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1. An arithmetic funetion f(n) is sald to be additive if for every pair
of pogitive coprime integers a and b the relation f(ab) = f(a)--f(d) is
satisfied. If the same relation holds for every pair of positive integers,
whether coprime or not, then the fonction is said to be completely additive.

In his paper [5] Kétai lists gix conjectures. The first of these, labelled
H,, asserts that if a completely additive arithmetic function vamnighes
on each of the integers which sre of the form p -1, p prime, then it must
be identically zero. In other words, a completely additive function is
determined by its values on the shifted primes. In a subsequent paper
[6], he proved the existence of an absolute constant K, so that if in ad-
dition we agsume that f(p) = 0 for the primes p not exceeding XK, then
fis indeed identically zero. Unfortunately, the constant K could not be
effectively determined by the method that he used, so that the conjecture
H, could not yet be settled in this way.

We shall prove two results which w111 in particular, include a stronger
form of the conjecture H,. :

In what follows we assume only that f is an additive arlthmetlc
function. '

Tamorem L. Let [f(p+1)| < A hold for each prime p. Then the series
11 JA(p)

B’

1f{n) 21 i) ==k

both conwverge. :

Trmorem 2, Let f (p--1) == constant hold for all sufficiently large
primes p. Then f(27) = vongtant jm all integers v 3= 1, and f is zero on all
other prime-powers, '

Remark. Tt will be clear from the method of proof of these theorems
that a weaker hypothesis than thatused in Theorem 2 will lead to a similar
conelusion. For example, one could restrict the primes p to lie in a fixed
arithmetic progression, or consider shifted primes p-+ & for values of %
other than & =1,
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The validity of conjecture H, follows from Theorem 2,
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2. The proof of both theorems depends upon the following essential
lemma,

Let @ be a positive real number. This may need to be sufficiently large

i what follows. For each positive 'mteqe'p d let N(d,x) denote the number
of solutions io the cquation

p+1 = d{g-+1)
where p and g are prime numbers restricted by the econditions
op<e, @ <g<a®, (4, ¢4+1) =1,
Lrnara 1.
d™ » logw.
235 < BB
N(d, y=>=0

In order to prove this lemma we shall make use of the following
estimates which can be found ag, or deduced from, standard results in
the theory of nurabers.

(1) For each inmteger D = 1:

n(x, D, )ﬂef 2 1\<\1_|_'_%;
P
p=1(mod D)
2) P2, D)E sup sup|: TIDlwww-g@—r)—
( (=, D) Jup sup m(y, D, 1) D) € 14— (D)
(3) ' D B2, D) < a(loga).

Dt logz)?

_ See, for example, Bombieri [1]. A thorter proof, on ditferent lines
is given. in Gallagher H:]

(4) Uniformly for oll positive integers d nmot emceeding *S:

. @ 1\
N(d;m) £ d(l{) )2 (1"*""—) .

o 8B pidmyy P

See, for example, Prachar [7], Kap. II, Satz 4.2, p. 45.

I-‘r_o of of Lemma 1. We ghall prove Lemma 1 by estimating a certain
sum from above and below. We begin with the estimate from helow.
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From (2) and (3) we obtain

N(&, o) =

2315 g < 25/6 wlbcgaptls  ptfepag
p=——1(nluod(q+1))
o4
et

) pX

v 16 1/5 n<s o+l
i< pz——l(mod(q—}-l))rl(——q+1,Q+l)

(@) fplr{g-+1))—

u(r) —a (@) (2'F)

=z ) Z ©(r)
m],’6<q<m1l5 g1y -
-

-~ 2 Z B*(w, v(g-+1)) + O (loge)™?),

m1f6<q<m1|'5 ri{g+1}
where m{y) denotes the number of rational primes not exceeding the ’
real number y. The first of these last two double sums can be estimated
at once by

