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Tiepeating owr method for all other prime power factors of e instead
of !, we got our theorem. '

‘When the class number of k is relatively prime to n, we can delete
the condition on g that it splits into principal £-primes and state the theorem
in the following manmner:

Trmorem 2.-Tet (b: @) = n and let the class number of b be relakively
prime to n. Let ¢ be a positive integer such that

(E,T’bfﬂ) == 1 and e'(gqre:pap'—l)‘
Thewn
¢le(p—1)jord,q

where ¢ == 1 if ¢ is odd or p = 1mod2¢ and ¢ == 2 otherwise,

Proof. Let K he the Hilbert class field of & and let (K: k) = h.
Then (b, n) = 1 and (K: Q) = nh. Let e and g& denote the ramification
index of a K-prime lying above the rational prime I and the number of
distinet K -primes lying above I respectively. Then, we can casily see that

(e,nfe) =1 implies (e, nhfe) =1

and
_ 6[(ggs 6ps p—1) implies  eilgy, &, p—1).

Taking & for k in Theorem 1, we see that ¢ satisfies thé required con-
ditions and so the theorem follows since every k-prime splits into principal
K-primes.

EReeetved on 20. 8, 1973 (444}
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1. Introduction. T.et A be an integral domain. We shall say that 4
is a ewdlidean ring, or simply A is euclidean, if there exists a map ¢
4 —{0}-N, N the non-negative integers, satisiying the following two
properties: )

1) I a,bed —{0}, then ¢{ab)=¢(a);

9) Tf a,be A, b 0, then there exist ¢, re A such that o = bg+7,
where ¥ =0 or ¢(r) << ¢(b).

It is easy to see that condition 1) is an unnecessary restriction; i.e.,
if there is a map ¢: A —{0}—+N satisfying only condition 2), then there
is always another map ¢, derived from ¢, such that ¢’ satisties both. 1)
and 2). Turther, it is apparently wnknown whether one enlarges the clasg
of euclidean integral domains by enlarging ¥ to a well-ordered set of
arbitrary cardinality, but this question will not concern us here except
to gay that whenever 4 hag finite residue classes; i.e., 4 modulo any non-
zero ideal is finite, then ingisting on N as a set of values is no restriction.
We refer the reader to an excellent paper by P. Samuel [8] in which all
of the above and much more is exposed with great clarity.

Let 4 be as above. We define subsets 4, of 4 for ne N by induction
as follows: 4, = {0} and if n = L, then 4, = {J4,. Finally 4, ={be 4|

there s a represemtative in A, of every residue class of 4 modulo b4}
Setting A, = | J 4,, 4 is euclidean if and only if A’ = 4 (see Motzkin
nolN

[61). Further when 4’ «= A we get o map ¢: 4 —{0}~N, where if .4 —
— {0} then, there exists a unique n 3= 0 such that @e A, — A, and @) = n.
Now not only does ¢ satisty conditions 1) and 2) above, but if ¢’ i3 any
other map satistying condition 2), then g(w) < ¢'{z) for all we d —{0}
Hence Motzkin justifiably calls ¢ the minimal algorithmn for 4.

Lét I be a global field, so ¥ is a finite extension of the rational numpbers
Q or F' is a function field. of one variable over a finite field. Let § be a non-
empty finite set of prime divisors of I’ such that § contains all infinite
(i.e. archimedean) prime divisors. For each finite (i.e. non-archimedean)
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prime divisor P, we denote by Op the valuation ring associated to P in B,
Letting P range over all prime divisors of I' we get a ring for each sneh
set S as follows:

Oy = () Op.
it

For each such finite set 8, Og is a Dedekind ring with finite residue classes.

It is known that there always exists a finite set § such that Og is
& principal ideal domain, or as we shall say “Og is P.1.D.7". Further, as
we have shown in [7], one can always find finite S so that Oy is euclidean.
The question that concerns us here is: If § is a finite sot of prime divisors,
a8 above, and Ogis P.ID., ig it euclidean? That the answer to our question
is not always yes is well known, but as we shall see, there iy excellent
reason to believe that the only time the angwer is no is in the finite number
of examples already known.

