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A rational canonical form for matrix fields*
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1. Introduction and notation. Let F be an arbitrary field and let
(¥), denote the algebra of all # x #» matrices over F' under normal matrix
addition and multiplication. The primary purpose of this paper is to
examine a rational canonical form (R.C.F.) for matrix fields over F.
This R.C.F. is in general not unique and the obvious questions remain
open. In the final section we consider a ‘relationship between matrix
roots of prime polynomials over GF(g). ‘ '

In certain instances we have a technique for extending matrix fields
within (F), ([1], Theorems 9, 10, [2], Theorems 12, 13). The R.C.F. defined
in § 2 is principally motivated by an unsuccessful attempt to improve
and generalize that technique. In particular we ask: given a subfield M
of (F), with M containing a matrix in rational canonical form (r.c.t.)
over F, can we extend M non-trivially by adjoining a matrix Ae(F),
where A is in r.c.f. over F? The negative answer raises a more gencral
question which we consider in § 3.

Our notation and terminology is that of [1], [2] and briefly is as
follows. If a matrix Ae(F), is the matrix direct sum of %k companion
matrices over I, we call A a k-matriz and follow the convention that the
coefficients of a monic polynomial f(x)eF[«] determine the last row of
its companion matrix C(f(#)). It is well known that if g(z) = a, "+
+...+a,elF[x] and C(f(m))e(F)n, then the first row of the matrix
g(C{f(:v))) is given by the vector (a,, ..., a,). By ther.c.f. over ¥ of a matrix
A(F), we mean the matrix diag|C(f,(#)), ..., C(f(«))|, where the poly-
nomials f;(#) are the non-trivial similarity invariants of 4 over F and
degf;(x) < degf;,,(#) for 1 < ¢ < k. Finally, we denote the set of all scalar
matrices in (F), by 8,(F) and the set of all subfields of (¥), by Z,.

2. A rational canonical form. We remember from [1] that if Me#,
has rank 7, then M is similar over F to a matrix field M’ in which each
matrix has the form diag|0,_,, 4’|, and A’e(F), has rank r if and only
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if the corresponding matrix 4 €M is non-zero. We call M’ a normal form
for M over F and let =, M’ denote the obvious projective image of M’
in #,.

DEFINITION 1. Let Me%, have rank » and let M’ be a normal form
for M over F. Then M’ is C‘llled a rational canonical form (R.C.F.) for M’
over F if and only if x, M’ contains a non-scalar matrix in r.c.f. over F
whenever z, M’ contains a non-scalar matrix.

Clearly, each M e#, having rank # is in normal form; M’ <%, is its
own unique R.C.F. whenever =, M’ contains only scalar matrices; and
each Me#, has a R.C.F. over F. While it is easy to verify that a R.C.F,
is not necessarily unique, we are able to obtain the following theorem,

THEOREM 1. Let F be an arbitrary field, and let M eF, have rank r.

If M’ is any R.C.F. for M over F, then n,M' contains at most one non-scalar
matriz in r.c.f. over F.

The above result follows immediately from Theorem 2.

THEOREM 2. Let F be an arbitrary field, and let M e, have rank n.
Then at most one non-scalar matriz in M is in r.c.f. over F.

Proof. Suppose M contains a non-scalar matrix 4 in r.c.f. over F,
say

A = diag|4,, ..., 4],
where the companion matrix 4; has order m; for 1<i <k If A'eM is
also a non-scalar matrix in r.c.f. over F, we let
A’ = diag|4y, ..., 4],

where the companion matrix 4; has order %, for 1 < ¢ < I. Since neither 4
nor A’ are scalar matrices, then k, ! < n. Let 7 and ' denote the ordered
partitions of # as defined by (my,..., m;) and (ny, ..., n,) respectively.
Let m = max(my, n;). We can assume w.l.o.g. that m belongs to the
partition z. Partition both 4 and A’ into block matrices, say A4 = | By
and A" = |Bj|, where B, and Bj both have dimensions m; X m; for
1<2,j<k, as detexnuned by the partition #. Then 4, = B, is non-
derogatory. Since M is a field, 4 and A" commute. We conclude that By,
commutes with Bj;, and hence that By, = g(Bkk) for some g(z)eF[x]
with degg(z) < m = m;. Since By, is a companion matrix it follows that
g(#) = a for some aeF or else g(x) = x, due to the form of the first row
of Byy. If g(#) = a then A; = |a|, and hence A’ = oI, by the divisibility
properties of the similarity invariants of A’. This is a contradiction, hence
g(w) =« and 4, = A;. Thus A = A’, for otherwise A —A’ is non-zero
and has rank less than #.

In summary, we have

THEOREM 3. Let F be an arbitrary field, and let M %, have rank r.
Then M has a R.C.F. over F. If M' e, is any R.C.F. for M over F and K
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is any extension field over F, then M’ is a R.C.F. for M over K. Furthermore,
m,M' contains at most ome mom-scalar matrixz in r.c.f. over F.

3. k-matrices in matrix fields. The proof technique used in Theorem 2
does not appear to be particularly fragile, so we question the uniqueness
of k-matrices in matrix fields. The answer is negative as shown by this
example.

ExAMPLE. Let I = GF(64) so that F has prime subfield GF(2)
and proper subfields GF(4) and GF(8). Let f(x) = «*+2-+1, so that
f(x) is prime in GF[2, 2] and splits over GF(4). Choose a,e¢GF (4) as a root
of f(2). Let C, = C (f(«)), A, = a,I; where I, is the identity of (¥),;, and
A = diag|C,, 4,|. Then 8;(GF(2))[4]eZ;.

