| ACTA | ARI | <b>PHMETICA</b> |
|------|-----|-----------------|
|      | XXV | (1974)          |

## "Almost every" algebraic number-field has a large class-number

by

V. G. SPRINDŽUK (Minsk)

In 1956 the following theorem was proved by Ankeny, Brauer and Chowla [1]:

Given any positive integer  $n \ge 2$ , let s and t be any two non-negative integers such that s+2t=n. For every  $\tau>0$  there exist infinitely many algebraic number-fields K which have exactly s real and 2t imaginary conjugate fields and are such that

(1) 
$$h_{K} > |D_{K}|^{1/2-\tau}$$

holds for the class-number  $h_K$  and the discriminant  $D_K$  of K.

In this note we shall prove that to satisfy this inequality for a field K is, in some sense, a standard phenomenon. This phenomenon becomes obvious if one estimates the number of the fields K with the regulators  $R_K$  not exceeding a large bound and compares this value with the number of such fields which satisfy the additional condition

$$h_{\boldsymbol{K}} \leqslant |D_{\boldsymbol{K}}|^{\delta}$$

with any fixed  $\delta$  in the interval  $0 \le \delta < \frac{1}{2}$ .

THEOREM. Given integers  $n \ge 3$  and t,  $0 \le t \le n/2$ , reals Z > 0 and  $\delta$ ,  $0 \le \delta < \frac{1}{2}$ , let  $N_n(Z)$  be the number of distinct (non-isomorphic) algebraic number fields K of degree n with regulators  $R_K \le Z$ ,  $N_n^{(t)}(Z)$  be the number of such fields which have exactly 2t imaginary conjugate fields, and  $N_{n,\delta}(Z)$  be the number of such fields which satisfy (2). Then

$$(3) \hspace{1cm} N_n(Z) < 2^{n(n-1)}3^{n-1} \exp\left\{2\left(n-1\right)^2 c_1 + \left(n-1\right) c_1^{-n+1}Z\right\},$$

where 
$$c_1 = \frac{2}{n-2} \log \left( 1 + \frac{1}{7.5n^2 \log 3n} \right)$$
,

$$(4) N_n^{(l)}(Z) > \exp\left\{c_2 Z^{1/(n-l-1)}\right\},$$

where  $c_2 > 0$  depends only on n,

(5) 
$$N_{n,\delta}(Z) < c_3 Z^{(n+1)/(1-2\delta')},$$

where  $\delta'$  is any number with  $\delta < \delta' < \frac{1}{2}$ , and  $c_3$  depends only on n and  $\delta'$ .

As  $N_n(Z) \ge N_n^{(l)}(Z)$  for any t, we see that from (4) and (5) follows  $N_{n,\delta}(Z) < c_4 (\log N_n(Z))^{(n-[n/2]-1)(n+1)/(1-2\delta^2)}.$ 

For rather detailed treatment of the case n = 2 see [5].

Let K be any algebraic number field of degree  $n \ge 3$  which has s real and 2t imaginary conjugate fields,  $k = s + t - 1 \ge 2$ ,  $(\varepsilon_1, \ldots, \varepsilon_k)$  be a system of fundamental units of K. To prove (3) it is enough to show that K has a unit  $\varepsilon$  of degree n and of the height  $h(\varepsilon)$  with

(6) 
$$h(\varepsilon) \leq 2^n \exp\{2(n-1)c_1 + c_1^{-n+1}R\},$$

where  $R=R_{\pmb{K}}$  and  $c_1$  is defined in the Theorem. The existence of such a unit can be easily proved by the usual application of Minkowski's theorem to the system of linear inequalities

$$|x_1 \log |\varepsilon_1^{\sigma}| + \ldots + x_k \log |\varepsilon_k^{\sigma}|| \leq \lambda_{\sigma},$$

where  $\sigma$  runs through all real and t-1 ( $t \ge 1$ ) non-conjugate imaginary isomorphisms K, all  $\lambda_{\sigma}$  are equal to  $c_1$ , except one which is  $2^{-t+1}R$ . If  $(x_1, \ldots, x_k)$  is a non-trivial integral solution of (7),  $\varepsilon = \varepsilon_1^{x_1} \ldots \varepsilon_k^{x_k}$  satisfies (6) and is of the degree n. The latter follows from a recent theorem by Blanksby and Montgomery [2].

