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The divisors of integers I
by .
R. R. Harn (Heslington)

* Imtroduction. Let d denote a divisor of the positive integer » and
7(n} the number of these divisors. For any real number z, let {z} = o — [2]
denote the fraetional part of x. The aim of this note is to study the distri-
bution of the points {logd} in the interval [0, 1].

We write

@) =— '3

T (?’b) {log g}

and we will show that on a sequence of asymptotic density 1,

Fal@)—w
uniformly for ze[0,1]. For each n, we define the discrepancy

A(n)y = sup  [fulf) —Ffula) —(f—a)|."
osapsl

Notice that some authors do not normalize and would therefore use the
term discrepancy for the function r(n)4(n) in this case. The main result
s as follows.

THECREM 1. Promded A< %, there ewists a sequence of asymptotw
density 1 on which

1
din) € Ol
It is clear that for all =,
1

and theorems of Aardenne-Ehrenfest [1], Roth [4] and Schmidté [5]
give lower bounds for the discrepancy; indeed Schmidt’s result shows
that for each pnme P we have

1 e 4™ = 107 logm
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for infinitely lmny m. It is possible that there are infinitely many m for
which (1) holds simultaneonsly for all primes: this seems an interesting
problem ‘We show that there exists a posmve ¢ 80 that for r > 1,

CI Zm' e

n=1 n==1

which suggests that the 4 in Theorem 1 may be best possible: it does
not prove this for it is quite possible that there iy a thin sequence on which
A(n} is large enough to make (2) hold. _

There is a rather curions corollary to Theorem 1 which leads to another
problem. -

TrrorEM 2. Provided p < $log2, almost all integers n have a divisor
d, not equal to 1, such that for some positive integer m, ‘

i= (H"(‘fag}ﬂz))

This follows from the first theorem and the fact that on a sequence
of asymptotic density 1,

logr{n) ~ loglogn.

My guess i that the conclusion holds for x <1, and thig result would
be best possible.

In the proof of Théeorem 1 we meed a reqult of Erdos and Turé.n [2]

let @, @y, ..., wy be any zeal nurabers,
1
f@ =% D1,
{1 <
1 24T ' -+
] S'ﬂ‘b = "F é i‘, me Z .
Then if ' =
A= sup |f(B)—fla)—(f~a)
0io< fgl
and T is any positive integer, :
(3) | 4 < l|i‘1§"-*'-
: . T W

me=l
where the constant implied by Vinogradow's notation < is independent
of T and the numbers ;. Indeed, throughout this note < will always
imply an absolute constant. By Fourier’s theorem, 'we have that

%, Bﬁinmﬁ___ ezinmu g
.24 C 2mm ™

M=—o0

FB)—f(a) ~(B—a) =
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where the sum on the right is over non-zero integers m, so that for all «,

‘oo .

g 1 1
[ 1o =t —B—aitap = 5 D)5 1Sl

0 =1
this shows that
o 1
2n2 A2 > — ]Snz‘z-
| =
Proof of the theorems. We seb
(n, 6) = D "
: ) dln
and the Erdos-Turdn estimate (3) gives
iy
1 1 |z(n, 2=m)|
A< T+ 2 T my

m=1

The Schwarz inequality implies

T
. : 1
) Axm)zrin) <« T (logT) D (e, 2em .
Also "
2m3e? (n) A3(n) = Zi—dt(%, 2mm)]?,
m==1

and we will deduce (2) from this stratghtaway. Indeed, a well known

result of Ramanujan [3] gives
A |7 (n, 2rm)i® ER(r) £ (r - 2imm)  (r — 2dmm)

e e

ne==l

for r > 1. Therefore in, this range

- 73 (n) A% (%) i 0311
O Zw>}j ;

n=I n==1

'

where

B (r) = o mZ: oy 1€ (h - 2dmnn) |2

Since é‘(r - 2’67‘:"?’!/) = ) (log‘ 217?!)

uniformly for r 2= 1 and me Z7, the infinite series is uniformly convergent,
and F(r) is uomumous, for v 3z 1. Henee on the interval 1 £ r < 2, F(r)
attaing its lower bound, which is not zero as {(s) is non- zero for Res = L
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Moreover, for r= 2,.
' F(?" > 540/n°,
and so
F(r >0 for

rzl,

completing the proof of (2).
Next, we prove Theorem 1. Let 0 < y < 1, and e (n) denote the number

of prime factors of # counted %corrlmg Ln multiplicity.  From (4) we
deduce that

> A2(n) "r”('n)y‘”(”) % mmlog‘*w—l— 100'1’)2 5 ¥ x (n, 2rom)|3.