W 1 6 i/ ®
i —_— = log— - 0
L) 1 %% Togo ((logw)ﬂ)
216 cgeplff

‘whilst by using (3) and (2) the second (and final) double sum is

: U ,.e AN » @
< Z B, rig+1)H 24 (1+ (p(rzs)) + (logm)®
g/ bcgaalls ) :'s<x”5 _
r<(logz)® r=(logz)¥
_ 1 1 : 32
< x(loge)~? +wloglogw E = E e <.¢a(10gm)

sl r(loga)®

since for all sufficiently large integers m we have g(m) > m{loglogm)™*
Hence we obtain the lower bound

N4,

a5 g Sio

In the other direction we apply the Cauchy-Schwarz inequality in
the form : :
Nao<( 3 a)

35 g/ 6 w35 deall rdsil
widae ¥id, 210

avd, @)

In view of the Jdower bound ema.bllshed above, Lemma 1 will follow if
we prove that
wa
2 et
g adN*(d, z) € Togap

2 desd/®
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To do this it is convenient to define the function
e(d =da [ a—p7)
nld

Then hy the preliminary result (4) we have

Z IN*d, (logm) {%m s(d)s(d—1).

ZQtLgm
After a further a,ppli.cation of the Canchy-S8chwarz inequality, noting
thzut the function =(d) iz multiplicative, we have

2 s@s@—n < M)t ¥

15d=w _ d<z © e

< JTit+em+eey+..)

=

= [ +p ' (1—p7)7) < loga.

P

e=4(c‘::~,.“1.)):"2

Gathering together the various inequalities we see that Lemma 1
is proved.

3. In this section we prove Theorem 1. We need one further pre-
liminary result. An additive funetion f(m) is said to be finitely distributed
if there are two positive constants ¢, and ¢,, and an unbounded sequence
of positive integers n, < %, < ... so that for cach integer n = 1; We can
find a further sequence of integers 1 < a, < @y ... < @, < 0 with &= ¢,
and for which |f(a,)—f(a,)] < ¢,. We shall make use of the following char-
acterization of such functions, due to Hrdos [3].

LeMMA 2. An edditive function f(n) is finitely distributed if and only
if it can be expressed in the form clogn-+ g(n), where o is a constant, and
the additive fumction g(n) sotigfies the conditions

1
2 L o, y 9i(p) p)
(@) =1 P ia{p)lm
Proof. The proof given in Brdss’ original paper [3] is elementary

but complicated. Another proof, ba,&ed on quite different ideas, can be
found in Ryavec [8].

Progf of Theorem 1. Let us define

2 n

Py,
N{(d,m) >0

B= sp D)y

w35 ygaSl0

icm
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Then appealing to Lemma 1 and inbegrating by parts:

2518
logw < "= [ gDy
25 decabl 2815
N(d,x)=0
2516 2576
= X""D@+ [ Dy ray<p+f [ y'dy
2315 2305
= B(L+(E—3loga).

From this it follows that we can find an absolute constant ¢, > 0 such
that, in each interval &’ < ¥ < %, there exists a number y, for which we
have D(y,) > 6,%,.

We define

D == {d: " < d <y, N(d, ) > 0}.

Then each integer 4 in. & can be represeﬁted in the form d = (p--1)/(g-+1)
where (d, ¢4-1} = 1, and the numbers p and ¢ are prime and hecome _
large with #. From. thiy and the assumptions of Theorem 1 we obtain

If(@) = [flp-+1)—flg+1)<24.

This implies that f satisfies the assumptions of Lemma 2, and therefore
it can be represented in the form. f{n) = alogfn 4 g{n) where g(n) satisfies
the conditiops given in Lemma 2.

To complete the proof of Theorem 1 we shsull prove that the constant
¢ has the wvalue zero.

