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Let [a,(x), as(x),...] be the regular continued fraction expansion,
of w¢(0, 1); that is, denoting by T# = 1/z modl, the coefficients a,(z),
ay(z), ... are obtained by the following algorithm:

o () =1/2—Tz and a,,(2) = a;(To) = a,(Tw).
Put ‘ ’
Ly = Ly(®) = ma,x(al(a:), a3(@), ...y ay(®)).
Our aim in the present note is to extend our earlier investigations on Ly
by proving the following result.
THEOREM. For almost all zin (0, 1) (with respect to Lebesgue measure),
; logLy—1logN
I ——————— T
1I§r_1’s+1:°p loglog N
and )
1 —1
limint [08Ly—log N
N=+w. logloghN

CoROLLARY. For almost all z in (0,1), a8 N—+ oo,
limlog Ly/logN =1.

The first limit result on Ly was obtained in [1] in terms of the
Gaussian measure P(E), defined on the set {E} of Lebesgue measurable
subsets of (0, 1) by

1 dx
(1)\ | P(E) = _logz J its

This result states that, as N—+ oo,

(2) limP(Ly < Ny[log2) = exp(—1/y), y>0.
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In a later paper [2], (2) was extended to the case when P is replaced by
an arbitrary measure which is absolutely continuous with respect to P,
which includes Lebesgue measure. In this same paper [2] it was shown
that for any sequence Ay, N =1,2,..., of positive numbers, the set,
on which Ly/Ay has a positive limit, as N+ oo, has Lebesgue measure
zero. This fact explains the reason of turning to logL, in our Theorem.

Let us now turn to the proof. In the sequel, P will stand for the Gaus-
sian measure as defined in (1) and A will denote Lebesgue measure. We
now quote those results from the literature which will be needed in the
proof.

LEMMA 1 (Borel-Cantelli lemma, see [4], p. 128). Let Q be an arbitrary
measure on the interval (0,1) with Q((0,1)) = 1. Assume that the sets
B; = (0, 1) are such that

+o00

DBy < +oo.

i=1
Then, for almost all @ in (0, 1), with respect to Q, only a finite number of
the events By, B,, ... occur.

LEMMA 2 (see [5]). For # =1,2,... and t =1,2,...

_ log(1+1/t)

(3) Pla,(z) = 1) log2

Furthermore, if we denote by M, , the smallest o-algebra generated by the
coefficients a;(w), u < j < v < + oo, then for any sets A M, , andBeM,, . .,

(4) |[P(ANB)—P(A)P(B)| < de™P(A)P(B),

where 0 < c¢<<1 and d > 0 is a constant.

LEMMA 3 (Bernstein; see [3], p. 67). Let b(n) be an arbitrary sequence
of positive real numbers. If the series

+o<>1
(5) éﬁm=+%

then, for almost all x, infinitely many of the events

oceur.
We now give the details of the proof of our result.

Proof of the Theorem. First of all notice that a set is of P-measure
zero if, and only if, its 2-measure is zero. Hence, we can apply the Gaussian
measure in our investigation.
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For proving the first relation in our statement (the case of limsup),
we have to show that for any &> 0, and for almost all =,

(7) log Ly = log N + (1 —e¢)loglog N infinitely often
and
(8) log Ly = log N +(1+¢)loglog N finitely often.

Note, however, that for any increasing (positive value(‘l) function g(_Z\T )s
the inequalities logLy > g(N) hold infinitely often if, and only if,
loga, (#) > g(n) infinitely often. Indeed, if log.Ly > g(N), then, for some
n< N, loga,(®) > g(N) > g(n). Conversely, if loga,(z) > g(n), ‘then evi-
dently log L, > g(n). Therefore, the relations (7) and (8) are equivalent to

(7a) loga,(x) = logn + (1 —é&)loglogn  infinitely often
and
(8a) loga, (%) > logn+(1+¢)loglogn  finitely often.

The inequalities of (7a) and (8a) are of the same type as in (6). From (7a),

b(n) = exp(logn + (1 —¢)loglogn) = n(logn)'~°,

and thus (3) holds. Lemma 3 therefore yields that (7a), and thus (M),
holds for almost all . Turning to (8a), we apply Lemma 1 and the rela-
tion (3). With the notation of (6),

€

b(n) = exp(logn + (1+¢)loglogn) = n(logn)'~,
and thus, applying that, for |u| <3, |log(1+wu)| < 2lul,

P(B,) = (1/10g2)10g(1 +exp(— [logn+ (14 s)loglogn]))

_ 2 1 2e
§10g2 b(n)  (log2)m(logm)*e’

where [w] denotes the integer part of w. From the inequality above
40
D' P(B,) < + oo,
n=1

and thus Lemma 1 applies, yielding (8a) for almost all z. Our statement
about the limsup is therefore established.
Turning to the liminf, we first remark that the event

¢ = {logLy < log N infinitely often}
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has the property that CeM, forall k =1 is i i i
oo =1,2,... This is
show that for any %, ¢ = O, where T i evidentitwe

Cr = {log Ly ; <logX infinitely often}

with Ly ; = max (a(w), @ 41(2); ...,y ay(@)). By definition, ¢ < Cy, hence
only the converse needs proof. That, however, immediately follows by
noting that, for any fixed », L, () is a fixed number, hence, for sufficiently
large N, whatever z be, log L, < log N, and thus for such an N, logL

and logL, can be smaller than logN only simultaneously. T’he usgé,’lc
way of proving zero-one laws yields by (4) that P(C) =1 or 0 (approx-
1n.f1ate C by cylinder sets D, eI 1,8 and apply (4) with 4 = D, and B = ¢
Since € = OyelM; ., (4) applies with any m, Yyielding P(D n(}';
= P(D,) P(C). But for 8=+ o0, Dy—C, thus P(C) = P*(C), which 'ea?n be
true only for P(C) =1 or 0). On the other hand, since, as N->4 oo,

