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On the limiting distribution of j(p+1) for non-negative
additive funections

by
L. D.T AL Brrxorr (Boulder, Cole.) .

Let f(n) be an additive function, Thus for coprime integers @ and
b it satisfics the relation flab) = fla)--f(B)
For each set B, and real number # 2 2 we define frequencies

(]9 3P B ) = 2_, 1,
) pem -
where © denotey that swmmation s restricted to those primey p which
belong to the set #, and w(z) denctes the fotal number of primes not
excecding .
It was proved. by Katai [3] that if the three series

57 L N fe) )

?
st P i P

7{w) =<1
converge, then the frequencies
m(jp j _|— ) (m_}w)?

possess o Hmiting t':l'ism-il'nltiuh. We here show that if f(p) = 0 holdg for
every prime p then these conditions ave also necessary.

Towores. Let f(n) be a won-negative strongly additive funclion. Then
o Fmiting distribulion exvists for the frequencies

'”.'x:(f); f(p “‘!”1) = 6) (W+ OO)

if and only if the series

LT YR
-~ ?
lff‘ﬁl-il P 7{@) =1 P

conperfe.
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Remarks:
(i) Since f{p) = 0 the convergence of the second of these two weries
implies the convergence of the series

N L)
s P

(i) The conditions of Katai are necessary if £ may assumo negative
values buh f{p)-+0 a5 p-+o00, This could (for exq.mlﬂv) be proved by mod-
iying the present argument.

(ifi) The mnecessity of similar conditions for non-negative functions
when p-+1 is replaced by gin) or g(p) lov a polynomial g with Integral
coefficients, can be proved in the manner of the present theorem.

{(iv) By operating on the primes for which p41 is squarciree one
can prove the theorem under the weaker assumption that f is additive.

An essential réle in the proot will be played by the following result
of Barban, which generalizes an earlier result of Kubilius. :

LEmMA 1. (See Barban [1], Lemma 7.4.) Let g{x) be a polynomial
with fnteger coefficients, L(p} the number of solutions of the congrucnce
g(@) =0 (modp), K =[]p, & <{k; k|L}, B(d) = {g{d); <z y{d)

Ny

= 0 (mod d)}_. Tor every ket lot
Q=1 @) O] E(p) = {g(p)

otk
2

Then there ewwts o positive constant ¢ 80 that

vip; 9@ ek&.{("(‘?k) . |
= y]g[—ﬁ—ég [](lmfiu) +0(e - Gllggf)_l_o((lngm)—-l)

e R
fet”  mlk 5| K fk (17)

pLw, blg(p), (Q(P): 'K/h) == 1}“

uniformly with respect to 4,

“We ghall noed the following consequence of Lemma 1.

Lmmma 2. Define independent random variables X, one for each prime
P22 by

' ‘ " 1
fip)  with probebility —v,
y ‘ Cp—1
X, =

1
0 with probability 1 — e,
¥ i 71

Then there ave positive absolute constanls ¢, and ¢, 50 that if & is a real number
in the interval O < ¢ < s then

ey D fl@<e =P} x,<

ai{m-+1), gt Pt

z) + Ofexp( —ege™).
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Proof. In Lemma 1 set g(®) = x-+1, r = °, and o = {k; k| K,
F(E) < 2} Then L(p) == L and

volp; p+1e Q) = X l[

I H’ (1 - p%l) +0(e) + 0{(loga) ™)

Jcc.92' Dk p\Efk
= > 0@,
Jrs.z”

Sinece f(n) is strongly additive
(s N floy<e) =rlps pie Ui,
VE,

gllp+1), g5

Om the other hand, sinee the random. variables X, arve independent and
hawve a diserete distribution, we have

\ 1 N 1
N LR
P %u(]nrf(ga) P ke plk D\EfE
3 wpss
Py

This eompletes the proof of Lemma 2.
Proof of the theorem. We give a proof of the necessity part
only, since the proof of sufficiency is included in the vesult of Katai [3].
Let g, be a real number in the interval 0 < & < 1. Agsuming that
the function f(p--1) has a limiting distribution we can flnd a real number
2, so that for all sufticiently large values of w:

. wolp; Jlp—1) <

Let g; run through those odd primes ¢ for which f{g) > #,. Then it follows
that

zl) > 1l—e;.

volp; D 5 —L{modg) i > 1) >1—é.

We firgt choose an integer » == 1. A simple application of the sleve
of Eratosthenes, together with. Diriehlet’s theorem on. primes in arith-
motw lm)wrvmon, ghows that the number of primes in the inferval

< p 2w for which gt (p4+31) (4 =1, ...,7), docs not exceed

( +oll lcwm ] 1(

By letting first and then, 7= oo we arvive at the inequality

) {#~r00).

s0 that the series Y(g;—1)"" converges.
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Let ¢ be a forther real number in the interval 0 < e < 1. Then for
any pogitive real anmbers y and 2 seb

=P} X,<5).

D=y

Py, %)

Since f 18 non-negative we have

c»m(p; Slp 1) = z) 1, (p; Z\i L z)

glp-kl gat

Ay

which by Lemma 2 doed not exeeod,
(2%, &) O {exp (— 0,67} - (logw)™").
Let » be a further positive real nwnber, then

If'(ﬂf,z)gF(m,z—{—mz-)—l—I‘( \“‘ X, >%).

) fn“<;r»<a~

Define new independent random variables by

X - ‘ X, it

Xp é zl?