n%m m=l nsm

We select ' = [log?x] and ¥ = 4, so that the first term on. the right
is o(#). Rather than find an asymptotic formula for the sum on the right
we show that there exists an 4 so that

wit 1
20 w2 e 7

e loghz L

n, 2mm)? < z(loglogw)®

ag¢ this is sufficient for the application. For Res > 1 we have

j e, 2mm)[* (s, $)(s + Bimm, 3 {(s—Binm, })
gl I3, §)

n=1

where

Hence for ¢ = 1,

SW (1 %) |z (%, 2rm)|
@

i 2
TET L
_ 1 wa 2 [3(s, (s +2imm, $) & (8 — 2imm, b a
2in o s(s4+1)5(29, 1) *

Rep]acmg # by 2w, and ohgerving that for = < «,
that

|7 (e, 2mm)|?
2w

nas

1—n/2x 2= ¥, we have

©

<

Gy o+, 450+ it-+ Bimm, D2 it —2imm, bl

w (e +t) (¢ + 1 +4t)E (2 + 2it, 3|
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"We need an estimate for |{(s, })| when Res > 1. In this half-plane,

logZ (s, ) Z 'ylogZ(S)JrZA m,ﬂ

Pee]

and it follows that for Res >1,
£ (s, )1

1 1
e <11 oo <2

In order to estimate the integral above we consider the ranges [¢| =1,
1< 8] < 2nem—1, [td-2mm| <1, |8 > 2nom 41 separately, and we use
the fact that for |u| =1, ‘

Lot iu) = O(log2 |ul).

Thus' the in.tegmls over the ranges mentioned are respectively:

< 2(E(s)|

< (10g2'm,)f~———————| T

< log?2m;

1
. at
—2 1. 3/22 f .
(ﬂg m) J ‘Gwl“}“”iﬂ”ﬂ,

) ‘
€ — log22m;
plainly the first two. estimates are the largest, and so

jr(n, 2rm)j® 1

f e

“We select ¢ =1+41/loge, and deduce “that

1 1 .
M= Ny e, 2mm)* < a(logloga)®

m<logie nsom

as required, with A = 3. Therefore

ZA"(%)TZ

nSE

# for which 4{n)> ('F(’”'_))—J'

n)27°" < w(loglogw)*.

The integers n <
clagges: if both

may be divided into two

w(n) < logloge + u]/loglogm
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and
T(n) 2= zlogloga:——mfloglogm

then n belongs to the firgt clasy; otherwise it belongs to the second clags.
If 4—>oc with , all but o (%) integers » < » satisfy both the conditions above,
and so the second class containg only o(z) numbers. Now let 5’ run over
elements of the first clags. Then

. 7?7 (n)274M < g(loglogw)*
. NIE
and so

2’1 < m(loglogm)d.z(uwl)1_ogiogw+_(!l—2%)%1/]03103:5 = 0(x)

nSw
if 1< §, and w inereases more slowly than Viogloga, say

uw = u{z) = (logloge).

This ecompletes the proof of Theorem 1.
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where ¢q, 0y, .
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On the average length of finite continued fractions
by

ToNko Tongov (Sofia)

Let & and n be positive integers, 1 < & << n, (@, n) = 1, and let

a 1

- 1
oy -+

Co - 1
r

Cya,m)

-y Olga,my AT€ Positive integers, ¢, ., > 1. Put

CLn) = ) Ua,n).

hEol 2ol
{@,m)=1

Denote bjr r{n} the number of solutions of the eguation

in pogitive integers ,

(@',

1

and

n =z’ +yy’

m’,y,y’, for which m>y, 2>y, (#,y) =1
y) =1
Reeently H. Heilbronn [3] proved that if »>2, then

L(n) = 3(n)+27(n)

r(n) = 202 (p(%)hl'n—l—()( (2%)8),

. . din

where ¢ is Euler’s function.

For the numbers a and n we eompute positive integers ¢; and r;

such that

and.

Po == My T = @5 Ty = QG+ ren (6 =1,2,..., m)

Po > 11 2 1o 3 Ty 5 Ty = 0.