P(C) > limsupP(log Ly < logN) = limsupP(Ly < N),

(2) yields that P(C) > 0 and thus the above result implies that P(C) = 1.
We therefore p?oved that, for almost all z, liminf(log Ly —log N) < 0,
as N—+ oo, which, of course, implies that, for almost all 2, as N—>-4 oo

(9) liminf(log Ly —log N)/loglog N < 0.

in order t.o comp}ete the proof, we have to prove the inequality obtained
¥y reversing the inequality sign in (9). That is, we have to show that for
any &> 0, for almost all =,

(10) log Ly <log N —eloglog N finitely often.
Here we apply a trick. Noting that, by Lemma 3, the inequalities
logay(x) > log N —cloglog N

holq for infinitely many N, for almost all 2, the argument of showing the
equivalence of (7) and (7a) gives that, for almost all #, infinitely often,

log Ly > log N —eloglog N .

Therefore, phe P-measure of (10) is equal to

(11)  P(logLy < log N —c¢loglog NV, log Ly, > log(N+1)—eloglog (N +1)
tinitely often)
= P(logLy<log N —sloglog N, logay,,(x)>log(N +1) —
— ¢eloglog(N +1) finitely often),
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by the function logN —eloglog N being increasing. But since LyelM,;
and ay,,(#)eMyy; 10y WO have from (4)

(12) P(logLy <logN —cloglog N, logay.,(x)
> log (N +1) — eloglog (N +-1))
" < (1+cd)P(log Ly < log N —¢loglog N) X
x P (logay.,,(z) > log(N +1)—eloglog (N +1)).

Our aim is to show that the sum of the probabilities in (12) converges,
hence, by applying Lemma 1, we get that the value in (11) is one, thus
proving (10) for almost all . By the method [1] of proving (2), we get
that, for N large,

(13) P(logLy <logN —eloglogN) = P(Ly < N(logN)™)

e\N g
£ 2(1— (—10%37)—) = 2exp (Nlog(l - (—I%N)—)) < 2exp(—(logN)?),

amounting to the a,(x) behaving as if they were independent for the value
N (log N)~* as well. We do not repeat all details here, except that we point
out that, when applying repeatedly (4) in that argument, we need a more
careful caleulation for Y'P(a; (2) > w, ..., ag (@) > w), where summation
ig for all distinct values of the subscripts. Let us carry out this refined
calculation for k = 2. By (4), putting 4; = {a;(x) > w},

n  n-j n n—j
P(4i4y) = Y 3 P(4;4;,,) = D P(4y) D) (L+0(¢™)P (4j4m)
1<i<j<n j=1 m=1 ji=1 m=1
= ) P(Ai)P(A,-)—I—O(ZP(A,) j cMP(A,.+m)).
I<i<j<sn j=1 m=1

Note that the constant involved in O(-) is bounded by d for all m, hence
applying the operator O(-) to the whole sum was possible. Now for large w,
P(A;) ~1/wlog2 for all j, hence the error term is O(n/w?), the main term,
on the other hand, being as if they were exactly independent. The other
change required is to apply a so called restricted sieve theorem, instead
of the exact formula (7) of [1]. This helps to avoid to estimate the tail
of a sieve formula ((10) of [1]). Turning to the other term of (12), we have

by (3),

P(logay (@) > log (N +1) —eloglog (N + 1))
(log (¥ +1))
(N +1)log2’

< (1/log2)exp(—log(N +1) 4 cloglog (N +1)) =

4 — Acta Arithmetica XXV.4
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!

and thus, by (13), we have that the sum of probabilities in (12) converges,
hence Lemma 1 completes the proof.

The Corollary is a straight consequence of the Theorem. We stated
it separately because of its interesting content.
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On gaps between numbers with a large prime factor, 1I
by
T. N. SHOREY (Bombay)*

1. In [2] the following result was proved:

THEOREM 1. Let n > 1 be an integer. Let a,, ..., a, be rational numbn;
such that

(i) a,>0,..., a, > 0 are multiplicatively independent,
1
(ii) Noga;| < exp(—IlogS,), 1<i<n and A > 1,

(iii) The sizes of ay, ..., a, do not exceed S;. (The size of a rational
number afb, (a,b) =1, is defined as |b|+ |a/b].)
If By ...y Bn_y are rational numbers of size not exceeding S,, then
|Biloga, +...+B,_,loga, , —loga,| > exp( -—(nA)”"zlogSl)
where ¢ > 0 is an effectively computable constant which is independent of
n, A and Slf
In this paper we shall prove the following:

THEOREM 2. Let n> 1 be an integer. Let ayy ..., apy B1y ...y Prn_y be
rational numbers satisfying the assumptions of Theorem 1. Further assume
that

. p2 pn ’ ’
@iv) a; = a, cery Gy =7 where Pgy ...y Dy Doy +o+y Py aTe

P Dn ’
pairwise distinct prime numbers and none of them is either a factor of m
or m'.
Then
|Bloga, +...+B,_,loga,_,—loga,| > exp(—(nd)1"logs,)

where ¢, > 0 is an effectively computable constant which is independent of
n, A and 8,.

m/’

* T am very thankful to Professor H. M. Stark for sending me a preprint of his
unpublished result [6]. My thanks are also due to Professor K. Ramachandra for
going through the manuscript.
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