In Section. 2 we prove an essential lemuma using transcendental techni-
gues. In Section 3 we prove the following: Tf F i3 a function field over
a finite field and § a finite non-empty set of prime divisors of F such that
Og is P.ILD., then Oy is euclidean if § contains at least two elements.
Turther we display the evidence, due mostly to P. Weinberger (see [11]),
that the above result i3 also true in the case when F is a number field.

‘2. Let F be a global field and § a finite non-empty set of pritve di-
visors of i such that § containg all infinite primes of F and has eardinality
ab least two. Assume further that Og is P.LD. Let Fg denote the group
of S-units of ¥ and denote by Mg the set of tinite prime divisors P of I
such that P¢ 8 and the non-zero residue clagses of Op modulo ity maximal
ideal I, are represented by elements of Iy, We ghall say that an integral
divisor D is prime to the elements of § if for finite P in 8, V(D) = 0,
whare for any finite prime divisor P of ¥, V, denotes the additive normaliz-
¢d valuation associated with P. We establish notation as follows: Let D
be an integral divisor of F prime to the elements of S,

Bp — denotes the rays of & modulo D, ie., the group of principal

divisors (2), where @e " = F—{0} and Vp(w—1) 2 Vu(D) for all finite -

P guch that V(D) > 0;

Iy — denotes the group of divisors of I prime to the set of finite
prime divisors P such that V(D) > 0;

Ig — denotes the group of divisors generated by finite members of §,

Now let D be any integral divisor of F prime to the elements of S
and consider the tower of subgroups I(D) = Hg(D) 2 Ry, where Hg(D)
= Ig Ry. Because § s @, Hg(D) has finite index in I(D) and thus by
classtield theory (see [1]) there is a finite abelian extension & ' of B which
Is classfield to Hg(D). Let ¢ range over the classes of I(D} modulo Hg (D,
For each O we set Ky equal to the set of prime divisors P such that Py 8
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and Pe ¢. Our objective in this section is to investigate the sets M n K.
To that end we record some definitions and results regarding the idea
of Dirichlet density (we follow [2] and [3]). Letting P range over all
finite prime divisors of ¥, we set

E(oy ) o= };[(1“ “*ﬁ(’lﬁ?)_l’

where ¥ (P) denotes the abgolute norm of I* and o > 1 I8 to take on real
values. We note that £(¢, #) is abgolutely convergent for ¢ > 1 and it
is called the real zeta-function of ¥. If M i a set of finite prime divigors
of B, we define a rveal valued continuwous function (o > 1)

(5, M) = (Z ﬁé’T) (log &(a, 1)),

Pedr
Next
lim w(o, M) = w{M)
a—140
i8 called the Dirichlet density of 3, when the limit exist. ¥vidently M
is am infinite set if (M) > 0. Of particular interest to us, for later applica-
tion, is the following: :

TOHEBOTARRY'S THEOREM. Let B be a finite golois extension of I
with galois group &. Let P’ be a finite prime divisor of B such thai P’ does
not ramify over . Then the Frobenius map (P, BT determines a conjugacy
olass A in-G. If A4z a conjugacy class in & ond K, the set of prime divisors P
of F suoh that there exists P of K with P'|P and (P, B|FY e A, then o (K )

» where | |, denotes the cardinality of a finile set.

_|4
_|4

Tuworum 1. If I is a function field (i.e. & function field of one variable

over o finile field), then for any olass C of I{D) modulo Hg(D)
Mg Ky

w8 an infinite sel. .

Proof. Let & be the exact field of constants of F and seli g = |k|.
It By denotes the growp of S-units of I, then, beeaunse |§] 5= 2, there exists
te g guch that 44 F™ for any positive integer m, where (m, q) = 1. We
denote by 7' the set of prime divisors e Mg such that ¢ represents the
generator of the multiplicative group of the field Op/lyp, i.e. 18 a primitive
root modulo P, Following Bilharz [2], we discuss the existence and posi-
tivity of w{d. To that end let P he a prime divisor of I such that P¢ SUT.

