

- [5] I. Kátai, On sets characterising number-theoretical functions, Acta Arith. 13 (1968), pp. 315-320.
- [6] On sets characterising number-theoretical functions (II), (The set of "prime plus one"s is a set of quasi-uniqueness), Acta Arith. 16 (1968), pp. 1-4.
- [7] K. Prachar, Primzahlverteilung, Berlin 1957.
- [8] C. Ryavec, A characterization of finitely distributed additive functions, Journal of Number Theory 2 (1970), pp. 393-403.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO Boulder, Colorado

Received on 5. 2. 1973

(372)

ACTA ARITHMETICA XXVI (1974)

Examples of Iwasawa invariants

by

R. Gold (Columbus, Ohio)

0. Let $E=Q(\sqrt{-d}), d>0$, be a quadratic imaginary field of discriminant -d and class number h=h(-d) and let l be an odd rational prime, (l,d)=1. There is a unique \mathbf{Z}_l -extension of E which is absolutely abelian. Let $e_n, n\geqslant 0$, denote the exact power of l dividing the class number of the nth-layer of the \mathbf{Z}_l -extension. Under the assumption (A) $l^{n+1}\equiv 1(d)$, the author has given the following formulas for e_n-e_{n-1} ([1]). Let η be a primitive l^n -th root of unity and $1=(1-\eta)$ the prime ideal of $Q(\eta)$ lying over l. Let χ be the character of E; χ is a quadratic character of conductor d. Define $a(\tau)=\sum_{i=1}^{\tau-1}\chi(i)$. Let g be a primitive root modulo l^{n+1} and for all $s\geqslant 0$, $g(s)\equiv g^s(l^{n+1})$, $0< g(s)< l^{n+1}$. For any $s\in \mathbb{Z}$, $r\in \mathbb{N}$, define s_r by $s_r\equiv s(l^r)$, $0\leqslant s_r< l^r$. Then

(1)
$$\begin{aligned} e_n - e_{n-1} &= \operatorname{ord}_{\mathbf{I}}(\gamma); \quad \gamma &= \sum_{s=0}^{\varphi(l^n)-1} \gamma_s \eta^s; \\ \gamma_s &= \sum_{s=0}^{l-2} \left(\alpha \left(g(s+il^n) \right) - \alpha \left(g\left(\varphi(l^n) + il^n + s_{n-1} \right) \right) \right). \end{aligned}$$

Hence the difference $e_n - e_{n-1}$ depends on the 1-order of an algebraic integer in $Q(\eta)$ whose coefficients are certain sums in χ .

For sufficiently large n, $e_n = \mu t^n + \lambda n + c$ for fixed μ , $\lambda \geqslant 0$, $c \in \mathbb{Z}$ ([4],[7]). These λ , μ are the Iwasawa invariants of the given \mathbb{Z}_t -extension. Our purpose here is to describe some computations of these invariants based on (1).

The contents of this note are as follows: in § 1 we show how to alter (1) in order to dispense with the restrictive assumption (A). In § 2 we show that, in the case (-d/l) = -1, a knowledge of e_i for small i often suffices for the determination of μ , λ . Some auxiliary results for l=3 are given in § 3. A short description of the actual computations and the tabulated results are contained in § 4.

I would like to thank John Coates for several useful suggestions, including, in particular, the proof of the lemma of § 3.

1. Fix any $n \ge 0$ and let $w = dl^{n+1}$, $l^{n+1} = y(d)$. By [1] we have

(2)
$$e_{n} - e_{n-1} = \operatorname{ord}_{l} \left(\prod_{\substack{0 < j < l^{n} \\ (j,l) = 1 \\ (j,l) = 1}} S_{j} \right) - (n+1) \varphi(l^{n}),$$

$$S_{j} = \sum_{\substack{0 < \mu < w}} \chi_{\chi_{1}^{j}}^{j}(\mu) \mu = l^{n+1} \sum_{i=0}^{l^{n+1} - 1} \overline{\chi}_{1}^{j}(i) \sum_{\delta=0}^{d-1} \delta \chi(i + \delta l^{n+1}).$$

Substituting y for l^{n+1} and multiplying by $\chi(y)\chi(y^{-1})$ we have

$$S_j = l^{n+1} \chi(y) \sum_i \overline{\chi}_1^j(i) \sum_{\delta} \delta \chi(iy^{-1} + \delta).$$

If we let

$$w(\mu) = \sum_{\delta=0}^{d-1} \delta \chi(\delta + \mu) \quad \text{and} \quad a(\mu) = \sum_{i=0}^{\mu-1} \chi(i),$$

then it follows easily that $w(\mu) = w(0) + d\alpha(\mu)$. Hence

$$S_{j} = l^{n+1}\chi(y) \sum_{i} \overline{\chi}_{1}^{j}(i) \cdot w(iy^{-1}) = l^{n+1}\chi(y) \sum_{i} \overline{\chi}_{1}^{j}(i) [w(0) + da(iy^{-1})]$$

= $dl^{n+1}\chi(y) \sum_{i} a(iy^{-1}) \overline{\chi}_{1}^{j}(i)$.

