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Examples of Iwasawa imvariants
by
R. Gorp {Columbus, Chio)

6. Let B = Q(l/-cl d = 0, be a quadratic Iimaginary field of discrimi-
nant —d and class number i = h(—d) and let I be an odd rational prime,
(1, d) = 1. There is a unique Z-extension of ¥ which is absolutely abelian.
Let e,, n > 0, denote the exact power of ! dividing the class number of
the mth-layer of the Z,-extension. Under the assumption {(A) I = 1(d),
the anthor has given the following formulas for ¢,—e, ; ([1]). Let 5 be
o' primitive *-th root of unity and { = (1—#) the prime ideal of &(n)
lying over 1. Let y be the character of ¥; yx is a quadratic character of

conductor d. Define a(r) = 3 x(1). Let g be a primitive root modulo
i=
™ and for all s 3 0, ¢(8) = ¢*(I**Y), 0 < g(s) < . For any s¢ Z, r< N,
define s, by s, =s{I"}, 0 < s, <. Then
(i1
eﬂ.""%——l = Ord[(}l); ¥y = 2 ?’s"]si-
(1) . . s a=0
ve = D (algls+") — afglo %)+ +s,)))
i=0
Hence the difference ¢,—e, , depends on the l-order of an algebraic
integer in € {y) whose coefficients are certain sams in y.

Por sufficiently large n, e, = wl"+in+¢ for fixed u, 120, ccZ
([4],{7]). These A, u are the Iwasawa invariants of the given Z;-extension.
Our purpose here is to describe some computbations of these invariants
based on (1) _

The contents of thit note are as follows: in § 1 we show how to alter

(1} in order to dispense with the restwictive assumption (A). In §2 we

show that, in the case (—4/l) = -1, a knowledge of ¢, for small ¢ often
suffices for the determination of u, 7. Some auxiliary results for I = 3
are given in § 3. A short description of the actual computations and the‘ _
tabulated resulty are countained in § 4.

I would like to thank John Coates for several useful suggesmons,
including, in particular, the proof of the lemma of § 3.
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1. Fix any # >0 and let w = 4", "™ = y(d). By [1] we have

ta—tus = ovds[ [ 8) —(n+1)p),

i
(2 , mtl_y d-1
& = D wdlwn =¥+ 3R X sptir o).
0t ettty i=0 =1

Substituting y for I"*' and multiplying by x(¥)x(y~") we have

8 = iy e/z;m Baxw +3).
If we let
a1 i L .
wip) = X oy(3+u) and  a(u) = > x{i),

d=0 . il

then it follows easily that w(u) — w(0)-+da{u). Hence
8y =T+yly) D) wliy™) =1y le z)[w

= Il (y) ) aliy™)Fl().

i

)+ da(ty™)]

On gubstituting in {2), we see that
w1 —Ordz(” S‘ aliy ™ E @)

Let n be a primitive I"-th root of unity. Exactly as in our earlier
paper, we may write the sum appearing above in terms of an integral
basis 1, %, ..., 7°01"1 and observe that the produet is the norm of this
sum from ¢ (n) to Q. This gives us, in the notation of § 0,

B Ui Rt
€y Gy == 01'(11( 2 7’3778)1
(3)

2 (aly=-gls+) ~aly™ g5 0 ()
2, Let A, be the I-class group of the nth layer of the Z;-extonsion

of B. Let 4 be the inductive limit of the A, under the nataral imbedding

Ag—Ay, mz=n ([5), [2], [3]). Let A = IIom A, Q7)) and A = Z,|[T]).
Then there is an exact qequenoe of A- moduleﬁ

[

(4) 0d =@ AJ(f5) - D - 0.

