ACTA ARITHMETICA XXV (1974)

References

- [1] W. Burnside, On simply transitive groups of prime degree, Quart. J. Math 37 (1906), pp. 215-221.
- [2] L. R. Ford, Automorphic Functions, New York 1951.
- [3] M. Fried, Arithmetical properties of value sets of polynomials (I), Acta Arith. 15 (1969), pp. 91-125.
- [4] On a conjecture of Schur, Mich. Math. J. 17 (1970), pp. 41-55.
- [5] The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17(1973), pp. 128-146.
- [6] On a theorem of Ritt, to appear in Crelle's J., June 1974.
- [7] Naive class field theory for local function fields over finite fields, in preparation.
- [8] On a theorem of MacOluer, Acta Arith, 25 (1974), pp. 121-125.
- [9] (with R. E. MacRae), On the invariance of chains of fields, Illinois J. Math. 13 (1969), pp. 165-171.
- [10] R. Lidl and C. Wells, Ohebychev polynomials in several variables, Crelle 1972.
- [11] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), pp. 51-66.
- [12] Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), pp. 399-448.
- [13] On algebraic functions which can be expressed in terms of radicals, Trans. Amer. Math. Soc. 24 (1922).
- [14] G. Springer, Introduction to Riemann Surfaces, Reading, Mass., 1957.
- [15] C. Wells (with the aid of W. Nöbauer), Bibliography of Literature on Representable Mappings of an Algebraic Structure Into Itself, Dept. of Math, Case Western Reserve University.

Added in References

- [16] M. Fried and D. J. Lewis, Solution spaces to diophantine problems, Bull. Amer. Math. Soc., to appear.
- [17] M. Fried, On Hilbert's Irreducibility Theorem, Journal of Number Theory, to appear June 1973.
- [18] S. Cohen, The distribution of polynomials over finite fields, Acta Arith. 17 (1970), pp. 259-273.

On the limiting distribution of f(p+1) for non-negative additive functions

bу

P. D. T. A. ELLIOTT (Boulder, Colo.) .

Let f(n) be an additive function. Thus for coprime integers a and b it satisfies the relation f(ab) = f(a) + f(b).

For each set E, and real number $x \ge 2$ we define frequencies

$$r_x(p; p \in E) = (\pi(x))^{-1} \sum_{p \leqslant x} 1,$$

where 'denotes that summation is restricted to those primes p which belong to the set E, and $\pi(x)$ denotes the total number of primes not exceeding x.

It was proved by Katai [3] that if the three series

$$\sum_{|f(p)| \le 1} \frac{1}{p}, \quad \sum_{|f(p)| \le 1} \frac{f(p)}{p}, \quad \sum_{|f(p)| \le 1} \frac{f^2(p)}{p}$$

converge, then the frequencies

$$v_x(p; f(p+1) \leqslant z) \quad (x \to \infty),$$

possess a limiting distribution. We here show that if $f(p) \ge 0$ holds for every prime p then these conditions are also necessary.

THEOREM. Let f(n) be a non-negative strongly additive function. Then a limiting distribution exists for the frequencies

$$v_x(p; f(p+1) \leqslant z) \quad (x \to \infty)$$

if and only if the series

$$\sum_{|f(p)|>1}\frac{1}{p},\quad \sum_{|f(p)|\leqslant 1}\frac{f(p)}{p}$$

converge.

Remarks

(i) Since $f(p) \ge 0$ the convergence of the second of these two series implies the convergence of the series

$$\sum_{|f(p)|\leqslant 1}\frac{f^2(p)}{p}.$$

- (ii) The conditions of Katai are necessary if f may assume negative values but $f(p) \rightarrow 0$ as $p \rightarrow \infty$. This could (for example) be proved by modifying the present argument.
- (iii) The necessity of similar conditions for non-negative functions when p+1 is replaced by g(n) or g(p) for a polynomial g with integral coefficients, can be proved in the manner of the present theorem.
- (iv) By operating on the primes for which p+1 is squarefree one can prove the theorem under the weaker assumption that f is additive.

An essential rôle in the proof will be played by the following result of Barban, which generalizes an earlier result of Kubilius.