On substituting in (2), we see that

$$e_n - e_{n-1} = \operatorname{ord}_l \left(\prod_i \sum_i \alpha(iy^{-1}) \overline{\chi}_1^j(i) \right).$$

Let η be a primitive l^n -th root of unity. Exactly as in our earlier paper, we may write the sum appearing above in terms of an integral basis $1, \eta, \ldots, \eta^{\sigma(l^n)-1}$ and observe that the product is the norm of this sum from $Q(\eta)$ to Q. This gives us, in the notation of § 0,

(3)
$$e_{n} - e_{n-1} = \operatorname{ord}_{1} \left(\sum_{s=0}^{\varphi(t-j-1)} \gamma_{s} \eta^{s} \right),$$

$$\gamma_{s} = \sum_{i=0}^{l-2} \left(\alpha \left(y^{-1} \cdot g \left(s + i l^{n} \right) \right) - \alpha \left(y^{-1} \cdot g \left(s_{n-1} + i l^{n} + \varphi \left(l^{n} \right) \right) \right) \right).$$

2. Let A_n be the *l*-class group of the *n*th layer of the Z_l -extension of E. Let A be the inductive limit of the A_n under the natural imbedding $A_n \rightarrow A_m$, $m \ge n$ ([5], [2], [3]). Let $\hat{A} = \operatorname{Hom}(A, Q_l/Z_l)$ and $A = Z_l[[T]]$. Then there is an exact sequence of Λ -modules:

(4)
$$0 \to \hat{A} \to \bigoplus_{i=1}^{\tau} \Lambda/(f_i^{s_i}) \to D \to 0.$$

Here each f_i is either l or a distinguished irreducible polynomial and D is a Λ -module of finite cardinality, [6].

Let Γ be the Galois group of the \mathbb{Z}_{Γ} extension over E, so $\Gamma \cong \mathbb{Z}$ topologically. Let Γ_n be the unique subgroup of Γ of index l^n and let γ be a topological generator of Γ . Thus γ^{l^n} is a generator of Γ_n . Then Λ is naturally isomorphic to $\lim \mathbb{Z}_{l}[\Gamma/\Gamma_n]$. Under this isomorphism γ corresponds to 1-T and, by identifying these two elements, we view Γ as imbedded in Λ . Let $\alpha_n = 1 - \gamma^{l^n} = 1 - (1-T)^{l^n}$.

Multiplication by ω_n is a Λ -homomorphism whose kernel is the submodule fixed by Γ_n . Hence (4) gives rise to the kernel-cokernel sequence:

$$(5) \qquad 0 \to \hat{A}^{T_n} \to \bigoplus_{i=1}^{\mathfrak{r}} A/(f_i^{\mathfrak{z}_i})^{T_n} \to D^{T_n} \to \frac{\hat{A}}{\omega_n \hat{A}} \to \bigoplus_{i=1}^{\mathfrak{r}} \frac{A}{(\omega_n, f_i^{\mathfrak{z}_i})} \to \frac{D}{\omega_n D} \to 0.$$

Observe that $\hat{A}/\omega_n \hat{A} \cong (A^{\widehat{\Gamma}_n})$. If we assume (-d/l) = -1, so that there is a unique ramified prime for the Z_l -extension, then $A^{\widehat{\Gamma}_n} \cong A_n$ ([4], [5]). THEOREM 1. If $\chi(l) = -1$, then

$$\#(A_n) = \prod_{i=1}^{\tau} \#(\Lambda/(\omega_n, f_i^{s_i}))$$
:

Proof. In view of (5) and the finiteness of D, it suffices to show that each $[\Lambda/(f^s)]^{\Gamma_n}$ is trivial. Assume first that f=l. Let $g(T)\in \Lambda$ and assume that $\gamma^{l^n}\cdot g(T)\equiv g(T)(l^s)$, i.e. $\omega_n\cdot g(T)\equiv 0(l^s)$. Let $g(T)=\sum_{i=0}^\infty g_iT^i$. If $g(T)\not\equiv 0(l^s)$, choose j such that g_j has minimal l-order among all the coefficients. Say $l^r\|g_j$, $\tau< s$. The $g(T)=l^r\cdot g'(T)$, where g'(T) has some coefficient prime to l. Now $\omega_n\cdot g(T)\equiv 0(l^s)$ implies $\omega_n\cdot g'(T)\equiv 0(l^{s-r})$. Hence $\omega_n\cdot g'(T)\equiv 0(l)$. But $\omega_n\equiv T^{p^n}(l)$ and $g'(T)\not\equiv 0(l)$.