There exigte o rational prime p wsuch that p4g, N(P) = 1lmodp and
N(P)—1 _ . :
t ®  =lmodl, in Op. If m iz o positive integer, (m,q) =1, we
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denote by & (L,,) the set of prime divisors P such that ¢ § and P splits

. mo.. W
completely in L, = F(V1, V). For convenience we shall also denote
by & (L,) the set of prime divisors of F not in 8. Now if p Iy a rational

prime, ptgq, then Pe.7(L,) if and only if P¢ 8, N(P) = lmodyp and
N(P}—1

t ?  =1modl,. Thus letting p range over all ratiomal primes we
have
! ﬂ & (L;n)r
i
where :/'m(}:i,) = (L} =5 (Ly). We note that & (L) = (¥ (L) il m is &
zalm _—
gquare free positive integer. MHence setbing T, = M /’(Lp) w1, we
Pt

obtain. 7, as an. algebraic sum of sets (see [2])

Tn = _/}j /“L(’m’)'gﬂ(-nm))

M Mgy

where 7, = I] ». The %1gmf1c.:hnee of writting 7', a8 an algebraic sum of

»te

psn
sets is that it gives us «w(o, T,) in terms of the (o, ¥ (Ly,)), namely
oo, Tp) = 3 plm)olo, (L)

HY{ My

Bince T, < Tn, nz1, we have (for o > 1)

(1) _ w{o, T) = (U(JrTﬁ-;-l)-
Further beeause I, —T < U #(L,),
=N
ntg
(2) 0< oo, T —ole, T) < D oo, ¥(5,).
nrn
e

Now for each positive integer m, (m, ¢) =1, we have by Tehebotarev's
theorem that

@ (S (L)) —::dEi'ﬁom{cr, (L)) n(m),

“where n{m) = [Ly,: F). Next in view of [2]

me(T) = % _ \#m)
() it wm)o (L)) = >, nimy "
2, g) =1 {mn, )
We would have that
lim (s, T,) = (g, 1) amd . wm = S 2™,
| e Lt ai(m)

(1, )1

icm
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in view of (1) and (2), if the following held :

(3) Zm (o) # (L)) is uniformly comvergent in anjr interval
i1
1< o< 0y 0 > 1.

Bilharz shows in (21 that (3) is true modulo the Riewann Hypothesis
for function fields over finite fields. According to Weil {10], the Riemann
Hypothesis holds for function fields and thus indeoed

() == Z (ﬂm) > 0.
n{m)
()l

Now let ¢ be any class in I(D) modulo Hg(D), Let Ep be clagsiield
to Hg(l) and for any positive integer m, consider BpnL,,. Since 1} is
prime to the elements of § and only elements of 8§ can ramify in L,
we have that H,nD, is an unramitied extension of . Since Hy N,
is wnramified over F and contained in I',, we have Hg(D) - E(D) < H,
where & (D) denotes the group of pringipal divisors of F prime te I and
H denotes the divisor group in (D) to which Epn.L, is classified. Since
Ry = B(D), HS(D) R( ) = Iy B(D) and because Og is P.LD., Iy R(D)
= I (D), Thus H = I(D), ie. BynL, = I. Nowif Hy is the ga.Iom group
of &y, over B, H,, Lh&ht of L, over ' and G that of L, -8, over I,

¢ o Hy % Hp.

There exists unique oye Hp, such that (O, Hp/F) = oy, where ( , Ep/F)
denotes the Artin reciprocity map. Now if P ig a prime of I, H, which
does not ramify over F' and (P, Ly BpiB)* = (1, og), then Pe & (I, )N Ko
it P'| P and P¢ §. Uonversely if I’e P m)antheanfS P does not ramity
in Ay, f"ﬂ and there exigts a prime divisor P' of L, -Hy, such that PP
and (F', L, Bp/FY = (1, ag). So because (1, gy} is in the center of &,
we hswe by Tcheboteurev’s theorem