Let & be a real number, 0 << ¢ <¢ 1/10. Let P be chosen so large that

3 <o

y(p)l:—l

The number of integers m not exceeding y,, and divigibe by a prime p > P
for which |g(p}| > 1, i8 then not mmore than

2 I:%J ] < &Yy,
p>=P P
lg(z)]>1

The number of integers m not exceeding y,, and divigible by a prime- '
power p” with v 2 ¥ == 10— (loge)/log2, is not more than

Yo 1 —3g+10 ‘__.
Zz[p]\J”;W<2 0T Y = et

P PN
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The number of integers m not exceeding y,, and divisible by p* for
gome prime p > 1+, is at most -

Yo 1
e 2 e
Let ¢ = min(}e;, &), and define
={d: o* < <Yy, N(d,2)>0; pPla=p < e +1,
P d=y < gy pld, 19(p) > L=p < D)

Then from these last three assertions, and what have proved concerning
the get 2, it follows that

2 12 69,364y = $61Y0-

bed
Furthermore, for each integer b in #

ologh] < |£®)] + lg@)] < 24+ 0( 31).
nlb
Therefore
: le| Z logh < Gizlﬂgb 2Ay0+0(2 (& ))
r<teyyg b .
< Ayo+ D) »(m) <€ yologlogy,
. MYy .
so that '
o] < loglogq.,__
logy,

Sinee this last inequality holds for an unbounded sequence of values
%, we have ¢ = 0, and Theorem 1 is proved.

4. Tn this section we prove Theorem 2. The proof is carried out
along the lines of the proof of Theorem 1. As before we define D (y) and
determine an unbounded sequence of values ¥,, and a positive congtant
¢y, 80 that D (y,) = 6;%,. This time the mtegers d which we counted in the
set 2 are such that

f(@) =fp+1)—flg+1) =
As before f(n) has the form clogn +g(n), and we can prove that ¢ = 0.

We can, however, already do better than this by applying the following

regult.
For each real number 2z > 0, and inleger n, set

F(ﬂ—n*‘21

(m)gz

icm
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LEMMA 8. A necessary and sufficient condition that the limiting relation

limsup limeup (#, (2 + 6) F (z—8) =0

Jesr04 Lmp 0O
should hold wmiformly for all real values of = is that the series

1

sz P
diverges.

Proof. This result was proved by Erdds [3], subject to the side condi-
tion f(p) = O(1). A proof along different lines, and without such a side
condition, can be found in Elliott and Ryavee [2]

In our present circumstances we set z = 0, so that for every 6 >0

L sup (F, (8) — F,( — )} = Lmsupy; .0

Ne0 © Yperee

(Yo) 2 €1 > 0.

Tt follows at once that f(p) = 0 for almost all primes p, in the sense of
Lemma 3.

The remainder of the proof of Theomm 2 is straightforward, but
complicated. In order to facilitate its presentation we collect here three
further well-known results from the theory of numbers, of which we shall
make use.

(5) For euwch integer D=1

w(@, D, —1) "*H+MD%_“TEE'

ESee, for example, Prachar [7], Kap. IV, Satz 7 5, p. 138.

(6) Uniformly for D<a®, 0<a<1y

4

o w(D)loga

—1) < o3{e)
where the constant cla) may depend upen a.
See, for example, Prachar [7], Kap. II, Satz 4.1, p. 44.

(1) Uniformly for D<o’ 0<a<<l,

Mot o

, =y PRI
en (D) {loga)?
P, Gt

See, for example, Prachar [7], Kap. II Satz 4.6, p. B1.

To continue with our proof of Theorem 2 let ¢, << ¢y < ... denote
the odd primes g for which f{g} = 0. Let d be a positive integer. Let P

2 — Acta Arithmetica XXVI.1
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be a further positive integer, which we shall later choose to be in a certain
sense ‘large’. We shall obtain a lower bound for the nuraber T'(z) of primes

p, not exceeding @, for which

8) p4+1 =2dk; (k,24d) =1; YigAk Ve P, q prime, gj’l’k,
VgD, ¢ + +1

To do thiz choose a positive integer , and define

Qmﬁdnql []».

DR

Let @ be a real number, 3/4 < a < 1. Then certainly

T@yz Y 1— 3 > 1 ¥ 3o

- s L Lk
: pesw i>r Py a>P pEx
pe=—1fmod2d) n=—1(modzdg; pe -1 (modg?)