Now assume that f is a distinguished irreducible polynomial. Then $\Lambda/f^s \cong \mathbf{Z}_l[T]/f^s$ as Λ -modules. Let $g(T) \in \mathbf{Z}_l[T]$ and assume that $\omega_n \cdot g(T) \equiv 0$ (f^s). By unique factorization in $\mathbf{Z}_l[T]$, either $g(T) \equiv 0$ (f) or $\omega_n \equiv 0$ (f). We are done if we exclude the second possibility. If f/ω_n , the $\Lambda/(\omega_n, f^s)$ maps onto $\Lambda/(f)$ and is therefore infinite. But, by the sequence (5) and the remarks immediately following it, this cannot be.

THEOREM 2. Let ζ_n be a primitive n-th root of unity and f a distinguished irreducible polynomial, $f \nmid \omega_n$ any n. Then

$$[\Lambda\colon (\omega_n,f^s)]=[\Lambda\colon (\omega_{n-1},f^s)]\big[\boldsymbol{Z}_l[\zeta_n]\colon \big(f(1-\zeta_n)^s\big)\big]\quad \text{ for }\quad n\geqslant 1.$$

For n = 0 we have

$$[\Lambda: (T, f^s)] = l^{s \cdot \operatorname{ord}_{L} f(0)} = [Z_l: (f^s(0))].$$

Proof. For n=0, $[\Lambda:(T,f^s)]=[\mathbf{Z}_t[T]:(T,f^s)]$. Mapping T to 0 we see that this equals $[\mathbf{Z}_t:(f^s(0))]$. In the general case we again have $[\Lambda:(\omega_n,f^s)]=[\mathbf{Z}_t[T]:(\omega_n,f^s)]$. Note that $\omega_n=\omega_{n-1}\cdot\pi_n$, where π_n is

an irreducible polynomial of degree $\varphi(l^n)$. In fact π_n is the minimal polynomial of $1-\zeta_n$ over Q. We will use the exact sequence of Λ -modules:

$$Z_l[T] \xrightarrow{G} \frac{Z_l[T]}{(\omega_{n-1})} \oplus \frac{Z_l[T]}{(\pi_n)} \to \frac{Z_l[T]}{(\omega_{n-1}, \pi_n)} \to 0.$$

Clearly, the kernel of G is $(\omega_n) \subseteq \mathbb{Z}_l[T]$. Hence

$$\begin{split} \left[\boldsymbol{Z}_{l}[T] \colon \left(\boldsymbol{\omega}_{n}, f^{s} \right) \right] &= \left[\boldsymbol{G}(\boldsymbol{Z}_{l}[T]) \colon \boldsymbol{G}(\boldsymbol{\omega}_{n}, f^{s}) \right] \left[\left(\boldsymbol{\omega}_{n} \right) \colon \left(\boldsymbol{\omega}_{n} \right) \cap \left(\boldsymbol{\omega}_{n}, f^{s} \right) \right] \\ &= \left[\boldsymbol{G}(\boldsymbol{Z}_{l}[T]) \colon \boldsymbol{G}(\boldsymbol{\omega}_{n}, f^{s}) \right]. \end{split}$$

On the other hand, if we let $R_1 = \mathbb{Z}_l[T]/(\omega_{n-1})$ and $R_2 = \mathbb{Z}_l[T]/(\pi_n)$,

$$[R_1 \oplus R_2 \colon G(Z_t[T])][G(Z_t[T]) \colon G(\omega_n, f^s)] = [R_1 \oplus R_2 \colon G(\omega_n, f^s)].$$

Using the fact that $G(\omega_n, f^s) = G(f^s)$, we conclude that

$$[Z_l[T]: (\omega_n, f^s)] = [R_1 \oplus R_2: G(f^s)][Z_l[T]: (\omega_{n-1}, \pi_n)]^{-1}.$$