=]

Here each f; is either I or a distinguished irreducible polynomial and L)
is & A-module of finite cardinaliby, [6].

icm

[A' {0y, f)] = [ZZET]‘ (@, [F)
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Let I' be the Galois group of the Zjextension over K, so I'~ Z
topologically. Let I, be the unique subgroup of I' of index I" and let 3’
be a topological generator of I". Thus 4™ ig a generator of I',. Then A is
naturally isomorphic to limZ,[1'/ 1.}, Under this isomerphism y corres-

ponds to 1 —T and, by identifying these two elements, we view I' ag im-

~bedded in A. Leb w, = 1—p" =1—(1-T)"

Multiplication by w, is & JA-homomorphism whose kernel is the sub~
module fixed by I,. Hence (4) gives rise to the kernel-cokernel sequence:
A c o4 Do
5) Ome-AIﬂlw—)-OA a0 o o Do s =~ = @ — - Q.
( i=] / LUHA =1 (mﬂ,fé") (D:n.D

- N LN
Observe that 4w, 4 o (A™). I we assume ( —d/l) = —1, so that there is
a unique ramified prime for the Z-extension, then A =~ 4, ([4], [B].
TumorEM 1. If y(I) = —1, then

T -

#(4,) =[] #(4/ (o, f):
i=1
Proof. In view of {5) and the finiteness of D, it suffices to show that
each [A/(f)]™ iy trivial. Assume firgt that f = L Let g(T) e a,nd ABHUING

that ™ g(T) = g(T)(), ie. w,-g(T) =0("). Let g(T ZQ,T” If

g(T) s 01", choose j such that g; has minimal Zord_er among all
the coefficients. Say Ullg;, r < 8. The g(T) = I"-¢g'"(T), where ¢'(7") has
some coefficient prime to I Now e, -g(T) = 0(') implies o, ¢g'(T)
=0(F""). Hence w,-¢'(T) =0(). But o, =T"() and g'(T) = 0(1).

Now assume that f is a distingunished irreducible polynomial. Then
Af* = Z,{TYf* as A-modules. Let g(T)e Z;[T] and assume that o, g(T)
= 0(f*). By unique factorization in Z;[1'], either g(I) = 0(f)or w, = 0(f).
We are done if we exclude the second possibility. If f/w,, the A/(w,, f*)
maps onto A/(f) and is therefore infinite. But, by the sequence (5) and
the remarks inmmediately following it, this cannot be.

TuRoREM 2. Let {, be o primitive n-th root of unily and f o distinguished
irveducible polynomial, f+w, any n. Then

[z (@, )] = [A: (@pea, fINZLE ]
TFor m =0 we have

[A: (T, ]

Proof. For n =0, [A: (T,

f&

|

(FL—-t)] for mm1.

- Z.g-ord‘z.f('“J - [Z : (fs(o))]

)1 = [2,[2]: (T, f)]. Mapping T to 0
)i]. In the general case we again have
. Note that o, = o, ,'@,, Wwhere =z, 18

we see that this equals [Z; (f°(0
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an irreducible polynomial of degree ¢(1®). In fact oy, is the minimal poly- '

nomial of 1--~, over §. We will use the exaet sequence of A-modules:
¢ 4T] 5H(T] Z[T]
e e L
( Wy 1) (720) {01y 70,)
Clearly, the kernel of & iz (m,) & Z,[T]. Hence
|2, (7] ( wmf“l |G, LT G ey )] L) 3 (0,30 (e f)]
= {G(HLT]) : Glwy, )],
On the other hand, if we let B, = Z,[T]/(w, ;) and Ry = Z;[7'/(n,),
[Rog Ro: G2 T [F(Z[T]): Gy, )] = [Bi@ By G, )],
Uring the fact that G(w,, ff) = G¢(f*), we conelude that
[2,[17: (0, )] = [Ra@ Rz G(fNE[T]: (0,0, )]

_ At this point we compare &(f*) with FR @ Ry, Let (a@f*, bf') e PR, @
&f°R,. This element is in G( fi) iff there exists a ceZ,[T] such that af*
= of¥(w,, ;) and bf° = of(n,). Since we have assumed that f does not
divide o, , this is cqmvcﬂent to @ = ¢(w, ;) and b =c(m,); ile. (@, )
€ G(Z,[T]). It follows That the injection R,®R,~f*R,0f"R, given by
multiplication by f* takes G{Z;[T]) onto G{f'). Hence

[Br@Ra: GZLTD] = (RO By G(F].