(1) @ (P (L) VE ) == 0P (L)) w0 (Ko
Next
W(TynEg) == 3 pim)o (9 (Ln)) o (Ko)
|ty
and
(ﬂ(f)' 19101{0 s 2 H ’m CO(U, ch)
10| iy,
Since
Tonkys T,nK, and TnEKy—-TnEys U P (L),
| | ) i
(2 w (0, TunEg) 2 wle, Do NEq),



116 C¢. Queen

and ,

(3) 0 (e, T,nKo)~wle, TNEH < Y oo, #(1L,)).
nig .
nen

Finally (19, (2", (3") and (3) yield
w(TNHg) =lmo(T,NnEy) = o(T)o(Ky),

and sinee o(Hy) =1/d, d = [Ey: F], and TnKy, s MqnK,;, we have

QLD w(Mgﬂ.Kg):'«'O-
a .{‘I! .

3. Let ¥ be a global field and § a finite non-empty set of prime di-
visors such that § containg all infinite primes and |§| = 2. Oonsider the
homomorphism fg from the group I of all divisors of ¥ into the rationa)
integers Z, deferniined on finite prime divisors P as follows: fg(P) = 0
it Pel, 05(P) =1 it Pe Mg and 0g(P) =2 if P¢SU Mg. We have an
exact sequence

0TI 5 7.

Remark 1. It 7 is a function field, then by [2] 0 is surjective. If il
is & number field then there is good reason to believe that 64 it also sur-
jective and we will have more to say about that later.

DprINtTioN. We define a homomorphism ¢y F*»Z as follows:

If ¢ I, we denote by (#) the principal divisor in I associated to @ and _

set pg(@) = O5((®)). We have an exact sequence
1-~>Fg—>—13*3§2,

and further pg restricted to Og— {0} takes on only non-negative values
in Z. .

TEEOREM 2. If B is o function ficld and |S| = 2, then Og is P. 1. D.
if and only if Og is euclidean with respect to pg.

Proof. Since very euclidean integral domain is P.LD., we need only
" show that P.LD. implies euclidean. To that end assume that (g is P.LE.
and denote by I(0g) the group of divisors of ' with respect to 0. We
have an exact sequence

1-+IH“§-I~'>-I(OS)"">1. "
Now it 0 £be0Og, we set D, = [JP7POV Next D,Io/Ty = (b)Ig/Lg.
: = Py
Further if D is an integral divisor of # such that I is prime to elements
of 8, then since Og is P.1D. there exists ¢ =« be Og such that D =.D,.
Now if D is an integral divisor of I prime to the elements of S and ¢, de Og—
{0} such that (c), (d)cI(D), then (0)Hg(D) = (d)Hg(D) if and only
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i Vp{ed ™ ~1)) 2= Vp(D) for P¢ § and V. (D) = 0, i.e. Vello—d) 2= V(D)
for P¢ 8, since Vip(d) =0 for all I, P| D, Thus (o) Hg(D) = () Hg(I)
if and only if there exighy w< Fy such that ¢ == udmod hO @ Whera D = D,
be Oy. B0 in particular if 0 4 we Oy such that the non-zero residue classes
of Oy modulo 70y are representable by eloments of Fy then D, = Pe M
and conversely. Lot @, be Og-~{0} such that (a, b) = 1, then the principal
divisor (a) of F represents « divisor elass ¢, of I(D,) modulo Hg(D,).
By Theorem 1 there exists Fe My such that Pe @, hence there exists
me Og such that 1), == ' and there exists u e Fg such that ¢ = unmodbOy.

We wot A == Og and reeall the notation of Section 1, A,, 4., 4,, ...
What we bhave shown abeve is {the following

(A) me Ay— Ay if and only if D, e M.

(B) £ a,beA~{0} nuch that (a,d) =1, then there exists we 4,
guch that

o = oImodbd .

