3.2) G{£,_,/C (@) is not doubly transitive on {;37, the zeros of f (y) = .
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From Theorcm 1, all tame virtually-one-one rational functions of prime
degree must be among these.

Lemma 4 is due to Burnside [1] and Lemma 5 is gimilar to Lemma 9
of 4]

LA 4. If G is a group of prime degree p and G iy ot doubly fransitive,
then @ {as a permattation group) is o subgroup of the growp of linear trans-
formations of the integers modulo p. In partioular [G-|| PP -~1h

Limvewma. 5. Let f(y) e Cly) be such that (3.1) and (3.2) hold. Liet o, ..., o,
denoie the branch eydles for the Tiewmann surface of f(y) — @ over the w-sphore.
Foy this lemmcn we do net differentiote between the fintle and infindte branch
poiwts. Thus ]] o; = 1. Let a; be the order of o; for = 1,...,% Then,

{=1

one of the following must ocour. In some order:

(3.8) r=4 ond o= =0 =g =2

or
(B34) =23 anda)a =a=a =3, 00D a =2, ay =258, ag =06,
' oF @) oy =2, gy =4, @y =4, or d) ay =2, ay =2,
ty =P
or

C(B8) r=2 and ay=p,a =p.

Proof. By Lemma 4, (3.2) implies that ¢ = &(LQ,_,/C(w)) is & sub-

group of the group of linear transformations of the infegers modulo p.
From properties of this latter group we deduce that for
either -

(3.6) ¢ =p,

or

3.7 o flxcs one letter and iy a jprncluot of (i HJO]X‘l’!J oyol(w of ]ungth

¢; ‘where a;|p —1.

If (3.6) ocenrs for any integer 4, then Ay (the braneh poind corresponding
to o;) iy a fotally ramitied place of the Ricmann suetace of f(y) —wn, and
by a Hinear fractional ¢hange of the vaviable » we may assume 4, == o,
Thus f may be assumed, in this cage, to be a polynomial of degree p.

This iy treated in Leomma 9 of [4]. So we may agsume that (3.6) doos
not hold. Then from (3.7} the Riemann-ITurwitz formuly gives

(8.8} Zinaq mZ(-P:l)I(aiwl) = 2{p —1),
1

fa=] - fr=]

each 4 == 1,...,7,

icm
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or
o
e —
3.9

Hagily we deduce that 3 <r <4 with v =4 if and ooly if a; = ay = @y
== gy == 3. As for the ease r == 3, for cach 4, o; < 6. This leaves only finitely
many easod to choek, und the valid eases are exactly those deseribed in
the Lemma. '

Iy Theorem 3 we exelude the ease where f is a polynomial sinee
that ease is handled in [4]. Wo denote by @(2; oy, 0,) the Weierstrass
p-funetion of a complex variable 2 of periods 2w,, 2wy, The basic prop-
erties of @ (and its derivative with respect to 2, #') can be found in any
gomuplex variables text.

TruoreM 3. Suppose F(y)eC(y) satisflies (3.1) and (3.2) and that [ 4s
not o polynomial. Then there emsﬂ linear fumctions of y (say Aly), A(¥)) such
that with 1~ ( f (A(y})) replacing f (e say thot f is normalized) f is the solution
of & certatn type of functional eguation. Let w;, wyeC and denote by
L{2m; 2w,) the Z-latlice generated by 2w, and 2e,. Lemma 5 implies that
f corresponds o one of the cases:

(3.10)  ((3.8)) there ewist conslanls ., oy, ©,, w0, such that P(z; v, w;)
= f(g:)(c, wy, ) where {2wy, 2o} e L(20,; 204);

(3.11)  ((8.4)a)) there ewist conslanis wy, 0y, ¢, b such that L' (az-+D)

= fl@' () where wy ==y, and {200, 2aw,, (L—6"")b}
eli(2wy; Bwy); '

{-3.13) ((3.4) b)) there ewist constamis wy, ws, &, b such that 3wz +-b) -
= flp*(e)) where o5 =P, and [2aw;, 2004, b1 -7}
eli(Zwy; Bog);

and _ _ .
((B.4) 0)) there ewist congtants wy, wg, &, b such that P*(az+b)

== f(0%(2)) where 0, = toy and {200, 2aw;, b (L—i)}eLi(2wy; 2ag).