2T~

Thus we have
[ZI[TE: (wn:fs)l .
= [Ri0 Ry PRy ®f B [f* By 0 B
= [R,®R,: .stl@fasz
= [Ba: P Ea][Ry: J'Ro] = [BIT): (s, P ZLL]: (i, 7]
The first factor is [A: (w,_y, ). We evaluate the second factor by con-

G(ISH{ZZLT.’: (mﬂwlﬁ 'mn‘)lwl

sidering the map T—1 —£, of Z,[T] to Z,1{,] with kernel (=,). This gives

the equality )
[ZI[T]: (fs: 72:ﬂ)] = [zll_.cai}: U‘a(l“{:n))]'

Recall that e, is the exact power of I dividing #&(A,,).

CoroLLARY 1. If »(I) = —1, then

Oy — €y .y 22312'

Alse i=1

Ordi—;ﬂ” [.ft ( 1~ ‘:n)] .

T

& = D8, ordf,(0)

i= 1
Proof. By the theorems e,—e,, = Y[Z[(,]: (f;(1—¢,))%] Bub
the index of (f%(l £,)%) in Z,[¢,] is equal to the I- -part of the global norm
N(fi(L—L))%, from QL) to §. And, ag usual, ord; N(a} = ord,_, (a),
T

icm
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for ae@Q(Z,). The second statement follows directly from Theorems 1
and 2.

Note that sinee f; is either I vor a distingnished polynomial, we must
have ord/(f;(0)) = 1. Thus ¢ = 23

It has been shown by Iwa;mwm [4] that for = wiflclently I‘Lrge €,
= ul®+ in-F¢ where ¢ iy an infeger constant and u, 1 are determined by

b= Yy A= s-deg(f).
ﬂ;— Rl

The few corol]a;meq below enable ug to evaluate g, 1 in very many cases,
when x(I) = —1, based only on a knowledge of ¢ for small i.

OoROLTARY 2. If x(I) = —1 and ¢, —¢, < g(l") for some n>1,
then u = 0.

Proof. By Corollary 1,

b — 0y = 3 spord; g (fi (1~ L) Zsf'fp(l”) = p (™).

CoroLLARY 3. If x(I) = —1 and €, —
then €, — €, = A
Proof. By Corollary 2, we have g = 0. Hence

1 =23:101‘d1-;,1fi(1*‘§n)-

8,_1 < ¢(I") for some n =1,

(P(ln) = ey —

dy

Let f; = )J ay T, Then

OTd—I Cn(f{ n ) 2 min (01d1 Cn( u(l CJL)})) - I]llll(d”j "H”(E") Ordl( u))

Oildy B ESH

Sinee f; is distinguished, ord;a; > 0. It then follows from the inequality

(6) P") > 6y — €y > Es.; m,m(oli,a+fp(1")md,(aﬁ))

that in each summand the mmlmum is achieved wniquely at ;. Hence
Oy = 2 Sty = A, .

COROLLARY 4. Asswming x(1) = —1 and g = 0, the formula ¢, = An-¢
is valid for all n such that A< g(I"™). _

Proof. The formula s valid at n, iff e, —e,., = A for all # =5+ 1.
By (6} we see that this holds whenever 4 <Cg¢ (1), since d; << A

COROLLARY B, If {—dfl) = —1, u = 0 and ¢ =1, then ¢; —~¢y > 1—1
wmplies L =1-—-1,

Proof. Since x =0 and ¢, = 1, we have v =1, s; =1, and fi=Ff
is an irreducible polynomial of degree A" Then, as mbove, we have for
=1,

by~ £ 2 min (4, j -+ (1 — 1) ard; (a;), (1 —1) ord, £(0)).