Now let g(#) = 2+ 2 +1, so that g(x) is prime in GF[2, ] and splits
over GF(8), and choose a root a, of g(x) in GF(8). Let 4, = O(g(m)),
0, = a,1,, and B = diag|C,, 4,|. It follows that §;(GF(2))[4, BleF,
and contains the non-scalar 4-matrix A4, and also the non-scalar 3-matrix B.

In the other direction, it is easy to construct matrix fields in which
the zero matrix is the only k-matrix.

We do gain the desired uniqueness in certain cases and are reminded
of the question in [2] concerning the set of scalar matrices contained in
a matrix field. We remember that if T is a subset of (F'),, then the entry
field of T is the smallest subfield F’ of F such that T is contained in (F'),.
The method of Theorem 2 yields the following result.

THEOREM 4. Let F' be an arbitrary field. Let M %, be in normal form
having rank v and entry field F', and suppose m, M contains S,(F'). If M
contains a k-matriz A and an l-matriz A’ with k,1<n, then 4 = A’'.

4. Other results. In this section we sharpen and extend the following
result.

THEOREM 5. Let I = GF(p). Let A (F), have characteristic polynomial
f¥(@) and minimal polynomial f(x) which is prime in F[x]. Then for each
positive divisor m of n|k there exists a polynomial g(x)eF [x] of degree
r< n/k and a prime polynomial h(x)eF [x] of degree m such that g(A) has
characteristic polynomial ™™ (z) and minimal polynomial h(w).

The above theorem will follow easily from Theorem 2 in [1]. We
remember that if F = GF(q) is the Galois field of order ¢ and Ae(F),
has minimal polynomial of degree m over F, then the ring extension
S, (F)[A] of S,(F) by A has order ¢" and is given by

Sn(F)[A] = {g(4): g(x)eF [«], degg(@) < m}.
We restate Theorem 5 equivalently but in simpler form.

THEOREM 6. Let F = GF(p). Suppose Ae(F), has minimal polyno-
mial f(x) which is prime in F[x] and has degree s. Then for each positive
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divisor m of s, there exists a polynomial g(z) e F[z] of degree r < s and a prime
polynomial h(x)eF (%] of degree m, such that g(A) has minimal polynomial
h(z).

Proof. The ring 8, (F)[4] is a subfield of (F), by Theorem 2 in [13,
since A has the matrix k-sum(C ( f (w))) as its rational canonical form over
F, where k = n/s. Since m|s then S, (F)[4] has a subfield M of order ™.
Since 8, (F) is a prime field then M = §,(F)[B] for some BeS, (F)[A].
Let h(X)eS,(F)[X] be the minimal polynomial of B over S, (F). Then
h(w) is the minimal polynomial of B over P, and we can choose (uniquely)
g(x)eF[x] such that degg(x) < s and g(A)

‘We now sharpen the above result.

THEOREM 7. Let F' = GF(p). Suppose A <(F), has minimal polynomial
J(@) which is prime in. F [x] and has degree s. Then for each positive divisor m,
of s and for each prime polynomial h(x)eF[2] of degree m, there exist pre-
cisely m polynomials g;(x) e F[x] of degrees r; < 8 such that g,(A) has minimal
polynomial h(x). i

Proof. As before, the field S, (F )[4] has order p® and contains a sub-
field S, (F)[B] of order ™. As argued in the proof of Theorem 2 in [3],
any prime polynomial h(w)eF[:v] ‘of degree m splits in S,(F)[B]. The
theorem follows easily.

As indicated by Section 6 of [3], there is now no difficulty in obtaining
a more general result. :

THEOREM 8. Let F = GF(q). Suppose Ae(F), has characteristic poly-
nomial f*(x) and minimal polynomial f( f(@) which is prime in F[x]. Then
for each posztwe divisor m of nlk and each prime polynomial h(x)eF [x]
of degree m, there exist precisely m polynomials g,(x) e F[x] of degrees r; < n|k
" such that g;(A) has characteristic polynomial h™™(x) and minimal poly-
nomial h(x).

Our next result follows from the proof of Theorem 20 in [3].

THEOREM 9. Let F' = GF(q), q = p® Suppose Ae(F), is a root of
a polynomial f(x) which is prime in GF[p, x] and‘has degree s. Then for
each positive divisor m of s, and for each polynomial h(x) of degree m which
is prime in GF[p, x] and has a root in (F),, there exist precisely m polyno-

mials g;(w)eGF[p, x] of degrees r;<s such that g,(A) has minimal poly-
nomial h(xz) over GF (p). ,

Proof. Since f(x) is prime in GF[p, ] then f(x) is the minimal
polynomial of A over GF(p), and M = 8,(GF(p))[4] is a field of order
p°. Hence M contains a subfield § (GF( )) [B] of order p™ where BeM.
Again, any polynomial &(x) of degree m which is prime in GF[p, ] and
has a root in (F), splits in 8, (GF(p))[B].

We can obtain results in the “opposite direction” by modifying
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appropriately the constructive technique of TheQrem 9 in [1] or more
generally Theorem 12 in [2]. For example, consider the following

THEOREM 10. Let F = GF(q). Suppose Ae(F), has characteristic
polynomial f*(x) and minimal polynomial f(z) which is p.rime in F[a.;].
Then for each positive integer m such that m|k and for eac?& prime polynom.ml
h(®) e F [x] of degree mn [k, there exist at least mm [k matrices B;e(F), .ham.'ng
characteristic polynomial R¥™(z), minimal polynomial h(x), and satisfying
A = g,(B;) for unique g;(x)eF [x] of degrees r; << mn[k.
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