Conversely, if constants oy, wg, &, b exist salisfying one of the conditions
(3.11) throwugh (8.13), then there ewists @ rational function f{y)eC(y) such
that the Riemans surface for f(y)—a over ihe w-sphere- has branch cyeles:
a8 deseribed in Lomma B, : '

" Proof. We do these cases in order. First we look at thé situation
of (3.3). Liob Ay,+vey 2 Do the branch points of the Riemenn surface of
Ffl)—a. Lot A(y) bo o linear Imcbmn_a.l transformation such that

(3.14) ATHAy) = o0, ~H{4e) “_I'/l_l(/ﬂta) + A7 () = 0.
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Let A7YA4) = ¢, for 4 ==2,3,d. Normalize f uwsing 2 (a8 in the
statement of the Theorem) to obtain a new function with corresponding
branch points ey, e, ¢;, 6. Construet the elliptic function @) sneh
that p{w,) ==&, 1 =1,2,3. Seb f{y) =@), and expand ¥y in Puiseux
expansions about all pointy in the finite porlion of the s-sphere. Tn fack;
f@(z)—e; hag one zero of multiplicity 2 for ¢ == 1,2, 3 (aldo, oo iy assuned
with mualtiplicity 2). Thus, the condition (8.3) tmplies that the zervos
Yas-oor Uy o:Ef(;y)—-—@(z) are power series in (2 o) (ratlor than i (2 — ©,)'?),
Wo easity see that g Jl, y), are weromorphic funetiens periodie on some
lattice, generated by 2wm), Say of index p in L2 2ey5 Bevy). By lineo uh:l.m_»;e
of (2} (see Section VIT of [_‘l,h_]) W ALY HHRTIING

(8.15) Bl2) =™y (
Then

(3.16) Hep@) =)

So (8(2)) is algebraically velated to @ (2), and therefore ¢ (f(2)) is elliptic.
By differentiating (3.16) we- obtain

(3.17) ©'(2) = I (p(8(a)) (@' (B))8 )

Sinee p'(8(z)} is algebraienlly related to @(f(2), & (A{a)) 18 an olliptic

funetion. Thus (=} iz an elliptic function. Ioweyer, from (3. 16) we

ave able to deduce that #(z) is cntire. In fact, i 2, were o pole of B(2),

then 2, would Dbe an essential singularity of f(ga (f}(z))), and therefore 2,

would be an essential mngula,riw of g2 (2). But the only cssential Hi]’lgtthii'V

of f(2) Is at oo. Thus, #'(2) is an entive clliptic function. Thug g (2) i
constant, or £(z) is inecar. (Added in proof. We check that

(3.18) ﬁ(z) == :}:3*|“‘zm

where 2, represents a p-division point of the lattico L(2w; 2w,). The
reader will find details in [16], Section VI L, -wheve f is described as the
map from P! to P! induded from

(8.19) o CLBag; 2uy) S O1L (20, Bay).

Iere ¢ iz the canonical ump)

Tho remaining cases may be atiacked by ](xsnﬁomng almilar to thoe
above. Therefore we indicate only the pavticular dificwlties of the case.
For (3.11) we seek & mevomorphie Lonetion k(z) such thad;

2)) 19 locally single-~valued

(3.20)  there exist éxacﬂy 3 complex numbers (say dy, 8, oo0) assumed
by b with multiplicity 3 at a poing,
and

(3‘.21) all other values of h are assumed at thiree distinet points.

icm
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Lol wg == ¢R

— K‘J (Fﬂ; 027:1:!3

(322) &;p(e'—"“’:ﬂz) — (J,..m]'i.ga{ )

wy, and comsider @(z; o, w,h
W, ~w) wWe havoe

Sinee @(=; w, P w)

Consider ©y, &, the two non-zero solutions of
(3.23) By e 20 L(20y; 20,).
By diffcrentinting (3.22) twice wo see that () =" (7)) =0 for
i L, 20 Thus () Ix assumed with multiplicity 8 by @'{z) at 2 for
i = 1, 20 Also, oo is assmed by @' (2) at 2 = 0. Since @' (2) is o function
= 2(1)—%. How-
evor, £ (2) hag only one pole for a coset representative of €L (2w,; 2m,)
and that Iy ab 2 == 0. Thus, the divisor of @' (2) is —4py-+2p, -+ 2p, 7
where py I the place corresponding to 8, p, and p, are the places cor-
responding (respectively) to 2, and 2, and 7 is positive. Thus, # is the
zero divisor. So o' () has no other multiple values, and k(z) = p'(2) iz
the meroworphic funetion we desived. The rest of (3.11) is handled in
the same manner as we treabed (3.10).