LEMMA 1. (See Barban [1], Lemma 7.4.) Let g(x) be a polynomial with integer coefficients, L(p) the number of solutions of the congruence $g(x) \equiv 0 \pmod{p}$, $K = \prod_{p \leqslant r} p$, $\mathscr{K} \subseteq \{k; k | K\}$, $E(d) = \{g(d); d \leqslant x, g(d) \equiv 0 \pmod{d}\}$. For every $k \in \mathscr{K}$ let

$$Q_k = \bigcap_{p \mid k} E(p) \cap \bigcap_{\substack{p \nmid k \\ p \leqslant r}} \overline{E}(p) = \left\{ g(p); \ p \leqslant x, \ k \mid g(p), \left(g(p), K/k \right) = 1 \right\}.$$

Then there exists a positive constant c so that

$$\begin{aligned} r_x(p; \ g(p) & \epsilon \bigcup_{k \in \mathcal{K}} Q_k) \\ &= \sum_{k \in \mathcal{K}} \prod_{p \mid k} \frac{L(p)}{\varphi(p)} \prod_{p \mid K/k} \left(1 - \frac{L(p)}{\varphi(p)}\right) + O(e^{-\frac{c \log x}{\log r}}) + O\left((\log x)^{-1}\right) \end{aligned}$$

uniformly with respect to \mathcal{K} .

We shall need the following consequence of Lemma 1.

Lemma 2. Define independent random variables X_p , one for each prime $p \geqslant 2$, by

$$X_p = \begin{cases} f(p) & with \ probability \ \frac{1}{p-1}, \\ 0 & with \ probability \ 1 - \frac{1}{p-1}. \end{cases}$$

Then there are positive absolute constants c_3 and c_4 so that if ε is a real number in the interval $0 < \varepsilon < c_3$, then

$$\nu_x\left(p\,;\,\sum_{q\mid (p+1),\,q\leqslant x^6}f(q)\leqslant z\right)=P\left(\sum_{p\leqslant x^6}X_p\leqslant z\right)+O\left(\exp\left(-c_4\,\varepsilon^{-1}\right)\right).$$

Proof. In Lemma 1 set g(x)=x+1, $r=x^{\epsilon}$, and $\mathscr{X}=\{k;\ k\,|\,K,\ f(k)\leqslant z\}$. Then L(p)=1 and

$$egin{aligned} v_x(p;\; p+1 \in igcup_{k \in \mathscr{K}} Q_k) &= \sum_{k \in \mathscr{K}} \prod_{p \mid k} rac{1}{p-1} \prod_{p \mid k \mid k} \Big(1 - rac{1}{p-1}\Big) + O(e^{-c/s}) + O((\log x)^{-1}) \\ &= \sum_{k \in \mathscr{K}} + O(e^{-c_4 e^{-1}}) \,. \end{aligned}$$

Since f(n) is strongly additive

$$u_x\Big(p\,;\,\sum_{q\mid (p+1),\, q\leqslant r}f(q)\leqslant z\Big)=
u_x\Big(p\,;\,\,p+1\,\epsilon\bigcup_{k\in\mathscr{K}}Q_k\Big).$$

On the other hand, since the random variables X_p are independent and have a discrete distribution, we have

$$P\Bigl(\sum_{p\leqslant r}X_p\leqslant z\Bigr)=\sum_{\substack{x_p=0\text{ or } f(p)\\p\leqslant r\\ p\leqslant r}}\prod_{p\leqslant r}P(X_p=x_p)=\sum_{k\in\mathcal{K}}\prod_{p\mid k}\frac{1}{p-1}\prod_{p\mid K/k}\Bigl(1-\frac{1}{p-1}\Bigr).$$

This completes the proof of Lemma 2.

Proof of the theorem. We give a proof of the necessity part only, since the proof of sufficiency is included in the result of Katai [3].

Let ε_1 be a real number in the interval $0 < \varepsilon_1 < 1$. Assuming that the function f(p+1) has a limiting distribution we can find a real number ε_1 so that for all sufficiently large values of x:

$$v_x(p; f(p-1) \leqslant z_1) > 1 - \varepsilon_1.$$

Let q_j run through those odd primes q for which $f(q) > z_1$. Then it follows that

$$v_{x}(p; p \not\equiv -1 \pmod{q_i} \, \forall j \geqslant 1) > 1 - \varepsilon_1.$$

We first choose an integer $r \ge 1$. A simple application of the sieve of Eratosthenes, together with Dirichlet's theorem on primes in arithmetic progression, shows that the number of primes in the interval $2 \le p \le x$ for which $q_j \nmid (p+1)$ $(j=1,\ldots,r)$, does not exceed

$$(1+o(1))\frac{x}{\log x}\prod_{j=1}^r\left(1-\frac{1}{q_j-1}\right) \quad (x\to\infty).$$

By letting first x and then $r \to \infty$ we arrive at the inequality

$$1-\varepsilon_1\leqslant \prod_{j=1}^{\infty}\left(1-\frac{1}{q_j-1}\right)$$

so that the series $\sum (q_i - 1)^{-1}$ converges.

