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1. Introduction. Given a field & with an extension field K, the state-
ment that K is algebraic over k can be expressed as follows: For every
0<K, the powers 1,0, 62 ..., 0" ... are linearly dependent over k. If
[K:k¥] =d< oo then, in fact, every d-+1 terms 6%, 6™,..., 0" are
inearly dependent over k. It is conceivable, however, that such linear
dependences exist among fewer powers of 6 for all 6¢k, even when [K: k]
= oo. This motivates us to make the:

DEFINITION 1.1. The multinomial degree d' of K over k is the smallest
positive integer so that for every 6e¢K there exist integers 0 = ny < n,
<M< ... < my; < Ay, with 0™, 6™, ..., 6™ linearly dependent over k.
If no such d’ exist we will say the multinomial degree of K /% is infinite.

To say that K/k has finite multinomial degree d’ is equivalent to
saying that K[k is algebraic with every element of K satisfying a poly-
nomial over % (of unknown degree) involving at most d'4+1 non-0 coeffi-
cients and that 4’ is the smallest number with this property. We are
grateful to Professor I. N. Herstein for suggesting a version of Theorem 1.2.

As mentioned above, if K[k is finite-dimensional we have d’' < d
= [K: k]. If k is finite and K algebraic over k¥ we have d’ = 1 since every
0K is a root of unity. Similarly, if chark > 0 and K is purely inseparable
over k then d' = 1 since every 6K has a power in k.

It is the purpose of this note to prove that the examples cited are
typical of those cases for which d' < [K: k].

THEOREM 1.2. Suppose K|k has multinomial degree d' < co. We have:

(1) If chark =0 then [K: k] =d < oo and d' = d.

(2) If chark > 0 and K is algebraic over the prime field Z,,, then d' = 1.

(3) If chark > 0 and K|k is purely inseparable, then d' = 1.

(4) If chark > 0, k contains a iranscendenial element over the prime
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field Z,, then @' = d, where dy = [K,: k] with K, the mawimal separable
extension of k in K.

Remark. The theorem shows that d’ as well as d is a multiplicative
functional on the lattice of field extensions of a given field. We note that
(1)~(4) can be restated as follows: If d’ < d then either & is algebraic over
affi;ite field or K is a purely inseparable extension of a finite extension
of k.

In case %k is formally real and there exists 0eK with more than [
positive conjugates, it is clear from Descartes rule of signs that 6 cannot
be a root of a polynomial in % [#] involving only I +1 non-0 coefficients.
Hence in this case d’ > 1. In § 2 we extend Descartes’ rule to non-Archi-
medean valuations to obtain a proof of Theorem 1.2.

In § 3 we apply Theorem 1.2 to division rings and in § 4 we discuss
some open questions.

2. Descartes’ rule of signs

LEMMA 2.1. Let k be a field with a non-Archimedean valuation v and
let f(w)=a0+a1m”1+...J,—alm"lelc[w]. Then the set {|6],|f(0) = 0} contains
no more than 1 values.

Proof. If we plot y = log|f(#)|, as a function of z = log [t|, where
If@)l, = max |a;1"|, then the graph is bolygonal, since the graph for each

1
monomial is a straight line of slope n;. This polygon is convex with no
more than [ vertices. If f(0) = 0, then log|6|, must be the abscissa of
one of the vertices, since at an interior point of an edge one monomial
dominates all others.

Note that this lemma is usually proved in terms of the Newton poly-

gon (see [4], 3.1.1). The use of the dual absolute value graph, given here,
seems more intuitive.

. LEMMA 2.2. Let 6, 0,, ..., 0, be 1+ 1 distinct elements of k,, the comple-
tion of k under the non-Archimedean valuation v. Then there ewists a poly-
nomial P(z)ek[x] so that [P(0)l, # |P(G;), for i + j.

Proof. Let mek, satisfy 0 < || < 1. There exids a polynomial

l
P(z) = Za,.xfek,,[m]
=0
such that P(6,) =ln" fori =0,...,1. Since k is dense in %,, there is a poly-
nomial P(z) = 3 a;a’ck[w] with laj—a;] <e for ¢ =0,1,...,1. We
j=0

conclude that

1P(6;) —P(6,)| < max|a,—a,| |6, < e-¢, ¢ — max |6,
) ¥

A non-Archimedean analogue of Descartes’ rule 355

Then for sufficiently small e we have |P(6,)| = |P(6;)| = |=|', so the values
|P(6;)| are distinct.

Note that if K < k,, [K:k] = d then the above argument gives us
an indication about the distribution of elements in K whose conjugates
over k have distinct v-values and which therefore have multinomial degree d.