Cagos (3.12) and (3.13) can be handled by wse of the functions in-
dicated. For details gee [16], Section VII.

Axsune, conversely, that there exist constants wy, wg, ¢, b satistying
one of (3.01) through (3.13). 'Wo sghow there exists a rational functicn

Jlw) such that f{@(#)) = @ (az+D). Let p be a place of C(p(#)) (the rational

field gencrated by @(2) over €). Exeept for finitely many places p,p
determines exactty two values of 2 (say 2, 2) modulo L(2w,; 2m,) such
that the value of g(z) at p is @(=) = p(#s). The conditions on a and b
imply that @(az,--b) == @(a2,+b), so the place p is uniguely extended
to @(as--b). By the fundamental theovem of Galois theory this implies
flaz--0) e C{p(2)) or fl9(2)) = gi(az--b) for some rational function f{y). m

Promrrm 3. Lot Fy)eX{(y) be one of the rational functions described
in Theorem 3, Doey f define o one-one mapping modulo p for infinitely
many primes p of K (Added in proof. Solved: Section VII of [16].)
« Prosusm 4. Kor evary integer » we can define analogues of degreo
n of the rational funetions described in Theorer 3. However, the rational |

Junetions so constructed eorresponding to eomnposito integers n ave actnally

componitions of ratlonal funetiony of prime degree. Liet f(y) e K (y) where
K iy w omomber field, and suppose that f is an indecomposadle rational
Timetion. I f i alko one-one madule p for infinitely many primes p, must

f be one of the rationsd functions deseribed in Theorem 32

4. Other probleras in the avithmetic of value sets of rational functions.
For this section only, we have a slight addition to our notation. Let .he
a positive integer and suppose ¢,(2)el(z). Then we denote the zcros of
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g,(2) =5 DY 21(r); ey B (7) where m(r) iy the degree of g,. When K
is a number field, fek (y) and p is a prime of O (ring of integery of I0)
for which we may reduee f modulo p, we denote by Vy(f) the values
agsumed by f modulo p.

Tn 3] the author devoted his attention to:

THE POLYNOMIAL JONTROTURE. Let f, gy oy el [y], and assume

7
(4.1) Vp(j) = H Vp (g)

for all but a finite number of primes p (abbreviated s.u.p.).
Then there ewists an index 4, end o polynomial rly) e B [y, such that
() = glr ().
Tn gomoe senge it wasg an outrageous conjecture. IMowever, it did
turn oub to be frne in several interesting eages. We list three of these:

) [
(4.2)  fis linear, and therefore | JV,{g;) = all cosots modulo p for
1
A3 Py

(4.3) gy, ..., g5 026 oyclic polynomials;

(44) 1=1, K =@ and the hypotheses arc strengthened o read
Vo) = Vylg) fox a.a. p.j if f indecomposuble.

Tt is easy to form a generalization of the polynomial conjecture to:
(4.5)  The ralional-function conjeeture,

which we won't bother to state, cxeept to say that the word polynomial

should be replaced by rational function. The next theorem i3 & slight

generalization of Theorern 2 of [3]. Let @, = £y ..o Qo Ly
THEOREM 4. Lel f, g1y ...y g1 K (y) and assume (4.1) holds. Lhen

)

B [1
(4.6) Ye{@ulE i) = U U @(Qu/E [k ()
whém {y )V are the veros of f(y)—w. In faot, (4.6} and (4.1) are “esseniially”
equivalent (p. 97 of {37]).

It turns out that the rational-funchion conjecture iy not even true
in the ease analogous to (4.2). That is, there do exist rational functions
iy -+ 1 sUCh that :

] :

{4.7) U Volgs) = all cosets modulo p for a.a. p.,
: qms] . . :
but '

(4.8)  g,(y) is not a linear fractional transformation for any 4 == 1y ony b

icm
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Txamrrs 7. Let h(y)e0*(y) be any rational function such that
Oy 18 of genus zero. If £, _, = @ (1), all automorphisins of §* (#) are given
by Hnear fractional {ransformations of 7. Thus, the Galois group of
2, _,/0" () can be identified with a finite group of linear fractional trans-
formations. As a partienlar case, for eyelic and Chebychev polynomials
@2y 18 of genug zero. For a list of possible groups we refer the reader

"o p. 133, [21 Suppose in addition that

(4.9) G {24 o/Q" (@) i not & cyclie groui).