O<zfesd
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In this ease, however, ord; f(0) = e, = 1 and the rightmost term in brackets
equals I —1. SBinee, by hypothesis, e, —¢, >1—1, thers must be another
term equal to ! —1 in the brackets. But 4 is the only possibility.

By & more carefnl atbention to detail, one can conclude in. this hltll&tlon
that f(0) = (1—& ) exactly.

3. Remarks on the case | = 3. In fhix case one can proceed a hif
further with the formulas of §1. Let M(z Z’ x(% {(7+1). Then
it can be shown that x = 0 for the Zrextens.l.on oE Q ]/ud), (d,3) =1
if M{3"'modd)  0(3) {[1]}. The following lemma was suggested by

the results of the computation described in § L I am indebted to J. Coabey
for the proof.

d, class number l'l, rmd cha.mcter ¥ Tifwn

(3—x(8))h = 2BL([d/3)), [ ] denotes greatest integer.
Proof. Tirst assume d = 1(3) and d—1 = 37v. We gtart with the

d-1

well known —~dh = 2 %(8)-4. Observing that x(3) = —1, we have
d-—1 T 21:- ki

Bdh = —3x(3)dh = ' x(3i)y3i = 3+ ¥ + 3
=1 T Tl Pem2ree 1

T

= M8t 3 gBi-1)Bi—1td) - > y(8i—2)(8i—2+2d)
i=1

i=] F==1
d—1
= “xa)@+d5‘z(3a—1)4-9d2 (30— 2)
=1 i=1
- _dh-m(‘?’x(m—j +ZZ(31— +2x 3i—2))

i=1 fusl
-dh+d(— 2,5(3@) - _5_] X(:ﬁ_z)).

F= k. {a=1

Now observe that by change of variable,

T T ) Tl
D a(3i—2) = 3} y(3r—3i—2) = Dl al=8i-3 2%“’" = M{z).
i=1 i=l ' i Teal

Hence we have
3dh = —dh-+ cz(zM( ))

which is Lhe demed result.
The case d = 2(3) follows similarly.
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For d ==0(3), ¢ = 37, we proceed as follows:
- 7 37
ah= Y=Y+ Y+
1=l i=1 {41 | d=271

= (xu)wx(wr)(@ o)+ g (E 4 2%) (0 -+ 27))

-
Il
-

T

Mgy + (i +n) + yli+-22)) i+ Zx(&—l-r )49 3 (i +27).

=1 =1

'Ldﬂ

el

=3

The first summand here is zero, since we can write y as the produet of
a character of conductor 3 and a character of conductor ». So

T T 31_.'
—dhft = Y gli+7)+2 Y glit20) = 5‘ MO IR0
Fe=1 i=1 fo= -:11 1—~ﬂr-]-1
= M (37)— M () + M (31) — M (27) = — (M(r)-+M (27)}.

Using the general relation M (u) = M (d— p—1) and the fact that ¥ (z) = 0,
we arrive ab _ :
dhjr = 2M(r) or 3k =2M([d/3]).

CoROLLARY. For d = £1(3),
(38— (3))h = 2(M (37 modd) — £(3)}.

%(3
Prooi. Tt suffices to show that M ([d/3]) = M(37)—x(3). We will
treat the case & = 1(3), d—1 = 37. Now

- 2d—2
M([d/3) =M (—duglﬁ) = JII((E— "@"E}" ~1) = ( —)

3

- (2‘..1,;_1) —y (3.‘%&} — M3 modd)— £(3).

CoroLLARY. If Q(V —a), (d,3) =1, has class number divisidble by 3,
then the nvariant n for the Zy extension. of @ V —d) is zevo.

Proof. A necessary condition that u be nonzero is M3 1y = 0(5)
By the above corollary, thig would imply % = 2(3). So, in fact, it & =0,
1(3), then u = 0.

Tt is a simple consequence of this corollary that pm, = 0 whenever
d =2 1(3).

