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have representations which are Type A rational fractions. Tn particular,
wo show that the partial infinite product representation for w4 with «
sufficiently large is Type A and, consequently, we obtain results congerning
the Brouwer conjecture that we discussed in [8, pp. 234-2301.
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Remark to a theorem of P. Erdss
Ty
D, Bzisz (Stony Brook, N.Y.)

Lot f(#) be a real-valned additive arithemtic function, that is,
Jtam) = fin}-+f(m) for (n,m) =1.

Put _ :
n) for fin) <1
Py [T Fon) < 1,
0 for  [fin)| > 1.
A remarkable theorewn of P. Trdog [1] states, that if
o
{1} ﬁ\;ujﬂl converges,
n
O ()
@) P
»
and
: 1
3 im0
( ) II(Z »
IES!

then the digtribation-function of f(n) existe, that ig, the limit

1\
(4) 1 }_J 1 = G{z)
Nereo e N
fk) =

oxisty for every real z. Further he showed that if the additional condition
y 1

ﬁ o)
() Ad B
Hn)#0
holds, then G{x) is contivuons; if
71

(6) | D<o

i ¥
then G (x) iy a discrete distribution.
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P. Hrddos and A. Wintner [2] showed that the conditions (1), (2)
and (3) are alzo necesgary for the existence of the limit (4). Combining
methods of Probability and Analytic Number Theory, A. Rényi [4] gave
a new proof for the theorem of Erdds, that is, for the sufficiency of (1)-(3)
in order (4) sheuld hold. Previously Schoenberg [6] proved @ weaker form
of Erdos’ theorem: instead of (1 ) he needed the stronger rostriction

: \1 )]
(1) p

jl

under this supposition he also came to the conclusions about (5) and (6).
In the present paper I give another proof for the fact that if (1),
(2), (3) and (5) hold, then the limit-function G'(z) of (1) is continuous.
The proof iy entirely different from. the proof of Hrdos or that of Behoen-
berg of his weaker statement and seems to be shorter and simpler.

1. Proof of Erxdas® theovem. In the sequel A (1) denotes the characteristic
function of the distribution funetion H (z), that iz

Bty = fa“‘”tiﬂ(m).

Lomwvra 1.1, Denote

Gy (@) == 3%; 2 1.

RN
Fil)sx

Then we hcwe

W) _ %) _ )

e

as N—roco. The infinite product on the right-hend side is convergent.
Proof. See Rényi [4].
Lemwma 1.2, We have

11) gy 4) +o(l)

: 2
.1
(1.2)  lim wj ()2 dt = \ ",
Pwo0 r 0 Iu«sl
where dy, dyy ...y runs over oll saliusses of H ().
Proof. See for instance M. Kac [3], p. 45.
Now we are in pesition to finish onr proof. Put

(L3) ”( ~l—jﬂ~——-—|~...).
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Remeark to « theovem of P, Firdis 9

Since ¢y ()-+g(t) we have Gy (@) -+ Gz} at any point of continnity of G (). To
show that G (x) iy everywhere continuous, we have only to show (Lemma
1.2) that

1 ¢

T j g()2d+0 a8 Lo

or

1
(1-4) [lg(rplrdy+0  as  T-wco.

=x

We have

Y IOV Y g ROy
(T = ) A 1)(1 e :)
iy = | | ( 3, -

m
afoaa fim) T e
[l of)
o 5 ‘
that is,
! 1 .
(1.5) [lozyipay < &, | @xp(u N1 oosf )y - L )dw
b 4 e 'pm.N fp
' fzwo

where N s n fixed “large” number.
First guppose that for f(p) == 0, f(g) 5= 0 we have f(p) = f(¢). Then
we have for any given W
1 ) . o\ .
( ‘y EEJ_"_(_}&)?U) dy = 0(1) as T-»co.
e, P

gV
Fpy0

(1.6)

Therefore by the well-known Chebyshev inequality (see for instance A.
Rényi [8], p. 373), wo hava(*)

- =y eorf(p) I x11 e
(1.7) S cosfip)ly | 1 J M_){: ......... R
pei N » 21 ;;x:.N ( ‘}j‘ 1 /p )
Jyro 16 £ sl

which can be made arbitrarily small by taking N large enough, because
of (5); therefore we have beeause of (1.5 and (1.7)

L

“ o l 1 1 ]
1.8 p(T'y) Ry =5 K| ox (M —*) 4 K ( \ --—) )
(1.8) J[a( )Ry :.(mp 2 » 2 ,,; P

[IEY
Flan) 50 Fimwo

(Y P(..) moans the Lobesgue-ncasure of the sel in y in the parventhesie.
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which can be made arbitrarily small by choosing N large enough. This
proves Erdoss’ theorem for f(p) + f{g) (f(p) 0, flg} # 0). 1f for some
sequence f(py) = f{p,) = ..., then, considering the oxpreﬁsicm

V! (cos g Ty —1)
fm)=m (@) =41
ingtead of
\‘1 LOHf Tg/—il,

Lt P

one can repeat the argument above and our statement follows agadin.
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Some remarks on the decomposition of a rational prime
in a Galois extension

by

M, Buasxaran {Perth, W. Australia)

1. Imtroduction. Not much is known about the law of decomposition
of rational pritnes in a Galois extension if the extension is not abelian.
It is lenown that only for abelian extensions we can give a simple law of
decompesition depending on the regidae of the given prime with respect to
a certain inodulug. The object of the present paper ig to get some informa-
fion about the relationship hatween the number of prime divisors of a given
rational prime and a rational prime which is ramified in a Galois extension.
This information alse helps us to gebt some idea about the clasy numbers
of certain ulgebraie number fields. For example, the well-known result

P
that the class number of the field Q(¥a) (r odd prime and o is divisible
by a prime of the form ri-- 1) is divisible by # could be deduced from our
reqult.
I would like to thank Professor A. Schinzel and the referee for their
valuable comments in the preparation of the paper.

2. Notations and preliminaries. Throughout this paper, @ denvtes
the rational number field, % denotes a finite Galoig extension of @ with
Galois group & and @, denotes the ring of integers of %, The prime ideals
of O are called k-primes. p and ¢ denote distinet rationsl primes and
B and £ denote the k-primes lying above p and ¢ respoctively. g, denotes
the number of. digtinet k-primes 2 lying above the rational prime I. ¢, and
f; denote the ramifieation index avd residue class degree respeclively
of £. Gy and 4y denote the decomposition group and inertia group of L.
They are subgreoups of @ of order e f, and ¢ respectively, 'y is a subgroup
of @y and ity elements induce the teivial automorphisn on the residue

4]

class field of 8. ¢, will be the nurmber of cosels of Gy in & Let ¢ = Lj LTS

Fool

be & coset decomposition of Gg in &. Then the k-primes ;£ are precigely

the distinet A-primes lying above .



