T.

wswha&«m

Conspectus materiae fomi XXV, fasciculi 2

W. Cusick, Formulas for some Diophantine approximation con-
stants, IT

......
..........

. Cohen, Multlphca’smn par un entmr d’lme ﬁ'a,ctlon continue péno-

dique . . . . . v
L. & Choi, Note on sequences Well-spacad a,nd well—dmtnbuted

among COngruence classes

. Haberland, Uber die Anzahl der Drwelterungen einoes a.lgebrmsohen

Zahlkbrpers mit einer gegebenen abelsehen Gruppe als Galoisgruppe
H. Loxton, On two pxoblems of R. M. Robinson about sums of
rootd of unity

. Brdds and R. R Ha.ll Some d.mtnbutwn problems concermng the

divisors of integers .
T, Asamecon, O6 ofiHOM KIACCE GI'IHEL})HLIX Gmma;xpafmtnmx tI)opM .

. Franklin, The transcendence of linear forms in ., ey K12 Moy

2ni, logy -

K.-H. Indlekofer, Scharfe untore Abschatzung iur dm Anzaahlfunktwn

der B-Zwillinge

.....

T.a revae est consacrée i la Théorie des Nombres

The journal publishes papers on the Theory of Numbers
Die Zeitechrift verdtfentlicht Arbeiten aus der Zwohlentheorie
Mypaag mocBAmEH TEOPEW WHCET

Die Adresse der
Sehriftleitung und
des Austausches

L’adresse de
la Rédaction
et de 1'échange

Address of the
Editorial Board
and of the exchange
ACTA ARITHMETICA
ul. Sniadeckich 8, 00-950 Warszawa

Pugina

117-128

120-148

149--151.

163-158

159-174

175-188
189-195

197--206

207-212

Anpec pemaxnun
¥ REAT0COMEHA

Les auteurs sont priés d’envoyer leurs manuserite en deux exemplajres

The authors are requested to submit papers in two ecopies

Die Autoren sind gebeten nm Zusendung von 2 Exemplaren jeder Axbeit

PYHOHHGJII craTell pegarknud MpPOCKHT NpPeJIAraTh B ABYX RBOMIIAPAX

"PRINTED IN POLAND

W R 0 0L AWHE A

D R U E AR NT A

N A U XK O W A

icm

AAYL (LU74)

Formulas for some
Diophantine approximation constants, II

by

T. W. Cusick  (Buffalo, N. Y.

1. Intzoduction. In the theory of simulbaneous Dloph;mtme APProx-
unmtmn, there are two well known -constants associated with ecach
pair of rewl numbers «, 8. One constant, which I denote by é,(a, §), is
detined to be the infirnwm of those ¢ > ¢ such that the inequality

& + oy - feimax (¥ %) < ¢

hag infinitely many solutions in integers a, %, # with ¥ and 2z not both
zero, ‘Lhe other constant, which I denote by &, (a, A}, is défined to be the
infimum of thoge ¢>= 0 guch that the inequality

max (o] (ww—y)% ol (fo—2)%) < ¢

bay infinitely many solutions in integers m, w, 2 with 2 == 0.

The constant ¢, {2, £) is a measure of how well one ean simultanecusly
approximate fo ¢ and § with rational numbers having the same denom-
inator. It is a well known unsolved problem to evaluate ¢ = supe,(a, ),
where the supremum is taken over all pairs of real numbers e, §. Daven-
port [5] showed that C is equal to the dual constant supe, (o, §), where
the gupremum is ta,ken over all pairs of real numbers a, 5.

In an earlier paper, T gave explicit formnulas for the constants ol(a, /A

“and o(a, #), where 1, o, #-i8 an integral basis for a real eubic number

field ([4], Theorem 1). If the field iz totally real, these formulas are nob
valid in general; an extra hypothesis (see Theorem 3 below) is reguired.
A similar modification is necessary in the totally real case in Theorem
2 of [4].

In the present paper I give corrected versions of thoe formulas fox
¢y la, B) and éy{a, §). The resulls apply whenever 1, «, § is & bagis for
a veal cubic feld, go the restriction in [4] o the ease where «, f§ are alge-
braie integers is removed.

Throughout this paper, if § is an element of a re(ml cubie field, then
g, &'y &' are the conjugates of 4. Thb norm §6°48" of 4 is denoted by ¥ (4).
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2, Nontotally real cubic fields

TurorEM 1. Suppose 1, a, i a basis for a nontotally real cubic number
field F. Let M denote the module with basis 1, a, f and let Dy, denote the

diseriminant of M. Define
1 w o= 1in{|N(8)|: § £ 0 in M}

and define the binary quadratic form f(x, vy by

(2) Fla,y) = (8" —Bw-+(a—a") g} {(B—B)z + (o' —a)y).
Define c‘f(a, B) by
(3) | Tﬁ%ﬁﬁ = max (|f(1, 1), [f(L, =L}
Then _
(4) oa, B) = =6} (a, §).
Let M* denoie the dual module of M and define
(5) T — min{[ Dy N (8)]: & =0 in M.
Then _
6y ex(e, f) = 7 (e, f).