4. A fortran program was written for IBM 360/70 to compute ¢, — &
by use of equation (2). For ! = 3,5, 7 we have treated all d up to 3000
with ( —dfl) = —1, Hh(—d} (T cLbIe 1, 2, 3). Some cages of (—dfl) = +1
were also computed for testing and comparison (Table 4). For | = 3,
M(3-*modd) was computed; this resulted in the formulation of lemina,
& 3. Table B summarizes the consequences of applying the corollaries of
§ 2 to the contents of Tables 1, 2, 3. For 1l = 3, the compntation of ¢, —¢
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was not always sutficient to determine A. Henee the program was enlarged
to compute e;—e;. The additional results are ineluded in Table 1 where
necessary and i Table 4 where available. The program input was selected
by hand from Gangs’ tables. Tence the set of tabulated diseriminants
may not be complete. Note that if (—~d/l) =1 and I{h(—d), then 1 = 4
= gy, == 0.

Tahle 1. Zprextension of Q(V:_}E)
be 8, (—df3) = —1

d T o — [ — d B ‘ e —gy | e-g
31 3 I 1432 i 1
1480 12 2 2
134 3 1 15688 6 1
1720 12 1
199 9 1 1732 12 1
211 3 2 2 1972 12 1
244 6 1 © 2047 18 4
247 6 1 2008 12 1
283 ! 3 L 2071 30 1
307 3 1 2104 12 1
331 3 1 2156 12 2 3
367 9 1 2167 18 1
379 3 3 2191 30 1
42% 6 1 2227 ] 1
436 6 ! 2260 12 2
439 15 1 1 2344 18 1
481 6 1 1 2440 12 1
472 6 1 1 2443 6 2 4
499 3 1 1 2479 24 2 2
- BT 3 1 1 2488 12 1
428 6 1 2491 12 1
843 3 1 2503 a1 2 3
655 12 1 2516 6 2 2
679 18 b 2563 § 2 2
751 15 2 2 2509 30 2 3
8?8 6 o 24044, 18 1
823 8 I 2647 15 I
835 6 Lo 2680 12 4
856 i 2 4
433 3 1 2728 12 1
907 : s 3 2740 12 1
D64 12 L 2747 21 1
1048 5 . 2701 39 1
1096 12 2 4 2824 24 !
1108 A ) 2872 12 2 2
1144 12 2. 3 2071 42 2 3
1192 6 1 2020 12 2 3
1338 i2 3 2923 6 2 2

icm
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Tahble 2. Z-extension of Q(I/_::ci)
L=5, (—dj5) = —1
d h €y — 8y d b e — %
47 b 1 1748 20 1
103 5 1 1823 45 1
127 5 2 1867 5 1
143 10 1 1887 20 1
303 10 1 1928 20 2
347 5 1 2063 45 1
443 5 I 2087 35 1
488 10 1 2152 10 2
523 5 2 2203 5 1
683 3 1 2243 15 3
787 5 1 2247 20 L
. 788 10 1 2347 5 1
803 10 2 2368 10 1.
872 10 1 2407 20 1
923 10 1 2452 10 1
947 5 1 2483 20 2
1007 30 1 2487 20 1
1123 5 1 2532 20 L
1223 35 1 25438 35 1
1258 20 1 2552 20 1
1268 10 1 . 2603 20 1
1327 15 1 20643 10 1
1427 15 1 2647 15 1
1402 10 1 2683 5 2
1567 16 L 2708 30 1
1592 20 1 2712 20 1
1643 10 1 2748 20 1
1652 20 1 © 2843 15 1
1688 10 2 2887 28 1
1707 10 1 2048 20 1
1723 53 2 2983 20 1
1747 ] 1 2087 20 1
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I=17, (—d/T) = —1
d ho |

151 7
71 7

41 a1’
463 7
487 q
536 14
596 14
743 21
807 14
827 7
563 21
935 28
1081 35
1163 7
1171 7
1311 28
1479 28