Our objective is to show that if 0 £ be A and a< 4, then o = 0modbd
or a == amodbAd, whero gg(9) < pg(b). Now if pg(b) < 1, then be 4, and
our result is Immediate, Ho assume gg(b) = 1. If ae.d and o == Omodbd
or {a,b) =1, we have by (B) that there oxists we A, such that a
momoddd, where @ =0 or og(@) {1 < pg(d). Ho assume that «

and b == boby, with (a,, b)) == 1 and eg(by) = L. If pg(d,) = 1, then by (A)
there exists we F'g such that a; == wmodb, 4 and thus a = ub;modbd,
where pg{uby) == gg(hy) < @g(b). Finally if pu();) > 1, then there exists
we dy such that @ % 0 and ¢ =s wbymoddd, with. pg(th) = pg(b,) + pg(w)
< pglby) -1 < @g(l). QRE.D. '

Uororrary L. Let B Do a fundion field and 8 a finite non-empiy set . -

the wmindmal algorithm on Og.
' Proof Lok.d = Ogandrecall the notation of Section 1, 4,, 44, 44, -.-

of prime divisors such that |S| 2 and Oy is P.I.D. We claim that gy is

o)
Bince Oy is euclidean () 4, =4 and the minimal algorithm ¢ i3 defined
i )

on A s follows: for ench 2520, we have A, = 4,,, and if 0 =% me A,
then there exists unique w = 0 such that we d,. .y —4,, whore ¢(x) = a.
Noxt if 0 4 ned and md is a prime ideal, we have two cases, D, e Mg
or D¢ My, It D,e My, then by (A) of Theorem 2, me Ay~ 4, and since
wglm) == Bg (1)) == L, p(m) = pglo), Next if 1 ¢ Mg, then by (B) of Theo-

crem B, medy--d, and again ¢(n) = pg(n). Finally suppose 0 + bed
cand let b = mya, ..., be a prime factorization of b, By [8], pp. 291,

we have @(b) 5= plmy) 4 @) b () and since gglm) = plm,) for
Lsia 4y @b) 2 gg(B). However sinee p is minimal slgorithm on 4 and
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4 1s euclidean with respect to pg, p(b) < pg(b) for all be A snch that b - 0.
Q.E.D,

TUBOREM 3. Let F be o function field and 8 a finile non-empty set
of prime divisors of T sueh that Og s P.I.D., but not euclidean. Let k denote
the exact field of constants of I* and gp the genus of I, then I' is isomorphic
te one of the following fields: k(x, y), where vd k and

1) [kl =2, gp =1 and g’ +y = o’ +a-+1, or

2) k| =3, gp =1 and > = 2"+ 222, or

3) B =4, gp =1 and y*+y = 2*--n, where i3 ¢ generator of the
multiplieative group of &, or

4) & =2, gp =2 and -y = 2 +a’+ 1.

Turther in each case Og = klwx, y1.

Proof. In view of Theovem 2, |§| = 1. Further if § = {P}, then by
& relation of F. K. Schmddt (see [9]), (degP)h|hg, where h is the class

nunber of F. Thus because hg =1, we have h == degP == 1. Further "

g¢r > 0, since otherwise Oy would. be izomorphic to the polynomial ring
in one variable over k which is clearly euclidean. Thus according to [47,
&' must be isomorphic to one of the 4 fields mentioned in the statement
of the theorem. Now if P, denotes the pole divisor of # in B, 8 == {P_},
gince F can have only one prime of degree one. Thus the only possibility,
in each case, is that Og = k{w,y]. Now since the k[, y] are evidently
P.I.D. it remains to show that they are not euclidean. To that end set
A = k[, y]. What we have seen ahove is that 4 hag no prime ideal of
degree one, but the units of 4 are evidently k* = &~ {0}. Hence 4, = {0},
. o
Ay =% but d,—4, =@ and thus 4" = |J 4, # 4. QE.D.
n=0
Remark 2. Now let ¥ be a number field. The evidence is that Theorem
1 and 2 are true in this case. In fact the arguments in [11]seem to general-
ize easily and give both theorems modulo the generalized Riemann
Hypothesis. Given the truth of Theorem 1 an analogue of Theorem 3 is
that the only Og which are P.L.D. but not cuclidean are the rings of intecrem
in the 1mzmg,1113.1-y quadratic number Izelds Q(V-:wf‘;f), Q(V‘T:I“SH), QU —6
and @V —163).
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