Proof of Theorem 1.2. (1) Let K contain an element 6 of degree d
over k. If 0 is algebraic over the rational field @ then there exist primes p
8o that the defining equation of 6 over @ factors (modp) into distinct
linear factors ([3], th. 12, p. 289). Hence all of the conjugates of 6 are
distinet elements of the p-adic field @,. We extend the p-adic valuation
to a non-Archimedean valuation v of k. Let 6 = 6,, 0,, ..., 6, be the d
distinet conjugates of 6 which are in k,. We can construct the polynomial
P(2) of Lemma 2.2 for 0,, ..., 6;. Then, by Lemma 2.1, P(6) <K (6) cannot
satisfy a polynomial over % involving fewer than d +1 non-0 coefficients.
Thus the multinomial degree of k(0) over k satisfies d’ = d = [k(0): k1.

If 6 is transcendental over @, then we first consider a minimal purely
transcendental extension Q(¢;,...,%,) of @ contained in k¥ over which 0
is algebraic. We pick a value u;eQ(t,, ..., t,) for ¢, so that the different
conjugates of 6 can be expressed as distinet formal power series in #, — u,
with coetficients algebraic over Q(¢,, ..., t,). Using the valuation on these
power series we again construct a non-Archimedean valuation » of % so
that the defining equation for 6/k splits completely in k,. As before we
conclude d' = d = [k(0): k].

We have already noted the proof of statements (2) and (3) of Theo-
rem 1.2. To prove (4) we can assume that % contains transcendental ele-
ments over the prime field Z,. Suppose 0 is separable over k of degree d.
We can find a minimal set of indeterminates t,, ..., ¢, so that 0 is algebraic
over Z,(ty,...,1). If s =1, we choose ¢ with 6 separable over Z,(t). By
[3], th. 12, p. 289, there are infinitely many primes of Z,(t) over which
the defining equation for 6 splits completely. If s > 1, we pick a value
Uy 0f tyeZ, (1, ..., 1) 50 that the d distinct conjugates of 6 can be expressed
as power series in ¢, with coefficients algebraic over Z,(t,, ..., t,). Using
the valuation for this power series we obtain a non-Archimedean valua-
tion v of Z,(t,,...,1). Extending this valuation to a valuation v of %,
we obtain a non-Archimedean prime so that the defining equation for 6
over k has & distinct separable conjugates 6 = 6,,..., 0, in %,. Using
Lemmas 2.1 and 2.2, we again see d' = d = [k(0): k] for the extension
k(6)/k. This is enough to establish (4), and the proof of Theorem 1.2 is
complete.

3. Division rings. Unlike the case for fields, a division ring with
finite multinomial degree over its center field k¥ must be finite-dimensional
over k. In fact we have:
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THEOREM 3.1. Let D be a division ring with center k having multinomial
degree d < oo over k. Then [D: k] = dz.
‘ Proof. By Theorem 1.2 the separable subfields of D have dimension
at most d over k. Let M be a maximal separable subfield of D. Let D,
be the centralizer of M in D. By [1], 4.3.2, D, is a division ring with
center M. As D, is purely inseparable over M, we have D, = M by [2],
Corollary, p. 165. This says that M is a maximal subfield of D. Then [2],
Prop. 2, p. 180, assures [D:k] = [M:k]2. By Theorem 1.2 we have
[M:%k] =d, so [D: k] =d>

4. Some open questions. Theorem 1.2 suggests questions concerning
the nature of those elements of a finite extension K of the field & whose
multinomial degree is less than d = [K: k]. It is, of course, easy to see
that the elements with multinomial! degree d' = 1 are exactly those ele-
ments which have a positive power in k. For d’ > 1 the situation is less
obvious, however it might be reasonable to pose the following.

CONJECTURE 4.1. If k is a field of characteristic 0 and 6 is an element
of multinomial degree d over k so that there exwist d-+1 multinomials P(x)
eklz]; 1 =0,1,...,d

Pi(x) = ayp+ 0 8™ +... Fa2™e;  ay £ 0

. where the different exponent vectors m; = (my, ..., my) are not proportional
then [k(0™): k] = d for some positive power m of 0. :

The conjecture is false if chark > 0. For example let 6 be a solution
of the equation #” —x —t = 0 over k = Z,(t) where ¢ is transcendental
and p > 2. Then [k(0"): k] =p>2 for all n =1,2,..., but 0 satisfies

infinitely many trinomials

P — g — (AP ) =0, n=1,2,...

with non-proportional exponent vectors (1, p™) over k. If chhark = 0 and
[k(0): k] = d we might also ask the following:

QUESTION 4.2. What is the maximal number o? terms in the sequence
0+n; » =0, +1, 4+2,... whose multinomial degree over k is < d?

If % is formally real and 0 is totally real of degree d over k, then,
as remarked before, it follows from Descartes’ theorem that the elements
0 +n for which all conjugates have the same sign must have multinomial
degree d. Thus, if we order the conjugates of 6 as 6, < 0, < ... < 04, and
6+ » has multinomial degree less than d, then 6, +% < 0 < 6;+# so that
—0;<n< —0;, which gives us an upper bound [6;—6,]+1 for the
answer to Question 4.2 in this case. We know of no similar argument if
the only valuations v for which all the conjugates of ¢ are in k, are non-
Archimedean.
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