Tor each oeG(2, /0% () with ¢ 1, leb M, be the fixed field of ¢ in
. By Luroth’s theorem M, = Q*(4,) for some element #, of 37,.
There exists a rational function g,¢@*(y) such that g,(f,) = @ Relabel
the g,/% 1o be g4, ..., g Our construction asgureg that

1 mid
(4.10) 612,00 @) = U U 62,105,

=l el

where £, = £2,_, in this cage.

Now apply Theorem 4 to see that (4.7) holds.

Actually, the polynomial conjecture is false, even in the casc where
Giy ooy §p Gre comopositions of cyclie polynomials. Using & method like
that of Example 7, the polynomial of (4.12) ean he used to give a counter-
cxamplo even when gy, ..., ¢ are eompogitions of cyclie polynomials.

TommA 6 (p. 27 of [13)). A primitive solvable permutation group s
of degree p™ with p prime and m = 1. Also, o primitive solvable group connot
contain o eyele of length equol to s degree unless =1 or p = 2, m = 2.

TomoRE™ 5. Let ¢y, ..., gre K [y] be compositions of eyclic and Che-
1
bychev polymomiols. Suppese feK [yl and V,(f) c UV,(¢) holds for
=1 -

a.wp. (condition (4.1)). Then, f is a composition f;(fi) of polynomials f
and f, where fy 48 am arbitrary polynomial in K [y] and £ _,= Dy ... 2y o)
i : ;

ond Vi (fy) = U Vypley) for aap. In addition, f1 @8 a composite of
i1 ‘ ‘

{4.11) eyclie and Chebychey polynomials,
or

(4.12)  polynomials h of degree & such that G (42 Q" (w)) is the symmetyic '
group on 4 lellers. '
Troof. Theorem 4 implies that (4.6) holds. From cxpression (12)
of [8], we know that (4.6) implies that we may replace f by o composition
factor fy (over K) so that wo may assume

(4.13) | Qoo & Dy = Uy o+ Dy
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sealars to @, we obtain

pd

By extending

W o m{g)

(d.34) U 6{20,2/0" () = U U 6{,0/0" 55 (2)-
From Lemma 6 a primitive solvable group must bo of prime- power dogree,
Let A(y)eQ*[y] be an indecomposable polynomial. TE A iy a cyelic or
Chebychev polynominl, explicit computation shows that 62, /0" ()
is & solvable group. Also, all groupy of degree 4 are solvable groups. (»()Tl"

versely, suppose G{Q, /0% ()} s a solvable group. I degh is piimae,
wo may apply the a.rcrument of Lemma 9 of [4] to the normal sabgroup
of G{2,_,/0" ()] of prime order to deduce that h is type (4.11). Sinco
h iy indecomposable, G(0;,_./Q" (x)) is primitive on the zeros of A(y)—
(Lemma 2 of [4]), so by the argument ahove b is of prime-power degroe.
However, Lemma 6 mehob that if A is not of prime degree, then degree
ho= 4. :
Thus, the hypotheses of ounr theorem imply that G2, ]O" (@) is
a golvable group. From (4.14) G(Q, /0" () is & quotient of the group
G(2,,./0 (2)), which in turn iz & subgroup of G{Qy -l @ () ... %

G2, o/Q"(x)). Therefore, since products, subgmum and, qmmtmnt
groups of solvable groups are solvable groups, wo have ageertained that

G{Q,_, /0" (@) is solvable. Tf f(y) fl(fg( NFAC) ) - ) where £ ds un
indecomposable polynomial, then

{(£.15) (2, /R, _,)is solvable, where &

) =hlnl flw) ).

Let 0;_, be a zero of 8;-1(y)—&. Then the zeros of fi(y) -0, , generate
a subfield of £, . that iz Galois over Q,, - In o natural way the g: o
of this field (thh must be a solvable gwup) is igomorphic to G(.Qf /O (2 ()
(use the change of wvarviable 6;_,~w). Thus, f; is a lmlynomm.l of tiypo
(:£.11) or (4.12). This concludes the proof of the Theorem. m

BxAmerrLe 8. One other cage where the polynomial conjecture iy now
known to be wrong is the case of (4.4) (Vo () = Vy(g) for aun.p) for some
number fields K ¢ @. Thiy is diseussed in great Llcﬂsul in Section 2 of
[L7]. A reduction technique ugsed there shows that wo LRy aSHIInNG

(4.16) Sy = Ly
and
{4.17) Fand g are indecomposable,
- With these assumptions, it turng out that Vel f ) for awaup! it and
only if
4.18)  fly)—

g(z is reducible as a polynomial in two viriables.

icm
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Non-trivial examples of this phenomenon are now known to oceur in
degrees 7, 11, 13, 15, 21 and 31, and as explained in [5], these are believed
to be the only possible degrees with f indecomposable. The example
of degres 7 is described in Example 3 of this paper.