At this point we compare $G(f^s)$ with $\bar{f}^sR_1\oplus \bar{f}^sR_2$. Let $(\bar{a}\bar{f}^s,\bar{b}\bar{f}^s)$ ϵ $\bar{f}^sR_1\oplus \bar{f}^sR_2$. This element is in $G(f^s)$ iff there exists a c ϵ $Z_I[T]$ such that $af^s\equiv ef^s(\omega_{n-1})$ and $bf^s\equiv ef^s(\pi_n)$. Since we have assumed that f does not divide ω_n , this is equivalent to $a\equiv e(\omega_{n-1})$ and $b\equiv e(\pi_n)$; i.e. (\bar{a},\bar{b}) ϵ $G(Z_I[T])$. It follows that the injection $R_1\oplus R_2\to \bar{f}^sR_1\oplus \bar{f}^sR_2$ given by multiplication by f^s takes $G(Z_I[T])$ onto $G(f^s)$. Hence

$$\left[R_1 \oplus R_2 \colon G(\mathbb{Z}_l[T])\right] = \left[\bar{f}^s R_1 \oplus \bar{f}^s R_2 \colon G(f^s)\right].$$

Thus we have

$$\begin{split} \left[\mathbf{Z}_{l}[T] \colon \left(\omega_{n}, f^{s} \right) \right] &= \left[R_{1} \oplus R_{2} \colon \bar{f}^{s} R_{1} \oplus \bar{f}^{s} R_{2} \right] [\bar{f}^{s} R_{1} \oplus \bar{f}^{s} R_{2} \colon G(f^{s})] \left[\mathbf{Z}_{l}[T] \colon \left(\omega_{n-1}, \pi_{n} \right) \right]^{-1} \\ &= \left[R_{1} \oplus R_{2} \colon \bar{f}^{s} R_{1} \oplus \bar{f}^{s} R_{2} \right] \\ &= \left[R_{1} \colon \bar{f}^{s} R_{1} \right] [R_{2} \colon \bar{f}^{s} R_{2}] = \left[\mathbf{Z}_{l}[T] \colon \left(\omega_{n-1}, f^{s} \right) \right] \left[\mathbf{Z}_{l}[T] \colon \left(\pi_{n}, f^{s} \right) \right]. \end{split}$$

The first factor is $[A: (\omega_{n-1}, f^s)]$. We evaluate the second factor by considering the map $T \to 1 - \zeta_n$ of $\mathbb{Z}_l[T]$ to $\mathbb{Z}_l[\zeta_n]$ with kernel (π_n) . This gives the equality

$$[Z_{I}[T]: (f^{s}, \pi_{n})] = [Z_{I}[\zeta_{n}]: (f^{s}(1-\zeta_{n}))].$$

Recall that e_n is the exact power of l dividing $\#(A_n)$.

Corollary 1. If $\chi(l) = -1$, then

$$e_n - e_{n-1} = \sum_{i=1}^r s_i \cdot \operatorname{ord}_{1-\xi_n}[f_i(1-\zeta_n)].$$

Also

$$e_0 = \sum_{i=1}^{\tau} s_i \cdot \operatorname{ord}_l f_i(0).$$

Proof. By the theorems $e_n - e_{n-1} = \sum [Z_l[\zeta_n]: (f_i(1-\zeta_n))^{s_i}]$. But the index of $(f_i(1-\zeta_n)^{s_i})$ in $Z_l[\zeta_n]$ is equal to the l-part of the global norm $N(f_i(1-\zeta_n))^{s_i}$, from $Q(\zeta_n)$ to Q. And, as usual, ord_l $N(\alpha) = \operatorname{ord}_{1-\zeta_n}(\alpha)$,

Note that since f_i is either l or a distinguished polynomial, we must have $\operatorname{ord}_l(f_i(0)) \ge 1$. Thus $e_0 \ge \sum_{i=1}^{\tau} s_i$.

It has been shown by Iwasawa [4] that for n sufficiently large $e_n = \mu l^n + \lambda n + c$ where c is an integer constant and μ , λ are determined by

$$\mu = \sum_{f_i \neq l} s_i, \quad \lambda = \sum_{f_i \neq l} s_i \cdot \deg(f_i).$$

The few corollaries below enable us to evaluate μ , λ in very many cases, when $\chi(l) = -1$, based only on a knowledge of e_i for small i.

Corollary 2. If $\chi(l)=-1$ and $e_n-e_{n-1}<\varphi(l^n)$ for some n>1, then $\mu=0$.

