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“Almost every” algebraic number-field has
a large class-number

by .
V. G. SPRINDZUK (Minsk)

In 1956 the following theorem was proved by Ankeny, Brauer and
Chowla [1]:

Given any positive integer n > 2, let s and ¢ be any two non-negative
integers such that s4-2t = n. For every v > 0 there exist infinitely many
algebraic number-fields K which have exactly s real and 2¢ imaginary
conjugate fields and are such that

1) hg > | DM

holds for the class-number hy and the discriminant Dg of K.

In this note we shall prove that to satisfy this inequality for a field K
is, in some sense, a standard phenomenon. This phenomenon becomes
obvious if one estimates the number of the fields K with the regulators
Ry not exceeding a large bound and compares this value with the number
of such fields which satisfy the additional condition

(2) hx < |Dg!’
with any fixed ¢ in the interval 0 < dé< 3.

THEOREM. Given integers n >3 and t, 0 <1< n[2, reals Z > 0 and 9,
0<6< 3, let N,(Z) be the number of distinct (non-isomorphic) algebraic
number fields K of degree n with regulators Rg < Z, NY(Z) be the number
of such fields which have exactly 2t imaginary conjugate fields, and N, ,(Z)
be the number of such fields which satisfy (2). Then

* N, (Z) < 2M*=D3"~1lexp {2(n —1)%¢, + (n—1) 67"+ Z},
where ¢, = —~ log(1+———),
n—2 7.5m2log3n
(4) N (Z) > exp {c, 2"V},
where ¢, > 0 depends only on n,
g N, 4(Z) < ey ZH010=29)

where &' is any number with d < & < %, and ¢, depends only on n and &'.
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As N, (Z) > NQ(Z) for any t, we see that from (4) and (5) follows
Nn,a(z) < 04(10gNn(Z))(n_[nlzl_l)(n+l)/(l_26’).

For rather detailed treatment of the case n = 2 see [5].

Let K be any algebraic number field of degree # > 3 which has s real
and 2¢ imaginary conjugate fields, k¥ = s+t —1 > 2, (¢, ..., &) be a system
of fundamental units of K. To prove (3) it is enough to show that K has
a unit ¢ of degree % and of the height %(e) with

(6) h(e) <2neXp{2(”—1)01+cf"+lR},

where B = Ry and ¢, is defined in the Theorem. The existence of such

a unit can be easily proved by the usual application of Minkowski’s theo-
rem to the system of linear inequalities

(7) |,10g |87] +... + m;log |egl| < 2,y

where o runs through all real and ¢—1 (¢ > 1) non-conjugate imaginary
isomorphisms K, all 2, are equal to ¢,, except one which is 2-*'R. If
(1, ..., @) is a non-trivial integral solution of (7), & = el ... &gk satisfies (6)
and is of the degree . The latter follows from a recent theorem by Blank-
sby and Montgomery [2].

To prove (4) we appeal to the fields K considered by Ankeny, Brauer
and Chowla [1]. In the case of ¢ = 0 these fields are generated by the
polynomials f,(2) = (#—a,)... (#—a,_,)(®—m)+1, where Gryenny Qu_y
are any fixed distinct integers, m > 0 is an integer. Let M > 1 be an integer,

M2<m< M, ay,...,a, be the roots of f,(z) arranged in such a way
that

(8) laj—ay = mjn lo;—a;] (1<j<mn—1), |a,—m|= min |a;,—m]|.
1I<i<n I<is<n

It may be easily seen that
(9) laj—a;l <o M (1<j<n—1), |a,—m|< e M ",
where ¢; depends only on % and a,, ..., a,_,.

Let K; =0Q(a;) (# =1,2,...,n), O being the field of rationals. If
the polynomials f,(2) and f,(«) define the same field K, a, ..., a, are
the roots of f, (#) arranged like (8) and K; =Q(a) (3 = 1,2,...,n),
the system (K, ..., K;) is a permutation of the system (K, ..., K,).
Therefore not more than n!—1 distinet m' = m can exist with M /2
<m’'< M and f, (x) defining K. Indeed, if #! of such m’ do exist, one
of the two possibilities takes place: either K; = K; (i = 1,2, ..., n) with
some m', or K; = K;' (i =1,2,...,n) with a pair of distinct m’, m".
In the first case we observe that

n

n(ai—'a;') #0

i=1

Algebraic number-field 413
is a rational integer, and then (9) gives

n
1< [ [ loi— il <o(M)"10,
i=1
which is impossible for large M. In the second case the same is true for

the number
n

Thus we see that polynomials f,,(z) define not less than (2n!)™M non-
isomorphic fields, when m runs through the interval M /2 < m < M and M

© is large.

It is shown in the work of [1] that the regulator of K does not exceed
¢, (logm)"~*. Taking M = exp(¢Z2)""~Y, we get (4) with ¢ = 0. The case
of t> 0 takes only trivial changes.

And, finally, to prove (5) we use the theorem by Siegel-Brauer ([3],
[4]), which gives hxRg > ¢|Dg/*** with any z> 0. We remark that
every field K of degree n contains an integer of the same degree and of
the height not greater than 2"(|Dg|+1)"%. Hence from Rg<Z and (2)
follows [Dyg| < ¢,,Z*0~2°=%9 and the number of such fields is estimated
by the right side of (5). This completes the proof.
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