(+0)2d, Q)=

DD U D

I

pEE s{{(+1)/24,Q) > new
- p=—~1{modzd) ﬂrlq,(-rg_:l:u P=i-1(uad 2dgy)
1

— 1 Y :
D) 2 2t
A Pk =1t N

2l p=—1(nod2dg;) pue-1(moded)
S Ry

RAY.
Using (7) we can derive the estimate (for fixed d):

o (8) b . & 1 q—2
5 = e oy ) =000 gz [ (53)

gtad
[riie]

Using (8} we obtain the upper bound

z <11
P -
() logx ..24 qt——,l

Using (7) we ean majorise our third sum by

) - o1 T
Ty < Z 1< ‘> 1

P T =2dggn sl Pl m@Edmy
2dg;>a® ) 0

» Z 1<*-E—-— Nt < (fl;—a)uﬁ——~~,

the implied éoﬁst_ant being absolute.
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Lagtly, using (8) once again

X S w3 3

P<q<wl’ pxmﬁf(ifodf) A mgg(in?;dlqz)
T 1 i @
Tooa E *E‘*F § — £ —P—l—+0(m3/4).
g = 0gx
g a>F q a>allh 4 g

Putting these estimates together we see that

i = hmlnfT( x)/z{logez) ™"

Z % H( “’““—) 0(;"fq)—0((1ma))~O(P“‘).

If we let #—>oo and then a—1—, we see that we can assert that

o I35 [0

G 7=

) Lo
= e, (logP) ' +O(P >0

it we choose P suitably large, but otherwise fixed.
Since we can. find infinitely many primes p which satisfy a]l of the
hypotheses stated in (8) we can find a sufficiently large one for which

f@d)+f(k) = f(p+1) = ¢ (constant)

say. Here k is square free, and has no factor of the form g;, so that flk) = 0.
Choosing 4 = 2, v =0,1,... in turn, we see that f(2") = constant.
Next, choosing d = ¢, any orld pmme power, we see that f(g B = g —f(2)
= Q.
This completes the proof of Theorem 2.
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6. Let B = Q(l/-cl d = 0, be a quadratic Iimaginary field of discrimi-
nant —d and class number i = h(—d) and let I be an odd rational prime,
(1, d) = 1. There is a unique Z-extension of ¥ which is absolutely abelian.
Let e,, n > 0, denote the exact power of ! dividing the class number of
the mth-layer of the Z,-extension. Under the assumption {(A) I = 1(d),
the anthor has given the following formulas for ¢,—e, ; ([1]). Let 5 be
o' primitive *-th root of unity and { = (1—#) the prime ideal of &(n)
lying over 1. Let y be the character of ¥; yx is a quadratic character of

conductor d. Define a(r) = 3 x(1). Let g be a primitive root modulo
i=
™ and for all s 3 0, ¢(8) = ¢*(I**Y), 0 < g(s) < . For any s¢ Z, r< N,
define s, by s, =s{I"}, 0 < s, <. Then
(i1
eﬂ.""%——l = Ord[(}l); ¥y = 2 ?’s"]si-
(1) . . s a=0
ve = D (algls+") — afglo %)+ +s,)))
i=0
Hence the difference ¢,—e, , depends on the l-order of an algebraic
integer in € {y) whose coefficients are certain sams in y.

Por sufficiently large n, e, = wl"+in+¢ for fixed u, 120, ccZ
([4],{7]). These A, u are the Iwasawa invariants of the given Z;-extension.
Our purpose here is to describe some computbations of these invariants
based on (1) _

The contents of thit note are as follows: in § 1 we show how to alter

(1} in order to dispense with the restwictive assumption (A). In §2 we

show that, in the case (—4/l) = -1, a knowledge of ¢, for small ¢ often
suffices for the determination of u, 7. Some auxiliary results for I = 3
are given in § 3. A short description of the actual computations and the‘ _
tabulated resulty are countained in § 4.

I would like to thank John Coates for several useful suggesmons,
including, in particular, the proof of the lemma of § 3.