Proof. By Corollary 1,

$$e_n - e_{n-1} = \sum_i s_i \operatorname{ord}_{1-\zeta_n} (f_i (1-\zeta_n)) \geqslant \sum_{f_i = l} s_i \cdot \varphi(l^n) = \mu \cdot \varphi(l^n).$$

COROLLARY 3. If $\chi(l) = -1$ and $e_n - e_{n-1} < \varphi(l^n)$ for some $n \ge 1$, then $e_n - e_{n-1} = \lambda$.

Proof. By Corollary 2, we have $\mu = 0$. Hence

$$\varphi(l^n) > e_n - e_{n-1} = \sum_i s_i \operatorname{ord}_{1-\zeta_n} f_i (1-\zeta_n).$$

Let
$$f_i = \sum_{j=0}^{d_i} a_{ij} T^j$$
. Then

$$\operatorname{ord}_{1-\zeta_n}(f_i(1-\zeta_n)) \geqslant \min_{0 \leqslant j \leqslant d_i} \left(\operatorname{ord}_{1-\zeta_n}(a_{ij}(1-\zeta_n)^j) \right) = \min_{0 \leqslant j < d_i} \left(d_i, j + \varphi(l^n) \cdot \operatorname{ord}_l(a_{ij}) \right).$$

Since f_i is distinguished, $\operatorname{ord}_i a_{ij} > 0$. It then follows from the inequality

$$(6) \qquad \qquad \varphi(l^n) > e_n - e_{n-1} \geqslant \sum_i s_i \, \min_j \left(d_i, \, \hat{\jmath} + \varphi(l^n) \operatorname{ord}_l(a_{ij}) \right)$$

that in each summand the minimum is achieved uniquely at d_i . Hence $e_n - e_{n-1} = \sum s_i d_i = \lambda$.

COROLLARY 4. Assuming $\chi(l) = -1$ and $\mu = 0$, the formula $e_n = \lambda n + c$ is valid for all n such that $\lambda < \varphi(l^{n+1})$.

Proof. The formula is valid at n_0 iff $e_n - e_{n-1} = \lambda$ for all $n \ge n_0 + 1$. By (6) we see that this holds whenever $\lambda < \varphi(l^n)$, since $d_i \le \lambda$.

COROLLARY 5. If (-d/l)=-1, $\mu=0$ and $e_0=1$, then $e_1-e_0>l-1$ implies $\lambda=l-1$.

Proof. Since $\mu = 0$ and $e_0 = 1$, we have $\tau = 1$, $s_1 = 1$, and $f_1 = f$ is an irreducible polynomial of degree λ . Then, as above, we have for n = 1,

$$e_1 - e_0 \geqslant \min_{0 < j < l} (\lambda, j + (l-1)\operatorname{ord}_l(a_j), (l-1)\operatorname{ord}_l f(0)).$$

In this case, however, $\operatorname{ord}_l f(0) = e_0 = 1$ and the rightmost term in brackets equals l-1. Since, by hypothesis, $e_1-e_0 > l-1$, there must be another term equal to l-1 in the brackets. But λ is the only possibility.

By a more careful attention to detail, one can conclude in this situation that $f(0) = (1 - \zeta_1)^{l-1}$ exactly.

3. Remarks on the case l=3. In this case one can proceed a bit further with the formulas of § 1. Let $M(\tau)=\sum_{i=0}^{\tau}\chi(i)=\alpha(\tau+1)$. Then it can be shown that $\mu=0$ for the Z_3 -extension of $Q(\sqrt{-d}), (d,3)=1$, if $M(3^{-1} \bmod d)\not\equiv 0(3)$ ([1]). The following lemma was suggested by the results of the computation described in § 4. I am indebted to J. Coates for the proof.

LEMMA 1. Let $Q(\sqrt{-d})$ be an imaginary quadratic field of discriminant d, class number h, and character χ . Then

$$(3-\chi(3))h = 2M(\lceil d/3 \rceil), \quad \lceil \rceil$$
 denotes greatest integer.