1523 7
1527 14
1703 28
2011 7
2024 28
2055 28
2083 7
2087 35
2111 49
2123 14
2179 7
29251 7
2979 56
2335 14
2431 28
2503 21
2507 14
2548 35
2564 28
2571 14
2412 14
2703 28
- 2767 21

e P e B e o e P b B e e b b R e DD = = DD b b b b e b 5 b e e e e e 53

Table 3. Zpextension of GV —d)

icm
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Table 4. Zj-extension of ¢V —d)

(—dfly = +1
d h{—d) J € — £ ‘ 6 —e
i =13 11 1 1 1
20 2 1 1
33 3 1 1
35 2% 2 2
56 4 2 2
68 4 1 1
104 [ 1 1
116 6 1 1
152 3} 1 1
3200 27 2 .2
38986 36 2 2
i=5 19 1 1 1
31 . 3 1 1
136 4 2 2
134 3 - 1 1
199 9 1 1
211 3 1 1
244 6 1 1
1311 28 3 3
I =Y 37) 1 1 1
31 3 1 1
52 2 1 1
136 4 2 2
139 3 1 1
199 9 1 1
244 6 1 1
Table 5. Relation of first layers
fo invariants when (—dff) = -1
e 8 — e [ €y € A ' én Ty
Il =3 1 1 1 g4 1 ¢
1 2 2 2 2n+1 0
1 2 3 3 3n 1
1 2 4 4 4n—1 1
1 3 3 and1 0
1 4 4 dnt 1 0
2 1 1 - 2 0
2 4 3 3 3n+3 1
I =357 1 1 1 n+1 0
1 2 2 2041 0
1 3 3 3n41 0
2 1 1 74 2 0
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ACTA ARITHMETICA
XXVI (1974)

Hexotopsie csoiicTsa M3era-gymxumi Pnamana
HA Kpuregeckod MpsMoil

Iz Moser {Bpartucmasa)

Ilexs »Toil 3amMeTHE: HATL HEROTOPHE NOTONHEHWA K IPeRIIecTBYIO-
meit samerre [5], u UWompoGoBATE NPHMEHMTH N3eTa-QyHKUMI0O Pmwmama
B PEIATHBHCTCHOM KOCMOIOTHM, .

[Tyeres 0< p' << 9" — OPHMHATEL COCEMHAX HYNeH MaeTa-QyHRIMA
Pumana ¢’ = }+4y', ¢ =3 +iy”, n, {§} — IOCHEMOBATEABHOCTL SHA-
YeHdan f > 0 TAKKX, 4TO -

(a) Y <ty
(6) Z'(ty) = 0,
(b) fy—> 0o

Ilyers {f,} — mOANOCIENOBATENBHOCTE HocTeHnosarembHoOcTH {f} Ta-
KOTo porma, 970 '

1
1£(% +ity)! >~;;, 0< a<<l.

(1]

Myers 7,7 — OPNUHATH TAKEX CocemFMX Hyleh Qymrmum [(s),
ae U< < . Cmmson {3, "'} 0608HATACT MOCTEXOBATENLHOCTE
TAKIX COCeNHAX OPHMHAT.

YUgenenusle SKCIEPUMenTEl ¢ Hynrueir Z (t) IOKAZHBAIOT, YTO TOUKK
{, PACTIPeIeIEHbI ¢ MeGOTLIIM PAsOPOCOM B ORPECTHOCTAX ToUeR (" 4 9"') /2

OboamatnmM

A (k) —y'y ¥ =T}

TGOPBTH‘IGGHH HEHCHUIOYEeHO, 9T0 OaMe B cnyqaé

H I 1
v >;r7{r

A(f) ~— CHONB YrOmHO Malo, T.e., TOYKA I, HAXOQUTCA HA CHOIEL YrOIHO
MAIlOM PACCTOAHMM VI OT TOTKH y' waw oT TOURE p”. TouHes: BOIHMMALT
BOIIpOC 00 OIEHKE - CHUBY BeITITITHEL A(ty). B »>roM mampaBieHum MMeer
MECTO

3 — Acts Arithmeilca XXVI1