Let ε be a further real number in the interval $0 < \varepsilon < 1$. Then for any positive real numbers y and z set

$$F(y,z) = P\left(\sum_{p \leqslant y} X_p \leqslant z\right).$$

Since f is non-negative we have

$$\left| v_x \left(p \, ; \, f(p+1) \leqslant z
ight) \leqslant v_x \left(p \, ; \sum_{q \mid p+1, \, q \leqslant x^o} \leqslant z
ight)
ight|$$

which by Lemma 2 does not exceed

$$F(x^e, z) + O(\exp(-c_4 \varepsilon^{-1}) + (\log x)^{-1})$$

Let u be a further positive real number, then

$$F(x^s,z)\leqslant F(x,z+u)+P\Bigl(\sum_{x^s< u\leqslant x}X_p>u\Bigr).$$

Define new independent random variables by

$$X_p' = \begin{cases} X_p & \text{if } X_p \leqslant z_1, \\ 0 & \text{if } X_p > z_1. \end{cases}$$

Then

$$P\Big(\sum_{x^e u\Big) \leqslant \sum_{x^e z_1) + P\Big(\sum_{x^e u\Big).$$

The first sum which appears on the right hand side here is

$$\sum_{x^e < q_j \leq x} \frac{1}{q_j - 1} = o(1) \quad (x \to \infty),$$

whatever the value of u. Moreover, since the variables X'_p are independent

$$\begin{aligned} \operatorname{Var} \Big(\sum_{x^s$$

Hence

$$P\left(\sum_{x^{s} u\right) \leqslant u^{-2} z_{1}^{2} \left(\log \frac{1}{\varepsilon} + O(1)\right)^{2}$$

so that as $x \to \infty$:

$$\nu_x(p; f(p+1) \leqslant z) \leqslant F(x, z+u) + O\left(\exp\left(-c_4 \varepsilon^{-1}\right)\right) + O\left(u^{-2} z_1^2 \log \frac{1}{z}\right) + o(1).$$

We now prove that the sequence of distribution functions F(n, z) (n = 1, 2, ...), is compact in the sense of P. Lévy. By the Helly selection principle there exists a subsequence n_j (j = 1, 2, ...) so that $F(n_j, z) \rightarrow H(z)$ at the points of continuity of H(z). We need only prove that the total variation of H(z) is 1.

Let δ be a real number in the interval $0 < \delta < 1$. We first choose z_1 so large as to obtain $\varepsilon_1 < \delta/4$. We next choose ε so small that the term $O\left(\exp\left(-c_4\varepsilon^{-1}\right)\right)$ is $<\delta/4$. With z_1 and ε fixed we choose u so large that the term $O\left(-u^{-2}z_1^2\log\varepsilon\right)$ is $<\delta/4$. Finally, for all sufficiently large values of n the term o(1) does not exceed $\delta/4$, and we have thus exhibited a value $z_2 = z_1 + u$ so that $H(z_2) - H(-z_2) > 1 - \delta$. In view of the fact that we may allow $\delta \to 0 +$ we have proved that H(z) is a distribution function.

Let $\varphi_j(t)$, $\varphi(t)$ be the characteristic functions of the distributions $F_{n_j}(z)$ $(j=1,2,\ldots)$, H(z) respectively. Then $|\varphi_j(t)| \to |\varphi(t)|$ whatever the (temporarily fixed) value of t. By direct calculation it follows readily that

$$w(t) = \lim_{j \to \infty} \sum_{p \leqslant n_j} \frac{1}{p} \sin^2 \frac{tf(p)}{2}$$

exists. Then for any z > 0

$$\sum_{f(p)>z} \frac{1}{p} \leqslant \frac{z}{2} \int_{-4/z}^{4/z} w(t) dt < \infty$$

so that for any $\varepsilon > 0$, $z_1 > 0$,

$$\sum_{\substack{x^{\mathfrak{c}} s_{1}}} \frac{1}{p} \to 0 \qquad (x \to \infty).$$

Our inequality involving $r_x(p; f(p+1) \le z)$ therefore holds for any $z_1 > 0$. A similar inequality holds in the other direction, but with u replaced by -u.