Proof. First assume $d \equiv 1(3)$ and $d-1 = 3\tau$. We start with the well known $-dh = \sum_{i=1}^{d-1} \chi(i) \cdot i$. Observing that $\chi(3) = -1$, we have

$$3dh = -3\chi(3)dh = \sum_{i=1}^{d-1} \chi(3i) \cdot 3i = \sum_{i=1}^{\tau} + \sum_{i=\tau+1}^{2\tau} + \sum_{i=2\tau+1}^{3\tau}$$

$$= \sum_{i=1}^{\tau} \chi(3i) \cdot 3i + \sum_{i=1}^{\tau} \chi(3i-1)(3i-1+d) + \sum_{i=1}^{\tau} \chi(3i-2)(3i-2+2d)$$

$$= \sum_{i=1}^{d-1} \chi(i)i + d \sum_{i=1}^{\tau} \chi(3i-1) + 2d \sum_{i=1}^{\tau} \chi(3i-2)$$

$$= -dh + d \left(\sum_{i=1}^{\tau} \chi(3i-1) + \sum_{i=1}^{\tau} \chi(3i-2) + \sum_{i=1}^{\tau} \chi(3i-2) \right)$$

$$= -dh + d \left(-\sum_{i=1}^{\tau} \chi(3i) + \sum_{i=1}^{\tau} \chi(3i-2) \right).$$

Now observe that by change of variable,

$$\sum_{i=1}^{\tau} \chi(3i-2) = \sum_{i=0}^{\tau-1} \chi(3\tau-3i-2) = \sum_{i=0}^{\tau-1} \chi(-3i-3) = \sum_{i=0}^{\tau-1} \chi(i+1) = M(\tau).$$

Hence we have

$$3dh = -dh + d(2M(\tau)),$$

which is the desired result.

The case d = 2(3) follows similarly.

For $d \equiv 0(3)$, $d = 3\tau$, we proceed as follows:

$$\begin{split} -dh &= \sum_{i=1}^{d} \chi(i) \cdot i = \sum_{i=1}^{\tau} + \sum_{i=\tau+1}^{2\tau} + \sum_{i=2\tau+1}^{3\tau} \\ &= \sum_{i=1}^{\tau} \left(\chi(i) \cdot i + \chi(i+\tau)(i+\tau) + \chi(i+2\tau)(i+2\tau) \right) \\ &= \sum_{i=1}^{\tau} \left(\chi(i) + \chi(i+\tau) + \chi(i+2\tau) \right) i + \tau \sum_{i=1}^{\tau} \chi(i+\tau) + 2\tau \sum_{i=1}^{\tau} \chi(i+2\tau) \,. \end{split}$$

The first summand here is zero, since we can write χ as the product of a character of conductor 3 and a character of conductor τ . So

$$-dh/\tau = \sum_{i=1}^{\tau} \chi(i+\tau) + 2\sum_{i=1}^{\tau} \chi(i+2\tau) = \sum_{i=\tau+1}^{3\tau} \chi(i) + \sum_{i=2\tau+1}^{3\tau} \chi(i)$$

= $M(3\tau) - M(\tau) + M(3\tau) - M(2\tau) = -(M(\tau) + M(2\tau)).$

Using the general relation $M(\mu) = M(d - \mu - 1)$ and the fact that $\chi(\tau) = 0$, we arrive at

$$dh/\tau = 2M(\tau)$$
 or $3h = 2M([d/3])$.

COROLLARY. For $d = \pm 1(3)$,

$$(3-\chi(3))h = 2(M(3^{-1} \mod d) - \chi(3)).$$

Proof. It suffices to show that $M([d/3]) = M(3^{-1}) - \chi(3)$. We will treat the case d = 1(3), $d-1 = 3\tau$. Now

$$\begin{split} M([d/3]) &= M\left(\frac{d-1}{3}\right) = M\left(d - \frac{d-1}{3} - 1\right) = M\left(\frac{2d-2}{3}\right) \\ &= M\left(\frac{2d+1}{3}\right) - \chi\left(\frac{2d+1}{3}\right) = M(3^{-1} \bmod d) - \chi(3). \end{split}$$

COROLLARY. If $Q(\sqrt{-d})$, (d, 3) = 1, has class number divisible by 3, then the invariant μ for the \mathbb{Z}_{s} -extension of $Q(\sqrt{-d})$ is zero.

Proof. A necessary condition that μ be nonzero is $M(3^{-1}) \equiv 0(3)$. By the above corollary, this would imply $h \equiv 2(3)$. So, in fact, if $h \equiv 0$, 1(3), then $\mu = 0$.

It is a simple consequence of this corollary that $\mu_3 = 0$ whenever d = 1(3).