0 it X,>a.
Then
Wl
P Y Ty>u)< 3 P, > a)+ k| 2‘ X, > ).
ot <Pt B 2’ purw

The first sum which appears on the right hand sido here is

i 1 .
\ E:"_[—"“G(l) (-0},

Lt <Q’r~s

whatever the value of «. Moveover, gsinee the variables X, ave independlent

] \ | vl : v ¥ . o o ?
V&r( z Aw) = _,}d V&Ia]?(ﬂfjj)zs‘:(; \1 Lp) I'( T Ty )a

¥ wpae P pie s ﬂwl ﬁu"[,'id I’ ""1*
. Uf f(’ﬂ) S8y sf(p) ey

. 1 *
- Hence | l
. 4
1’( :\j A, > 'u) < U (.l()g' L -'1”0(1))
a? @ pem ¢
g0 that as o—co:
¥y (p; P-HL) < z)

Plw, 2+ 75) +0 (f"(P( — 6™ O( 2zflog%w) +0(1).
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We now prove that the sequence of digtribution functions #(n,#) (n
=1,2,...), iy compact in the sense of P. Lévy. By the Helly sclection
prineiple there exists a subsequence n; (j = 1, 2, ...) so that F{n;, 2)—H(?)
at the points of continuity of H(2). We need only prove that the fotal
variation of H(z) iy 1. _ /

Let ¢ be a real number in the ioterval 0 < 6 < 1. We first choose
%, 80 large ag to oblain e, < 0/4. We next choose & so small that the term
O {uxp{-~ee™Y) i <<d/d. With 2, and ¢ fixed we chooze % 50 lavge that
the term O —w"*2tloge) is <d/4. Finally, for all sufficiently large values
of % the term o (L) does nob exceed 6/4, and we have thus exhibited a valne
2y = 2w w0 that H(z) —H(—=,) >1—48. In view of the faet that
we may allow d-+0-- we have proved that H{z) is a distribution funetion.

Lot ¢{t), ¢(t) be the characteristic functions of the digtributions
F,,,j (®) {j =1,2,...), H{2) respectively. Then |e;{ =@ (%) whatever the
(temporarily fixed) value of 4 By direct calculation it follows Tea-
dily that

=1 1 oe ()
w(t) = lim 2 - gin e

Fraoo nER Y

exisbs. Then for any 2> 0

¥
%0 that for any &> 0, 2, > 0,
Vo
)/ —p

afen<n
Flwy>em

{®—00).

Our inequality involving r,(p; f(p-+1) < #) thevefore holds for any 2 > 0.
A simdlar ineqguality hOldb in the other direction, but with u replaced
by ik
Tt G(z) denote the limiting distribution for f(p+-1), and let & be
a point of continuity of & (). Then if u is chosen sneh ﬂm.t (b ave wlso
continuity points of G () we can ansert that w—-co
lim sup I (w, 2) —Hmint F(w, #)

Ty raasled]

< G2 +u) — O (g~ 1)+ O (exp( —046‘1))—1-0({%“13110%%} ) |

We let #y—+0-, e>0-, and then u—04- to deduee that the series

2%
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converges in distribution, and also in probability. Henee by Kolmogorov’s
three series eriferion (see for example Doob [2], Theorem 2.0, pp. 111-114)
we deduce that the following series are convergent:

A N fp) 1 )
ol y PacE
\f{;’j_)./l-il'p u(ﬁl p i 2L

This completes the proof of the theorem.
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Odd perfect numbers are divisible by at least
sevenn distinet primes

by
Cann Pomurawcn® (Athens, Ga.)

I » ig a posilive integer, we let o{n) be the sumn of the positive di-
visors of n. » is said to be perfect if o(n) = 2n. Tt is well-known that if
9% 1 iy prime, then 2F73(2%—1) is perfect and that zll even perfect
numbers ave of thiy form. No odd perfect nnmbers are known, but neither
has any proof of thelr non-existence ever been discovered.

If w0 is o positive nteger and if pfipg2 ... pit is the unique prime

Aactorization of &, we shall eall pfy, pi2, ..., piF the components of n.

The modern, work on the subject was begun by Bylvester. He proved
that an odd perfeet number (o.p.n.) has. 2t least five components [16]
(also proved by iMekson [4] and Kanold [11]) and that an o.p.n. not
divisible by 3 has ot least eight components [17]. Sylvester elaimed he
could prove that an o.p.n. has at leash six components [18]. Sylvester
[187 and Janold [9] have been the only researchers on the subject aware
of 1.8. Mowever, Sylvester’s proof of 1.8 i3 incorrect. A meat proof of
thiy wueh-proved theorem nay be found in Artin {1]. 1.8 is originally
due to Bang [27], Birkhott-Vandiver [3], and Zsigmondy [21].

Gradstein |67, Kithnel [12], and Webber [201 have each independently
proved that an o.p.n. hag ot leagt six cobnponents. Kanold [10] proved
that an o.pn. nof divisible by 8 hag at least nine components. Tuckerman
[197 proved that any o.pa. is greater than 10%. Hagis [7] proved that
any o.p.ai. is grester than 10%, Recently Stubblefield [15] announced
he conld prove any o.p.n. is greater than 10

In this paper, T will prove that any o.pn. has at least seven com-
ponends. T lighti of the result mentioned above by Gradstein, Kiihnel,
and ‘Webber, all T need prove is that every odd number with exactly six
componenty iy not perfect,

% 'Plis paper 38 Gl suther's doctoral dissertation which was submitted in June
1678 and divceted Ty Do, Jolm Tate of Harvard University.