Let G(z) denote the limiting distribution for f(p+1), and let z be a point of continuity of G(z). Then if u is chosen such that $z \pm u$ are also continuity points of G(z) we can assert that $x \to \infty$

$$\limsup_{x\to\infty} F(x,z) - \liminf_{x\to\infty} F(x,z)$$

$$\leqslant G(z+u) - G(z-u) + O\left(\exp\left(-c_4 \varepsilon^{-1}\right)\right) + O\left(\left\{u^{-1} z_1 \log \frac{1}{\varepsilon}\right\}^2\right) - O\left(\left\{u^{-1} z_1 \log \frac{1}{\varepsilon}\right\}$$

We let $z_1 \rightarrow 0+$, $\varepsilon \rightarrow 0+$, and then $u \rightarrow 0+$ to deduce that the series

$$\sum_{a} X$$

ACTA ARITHMETICA XXV (1974)

converges in distribution, and also in probability. Hence by Kolmogorov's three series criterion (see for example Doob [2], Theorem 2.5, pp. 111–114) we deduce that the following series are convergent:

$$\sum_{|f(p)|>1} \frac{1}{p-1}, \quad \sum_{|f(p)|\leqslant 1} \frac{f(p)}{p-1}, \quad \sum_{|f(p)|\leqslant 1} \frac{f^2(p)}{p-1}.$$

This completes the proof of the theorem.

References

- M. B. Barban, The 'Large Sieve' method and its applications in the theory of numbers, Uspehi Mat. Nauk. 21(1) (1966), pp. 49-103.
- [2] J. L. Doob, Stochastic Processes, New York 1953.
- [3] I. Katai, On the distribution of arithmetical functions on the set of primes plus one, Compositio Math. 19 (1968), pp. 278-289.

Received on 15.6. 1972 (294)

Odd perfect numbers are divisible by at least seven distinct primes

b

CARL POMERANCE* (Athens, Ga.)

If n is a positive integer, we let $\sigma(n)$ be the sum of the positive divisors of n. n is said to be *perfect* if $\sigma(n) = 2n$. It is well-known that if $2^k - 1$ is prime, then $2^{k-1}(2^k - 1)$ is perfect and that all even perfect numbers are of this form. No odd perfect numbers are known, but neither has any proof of their non-existence ever been discovered.

If n is a positive integer and if $p_1^{a_1}p_2^{a_2} \dots p_k^{a_k}$ is the unique prime factorization of n, we shall call $p_1^{a_1}, p_2^{a_2}, \dots, p_k^{a_k}$ the components of n.

The modern work on the subject was begun by Sylvester. He proved that an odd perfect number (o.p.n.) has at least five components [16] (also proved by Dickson [4] and Kanold [11]) and that an o.p.n. not divisible by 3 has at least eight components [17]. Sylvester claimed he could prove that an o.p.n. has at least six components [18]. Sylvester [18] and Kanold [9] have been the only researchers on the subject aware of 1.8. However, Sylvester's proof of 1.8 is incorrect. A neat proof of this much-proved theorem may be found in Artin [1]. 1.8 is originally due to Bang [2], Birkhoff-Vandiver [3], and Zsigmondy [21].

Gradstein [6], Kühnel [12], and Webber [20] have each independently proved that an o.p.n. has at least six components. Kanold [10] proved that an o.p.n. not divisible by 3 has at least nine components. Tuckerman [19] proved that any o.p.n. is greater than 10³⁶. Hagis [7] proved that any o.p.n. is greater than 10³⁶. Stubblefield [15] announced he could prove any o.p.n. is greater than 10¹⁰⁰.

In this paper, I will prove that any o.p.n. has at least seven components. In light of the result mentioned above by Gradstein, Kühnel, and Webber, all I need prove is that every odd number with exactly six components is not perfect.

^{*} This paper is the author's doctoral dissertation which was submitted in June 1972 and directed by Dr. John Tate of Harvard University.