To prove (4) we appeal to the fields K considered by Ankeny, Brauer and Chowla [1]. In the case of t=0 these fields are generated by the polynomials  $f_m(x)=(x-a_1)\dots(x-a_{n-1})(x-m)+1$ , where  $a_1,\dots,a_{n-1}$  are any fixed distinct integers, m>0 is an integer. Let M>1 be an integer,  $M/2 \le m \le M$ ,  $a_1,\dots,a_n$  be the roots of  $f_m(x)$  arranged in such a way that

$$(8) |a_{j}-a_{j}| = \min_{1 \leq i \leq n} |a_{i}-a_{j}| \quad (1 \leq j \leq n-1), \quad |a_{n}-m| = \min_{1 \leq i \leq n} |a_{i}-m|.$$

It may be easily seen that

$$(9) \qquad |a_{j}-a_{j}| < c_{5}M^{-1} \ (1 \leqslant j \leqslant n-1), \quad |a_{n}-m| < c_{5}M^{-n+1},$$

where  $c_5$  depends only on n and  $a_1, \ldots, a_{n-1}$ .

Let  $K_i = Q(a_i)$  (i = 1, 2, ..., n), Q being the field of rationals. If the polynomials  $f_m(x)$  and  $f_{m'}(x)$  define the same field K,  $a'_1, ..., a'_n$  are the roots of  $f_{m'}(x)$  arranged like (8) and  $K'_i = Q(a'_i)$  (i = 1, 2, ..., n), the system  $(K'_1, ..., K'_n)$  is a permutation of the system  $(K_1, ..., K_n)$ . Therefore not more than n! - 1 distinct  $m' \neq m$  can exist with  $M/2 \leq m' \leq M$  and  $f_{m'}(x)$  defining K. Indeed, if n! of such m' do exist, one of the two possibilities takes place: either  $K'_i = K_i$  (i = 1, 2, ..., n) with some m', or  $K'_i = K''_i$  (i = 1, 2, ..., n) with a pair of distinct m', m''. In the first case we observe that

$$\prod_{i=1}^n \left(\alpha_i - \alpha_i'\right) \neq 0$$

is a rational integer, and then (9) gives

$$1 \leqslant \prod_{i=1}^n |a_i - a_i'| < c_6 (M^{-1})^{n-1} M$$
 ,

which is impossible for large M. In the second case the same is true for the number

$$\prod_{i=1}^n (\alpha_i' - \alpha_i'').$$

Thus we see that polynomials  $f_m(x)$  define not less than  $(2n!)^{-1}M$  non-isomorphic fields, when m runs through the interval  $M/2 \le m \le M$  and M is large.

It is shown in the work of [1] that the regulator of K does not exceed  $c_7(\log m)^{n-1}$ . Taking  $M = \exp(c_8 Z)^{1/(n-1)}$ , we get (4) with t = 0. The case of t > 0 takes only trivial changes.

And, finally, to prove (5) we use the theorem by Siegel-Brauer ([3], [4]), which gives  $h_{\boldsymbol{K}}R_{\boldsymbol{K}} > c_9 |D_{\boldsymbol{K}}|^{1/2-\tau}$  with any  $\tau > 0$ . We remark that every field  $\boldsymbol{K}$  of degree n contains an integer of the same degree and of the height not greater than  $2^n (|D_{\boldsymbol{K}}|+1)^{1/2}$ . Hence from  $R_{\boldsymbol{K}} \leq Z$  and (2) follows  $|D_{\boldsymbol{K}}| < c_{10}Z^{2/(1-2\delta-2\tau)}$ , and the number of such fields is estimated by the right side of (5). This completes the proof.

## References

- N. C. Ankeny, R. Brauer, and S. Chowla, A note on the class numbers of algebraic number fields, Amer. J. Math. 78 (1956), pp. 51-61.
- [2] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), pp. 355-369.
- [3] R. Brauer, On the zeta functions of algebraic number fields, Amer. J. Math. 69 (1947), pp. 243-250.
- [4] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), pp. 83-86.
- [5] V. G. Sprindžuk, The distribution of the fundamental units of real quadratic fields, Acta Arith., this volume, pp. 405-409.