Proprum 5. Iy the polynomial conjecture true for any polynomial
f, other than f linear? That iy, suppose feK[y] is a gﬂ&fuen non-linear

U Vy(g:) for
o.a.p. bub there oxists no polynomial 2{y) and no mdex 4 guch that
G (b)) == fly)?

5. Generalized Riemaon existence theorem, and discussion of proh-
lems. We return o the nofation of our introduction. Given ¥ 2 PU{K™),
with (1, ¢) defined over K (via an embedding of Y in some projective
space), we obtain an exact sequence:

polynomial. Do there exist gy, ..., ¢ sueh that Vulf

N X = -
(5.1 (LG K (YK (PY) -6 (K(X)/E(PY)->G(K/K)~{1},
' P

wliere & ix the map obtained by restriction of elements of G(K (X)/ K (Pl))
to J. Thi leads to the following conjeeture:

CONJTBGIURAL FORM 0F RIEMANN’S BXIRTENCE THROREM. Let G ond
G be two transilive subgroups of 8, (the symmetric group on n lellers) such
that

(6.2) G A
Then there exists a tiple (X, @, K) such that (K : @] < oo, and

(@, is normal in G).

N N ~
(5.3) GEY)EPY) =6 and  G{E(Y)/E(PY) = G,.

In order to strengthen the conjecture, we might use the concept
of Hurwitz schemnes as in [16], Section V. Let {o;}]¢@; be generators of
7, wuell that

{8.4) f[ o = Id.

Then, we may consbruet (over €), a Riemann suvface Y covering PHC),
having braneh points @, ..., u®eC, and having a description of ity
Traneh eyeles glven by {oy. As in [16], Section 'V, under general condi-
tions there exiuls o {possibly non-unigue) symmetrized Huvrwitz scheme
paramet izing ‘u natural family of Riemann surﬁmceb covering £, of which
Y —P!ix one member of the Laamily. TE AuL(Y, ¢, C) consists of Id, then

the TTurwitz scheme is unigue, and (by o Galois descent arguiment) the
field of definition K () of the Hurwitz scheme iy the smallest possible field
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of definition for ém.y cover ¥-%PP having o deseription of ity Traneh
eycles given by {s}}. Although it is posgible that no member of the
family of the Hurwitz scheme & will actnally be defined over K(7),

nevertheless the intersection of the fields of definition of members of e

family will be K(7). As Theorem 1 and Oorollaries 1 and 2 of [L6] show,
there are many examples where I (F) =4 O,
- Our next example shows that, oven if the conjestured form of
Riemann’s existenco theorem were tirue, the field e » that derults from
a friple (¥, ¢, K), has o very strong dependeney on the braneh eyeles
{o:}} of the eover ¥-5P1,

Examrre 9. Suppose that ¢, 4G < Sﬂ (o o the notation above),
- where*@, containg the n-cycle (L2...a). Let {o] De gencrabors of @,
satisfying (b.4) and the additional conclm.nn that:

(55) o = (12 ... 7).

If ¥ P! has a description of its hranch cyeles given by {o]; (¥, «79).

is defined over K; and #? (the branch point corvesponding to ¢,) s
confained in K; Lhen

(5.6) K < K(L),

- Thig follows from Remark L (Section 1), Tn fuet, it we denoto the
group generated by o, by <{o,>, and the normalizer (in &) of {a,> by N ( o),
we immediately obtain (from Galois theovy):

N (o)) Ko GG is onto,

where o is given by the natural inclusion of N (<o,%) in &.