4. A fortran program was written for IBM 360/70 to compute $e_1 - e_0$ by use of equation (2). For l = 3, 5, 7 we have treated all d up to 3000 with (-d/l) = -1, $l \mid h(-d)$ (Table 1, 2, 3). Some cases of (-d/l) = +1 were also computed for testing and comparison (Table 4). For l = 3, $M(3^{-1} \mod d)$ was computed; this resulted in the formulation of lemma, § 3. Table 5 summarizes the consequences of applying the corollaries of § 2 to the contents of Tables 1, 2, 3. For l = 3, the computation of $e_1 - e_0$

icm

was not always sufficient to determine λ . Hence the program was enlarged to compute e_2-e_1 . The additional results are included in Table 1 where necessary and in Table 4 where available. The program input was selected by hand from Gauss' tables. Hence the set of tabulated discriminants may not be complete. Note that if (-d/l)=1 and $l\nmid h(-d)$, then $\lambda=\mu=e_\eta=0$.

Table 1. Z_l -extension of $Q(\sqrt{-d})$ l=3, (-d/3)=-1

d	h	$e_1 - e_0$	e_2-e_1	d	h	$e_1 - e_0$	$e_2 - e_1$
31	3	1,		1432	6]	
	·	1 ,		1480	12	2	2
. 139	3	1		1588	- 6	1	·
		_		1720	12	1,	
199	9	1		1732	12	1 .	
211	3	2	2	1972	12	1	
244	6	1		2047	18	4	
247	6	. 1		2068	12	1	
283	3	1		2071	30	I	
307	3	1		2104	12	1	
331	3	1		2155	12	2	3
367	9	1		2167	18	1.	
379	3	3	-	2191	30	1	
424	6	1		2227	6	1	-
436	6	1.		2260	12	2	
439	15	1	1	2344	18	1.	·
451	6	1. 1.	1	2440	12	1	
472	6	1	1.	2443	6	2	4
499	3	1	1	2479	24	2	2
· 547	3	1	1	2488	12	1	
628	6	1		2491	1.2	1	
643	3 .	1		2503	21	$\frac{1}{2}$	3
655	12	1		2515	6	2	2
679	. 18	1		2563	6	2	2
751	15	. 2	2	2599	30	2 2	3
808	6	1		2644	18	1.	
823	. 9	1 1		2647	- 15	ι	
835	6	1	-	2680	12	4	
856	6	2	4	1		{	
883	3	. 1		2728	12	1	
907	3	2	3	2740	12	1.	
964	12	1		2767	21	1	
1048	6	1 .		2791	39	1 1	
1096	12	2	4	2824	24	ī	۵
1108	6	1		2872	12	2	2
1144	12	2	3	2911	42	. 2	3
1192	- 6	1		2920	12	2	3
1336	12	3		2923	6	2	2

Table 2. \mathbb{Z}_l -extension of $Q(\sqrt{-d})$ l = 5, (-d/5) = -1

<i>d</i>	h	$e_{1}-e_{0}$	đ	h	$e_1 - e_0$
47	5	1	1748	20	1
103	5	1	1823	45	1
127	5	2	1867	5	1
143	10	1	1887	20	1
303	10	1	1928	20	2
347	5	1	2063	45	I
443	- 5	1.	2087	35	1 .
488	10	1	2152	10	2
523	5	2	2203	. 5	1
683	5	. 1	2243	15	3
787	5	I	2247	20	1
788	10	. 1	2347	5	1
803	10	2	2363	. 10	1: .
872	10	I	2407	20	1
923	10	. 1	2452	10	1
947	5	1	2483	20	. 2
1007	30	1	2487	20	1
1123	5	1	2532	20	1
1223	35	I	2543	35	1
1253	20	1	2552	20	1
1268	10	1 .	2603	20	1
1327	15	1	2643	10	1
1427	15	1	2647	15	1
1492	10	· I	2683	5	2
1567	15	1	2708	30	1
1592	20	1 .	2712	20	1
1643	10	1	2743	20	1
1652	20	1	2843	15	1
1688	10	2 .	2887	25	1
1707	10	1 1	2948	20	1
1723	. 5	2	2983	20	1
1747	5	. 1	2987	20	1

Table 3. \mathbb{Z}_l -extension of $Q(\sqrt{-d})$ l = 7, (-d/7) = -1

d	h	$e_1 - e_0$
151	7	3
71	7	1
431	21	1
463	7	1.
487	.7	1
536	14	1
596	14	1.
743	21	I
807	1.4	1,
827	7	1
863	21	1
935	28	1
1031	35	1
1163	7	' 1
1171	7	1
1311	28	1
1479	28	2
1523	7	, 1
1527	14	1
1703	28	2
2011	7	1
2024	√ 28	1
2055	28	1
2083	7	1
2087	35	I
2111	49	I.
2123	14:	1
2179	7	1
2251	7	1
2279	56	1
2335	14	1
2431	28	1
2503	21	1
2507	14	1
2543	35	1
2564	28	1
2571	14	1
2612	14	1
2703	28	1
2767	21	1

Table 4. Z_l -extension of $Q(\sqrt{-d})$ (-d/l) = +1

	d	h(-d)	$e_1 - e_0$	e_2-e_1
l = 3	11	1	1	1
	20	2	1 1	1
	23	3	1	1
	35	2	2	2
	56	4	2 .	2
	68	4	1	1
	104	. 6	1	1
	- 116	6	1	1
	152	6	1	1
	3299	27	2	2
	3896	36	2	2
l = 5	19	ı	1	1
	31	3	1	1
•	136	4	1 2	2
	139	3	1	1
	199	9	1	1
	211	3	1	1 1
	244	6	1	1
	1311	28	3	3
l = 7	19	1	I	1
	31	3	I	1 1
	52	2	1	1
	136	4	2	2
	139	3	1	1
	199	. 9	1	1
	244	6	1	1

Table 5. Relation of first layers to invariants when (-d/l) = -1

	e ₀	$e_1 - e_0$	e_2-e_1	λ	e_n	n_0
l = 3	1	1		1	n+1	0
	. 1	2	2	2	2n+1	0.
	1	2	3	3	3 n	1
	1	2	4	4.	4n-1	1
	1	3		3	3n+1	0
	1	4		4.	4n + 1	0
	2	1		1	n+2	0
	2	4	3	3	3n + 3	. 1
l = 5, 7	I	1		1	n+1	Ö
	1	2		2	2n+1	0.
	1	3		3	3n+1	.0
	2	1		1	n+2	0

References

- R. Gold, P-extensions of imaginary quadratic fields, Pacific J. Math. 40 (1972), pp. 83-88.
- [2] The nontriviality of certain Z_l-extensions, to appear in J. of Number Theory.
- [3] R. Greenberg, On some questions concerning the Iwasawa invariants, Ph. D. Thesis, Princeton University 1971.
- [4] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1969), pp. 183-226.
- [5] On the theory of cyclotomic fields, Ann. of Math. 70 (1959), pp. 530-561.
- [6] On Z₁-extensions of algebraic number fields, Ann. of Math. 98 (1973), pp. 246-326.
- [7] J.-P. Serre, Classes des corps cyclotomiques, Sem. Bourbaki, 174 (1958), pp 1-11.

Некоторые свойства дзета-функции Римана на критической прямой

Ян Мовер (Братислава)

Цель этой заметки: дать некоторые дополнения к предшествующей заметке [5], и попробовать применить дзета-функцию Римана в редятивистской космологии.

Пусть $0<\gamma'<\gamma''$ — ординаты соседних нулей дзета-функции Римана $\varrho'=\frac{1}{2}+i\gamma'$, $\varrho''=\frac{1}{2}+i\gamma''$, и, $\{t_0\}$ — последовательность значении $t_0>0$ таких, что

$$(a) \gamma' < t_0 < \gamma'',$$

$$(6) Z'(t_0) = 0,$$

(b)
$$t_0 \to +\infty$$
.

Пусть $\{ ilde{t}_0\}$ — подпоследовательность последовательности $\{t_0\}$ такого рода, что

$$|\zeta(\frac{1}{2}+it_0)|>rac{1}{ ilde{t}_0^a},\quad 0 .$$

Пусть $\tilde{\gamma}', \tilde{\gamma}''$ — ординаты таких соседних нулей функции $\zeta(s),$ что $\tilde{\gamma}' < \tilde{t}_0 < \tilde{\gamma}''.$ Символ $\{\tilde{\gamma}', \tilde{\gamma}''\}$ обозначает последовательность таких соседних ординат.

Численные эксперименты с функцей Z(t) поназывают, что точки t_0 распределены с небольшим разбросом в окрестностях точек $(\gamma'+\gamma'')/2$.

Обозначим

$$\Delta(t_0) = \min\{t_0 - \gamma', \gamma'' - t_0\}.$$

Теоретически неисключено, что даже в случае

$$\gamma''-\gamma'>\frac{1}{\gamma'^{\alpha}},$$

 $\Delta(t_0)$ — сколь угодно мало, т.е., точка t_0 находится на сколь угодно малом расстоянии или от точки γ' или от точки γ'' . Точнее: возникает вопрос об оценке снизу величины $\Delta(t_0)$. В этом направлении имеет место

^{3 -} Acta Arithmetica XXVI.1