On the other hand: if the conjectured form of Riemann’s cxistence
theorem were true, and if & and G4 were such that (5.7) was not satistied;
then there would omst covers of P guch that the field K would not mmf.y

(5.8) G(K/K) is & quotient of N({(L2...n))/<(L2... n)>,

We show how to obtain pairs ¢ and Gy that do nob satisty (5.7),
Let X® = ((12...0)), and let X, a =1,..., %k dmote the distinet
subgroups of @ W]ll(‘]l are conjugate to XM, rwl‘ 'y be the subgroup of
G (normal in &) generated by {X®) . Then, we oblain an amimn of
- Gon {X“‘)} . by conjugation, and the ST:E‘!:blllZ(‘l‘ of XV, donoted G(XM),
s N{{(12...n)>). The map

(5.9) G(X) @, (X5 g6,

- is onto, Hf the orders of the left and right side of (6.9) are the same, In

13111(11), these orders are the same iff &, is transitive by conjugation of
(X ' -

where £, I8 a primitive ath voot of 1.

(5.7)

as=] "
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Roger Howe gave the following example where o is not onbo. Letb
1 == ;p" where p iy any prime. Let & be the p-sylow of S, containing -
(L 2...9%. It is part of the general p-group theory (see [1]) tlmt it #, = H

are p- JUUPH, then there exists H with H cH AH In particular, 1f we

let &; Do the smallest normal subgroup of & conmmmrr (1 2 ... 9%, then
for «z 2 (ko that & does not consizt entirely of ((1.2...7%) GIAG If

a3 (so thet G, does not consist entirely of (L 2...p%5), then the
surallest normal subgronp of ¢, containing (1 2 ... p%) is properly eon-
tained in G, . Tn parkicular, @, is not transitive on {X‘“)}f:__ This eoncludes
our example. ®

In spite of Hxample 9, wo feel that the Hurwite scheme approach
will provide a very reasonable, precise conjectural form of the Riemann
exigtence theorem. This is taken up in [16], Section VIL. For now, we as-
sue that guch an existence theorem ex1sbs, and show how it relates to

- the generalized Schur conjecture.

DemwrrionN 8. Let H be a transitive subgroup of ;S'm where we denotc,
the stabilizer of ¢ by H(E), i =13, ..., % Let 1<s <8, <. s, be
integers. If (1) bas 1, orbits of length. 8;, % =1,..., % onthe zet {2_, AR
we say that I is of stabilicer type {(s15 1) (523 lo)s -ovj (845 L)

If the triple (Y, ¢, K) is » solution. to the generalized Schur problem,
then.

N
(5.10) G1=G—(K_('Y
Is -of stabilizer type, as above, with I, >
N
(5.11) G, AG(E(Y)/E(PY) = &

where ¢ (1) leaves fixed mo orbit of G4(1) on {2, ..., n}.

If, in addition, we are locking to solve the Schur problem for rational
funetions, then (by the Riemann—Hurwitz formula) we consider the case
there exist genervators {o)je@;, of G4 such that

) K (PY)

2fri=1,...,u, and

(5.12) ”a.i = Id,
and . fml
(5.13) E}_;ma(a,) = 2(n—1).

Section 2 of this paper, [6] and Corollary 4 of [16] atre eontributions to
the computations needed to find gencrators satisfying (5.12) and (5.13).

Wo icel that Problems 1 and 3, and problems related to the conecept
of decomposably stable (Definition 7) are best attacked by the Hurwitz
schome approach; and whatever the ontecome, they shoumld provide in-
teresting data toward the more complute formulation of the generalized

Riemann ewvistence theorem.
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On the limiting distribution of j(p+1) for non-negative
additive funections

by
L. D.T AL Brrxorr (Boulder, Cole.) .

Let f(n) be an additive function, Thus for coprime integers @ and
b it satisfics the relation flab) = fla)--f(B)
For each set B, and real number # 2 2 we define frequencies

(]9 3P B ) = 2_, 1,
) pem -
where © denotey that swmmation s restricted to those primey p which
belong to the set #, and w(z) denctes the fotal number of primes not
excecding .
It was proved. by Katai [3] that if the three series

57 L N fe) )

?
st P i P

7{w) =<1
converge, then the frequencies
m(jp j _|— ) (m_}w)?

possess o Hmiting t':l'ism-il'nltiuh. We here show that if f(p) = 0 holdg for
every prime p then these conditions ave also necessary.

Towores. Let f(n) be a won-negative strongly additive funclion. Then
o Fmiting distribulion exvists for the frequencies

'”.'x:(f); f(p “‘!”1) = 6) (W+ OO)

if and only if the series

LT YR
-~ ?
lff‘ﬁl-il P 7{@) =1 P

conperfe.