The proof of Theorem 1 follows the same general lines ag the proof
of Theorem 1 of [4], but the débtails are more complicated. We first ob-
gerve that if o4 ay + fe is small, then

(). < @t oy +p ot ay+ o) (o+ay+f'2)
~ |(@+ ay-+-Be) (o — @)y + (B — £)2) (" — a)y + (8" — B)e)
= o+ ay+pef(z, —y)]
< max (max|f(u, 1), max [F(L, »)I) 12 4 ey + fz|max (32, 22).

Ll =1
The second inequality in (7) is obtained by taking u = z/y it
max({y? 2% = y? and v = yjz if max(y? 22) = &2
Define p, and vy by

[f(#as 1) =1Inl§§|f(u,1)r, (L, )] = max|f(L, »)].

o1

Binee the first inequality in (7) is an equality if and only if |V (w-ay -I-
+ fz}| = x, formula (4) follows frem (7) provided that there exist numbers
#-+eay+ Pz in M having arbitrarily small absolute value and norm -z,
and having the property that the appropriate one of the following con-’
ditions holds: either #/y is arbitrarily close to —pu,, or y/z is arbitrarily
close to —vy. The following lemmas establish the existence of the desmad
numbers in M.

T rem e m e ammanuSANS GUES VAR OESIUDL (Y LU SO UILUD, Lk Law

Leama 1. Suppose 1, o, f 45 a basis for a reol cubic number field T,
and let’ M denote the module with basis 1, a, 8. Let « be defined by (1). Them
W & finile set py, ..., py of clements of M with norm 4% such that every
solution »n in M nf one of the equations N{n} = -t has the form

(8) ‘ n o= £l

if I is nontotally real, where 1< 4 < k, 0 4s @ wnit in the coefficient ring of
M and m is an integer; ov has the form

(9} : 7= -k 0"

if ' is totally veal, where 1< i < k, 0 and p are multiplicatively independent
wnits in the coefficient ring of M and m, n are integers. Conversely, every
number v of the appropriate form (8) or (8) is in M and satisfies N (n) = .

Proof. This is a special case of » well known general theorem sbout
norm forms (see [2], Theorem 1, p. 118).

Lmvwa 2. Suppose 1, a, § is a basis for o nowiotally real cubic field,
and les M denote the module with basis 1, a, . Let x be defined by (1). Then
given any ¢ > 0, both -1 and —1 are limit points of the set {z/y: o+ ay + P2
s o number in M with norm - and |o -+ ay - fz < &)

Proof. By (8) of Lemma 1, we can find a number y in M with norm
Exand a unit > 1 in M such that pf™ is in M and ¥ (u0™) = 4 x for
all integers m. Define for each infeger m

(10) " = a,, + ab,, -+ e,
and . :
' w8 =+ ay,, + B2, -
We ghall show that the set {2,,/y,: m < 0} has both +1 and —1 ag limit

.points, which will prove the lemma since |u6™|—=0 38 m— — co,

If the matrix 4 is defined by .

' a—a f—p8
(11) A=[,, e }

_ ' —a B'—§
then the matrix identity

N b arm —

(12) =4
. Gm ﬂlfmmgﬂi
holds. Expanding (12) gives (note det4 = M:»y;, where Dy, is the dis-
criminamt of M) " :

D by = (B~ )67 (B
LD 0 = (@ — &) 0™ 4 (a

~ )0+ (5 —F) 6™,

(13)
‘ ey B A (0 —a) 87
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For brevity, we introduce new symbols »; and s; for the coefficients in Im“
(13), so- we have :
. o = ?"1 6\171 +Ir2 6”’”‘ “[" ¥y GH{‘?’L’

14 |
( ) e, = 8, o™ 48y G 1 8 g

Now let Q(p) = (g4) (1 < 4, j < 3) denote the matrix with the property

L a 8 | T e i #o e M
(15) 1 o F P G du| =8 o @
1 " B 1 Qo - Qon ! ulal o ugr
It follows immediately from (15) that the determinant of Q(u) satisfios
(16) ' det @ (u) = N (@) # 0.
We -also clearly have
Doy (1.,,;
(17) Y| = Q)| b
P o

for each integer m. It follows from (10), (14) and (17) that
zm‘ S]_ 0‘!?1 _]_ 82 9:””{ _f' 6{3 6’!')‘!5

(15} Yo Ry 0 By 07 By
whers ’ _
By = gn -+ (Goo — a1} "1+ (o — Bllan) 81,
81 = go1 + (G2 — a1} 71+ (s — Bfan) $15
19 By = (Goa— agar)¥a+ (§on — Hla1) 82y
8, = (9."32_"'@31)"‘” + (g — /3931 S

By = (!i’zz”‘19le)7a+(423“ﬁﬁ.’21 33;.
) Bs = (gap — 0ffaa) 73 (f_las Pes1) 85 -
Now (18) implies that

(20) B A (' / o . ,’g”_t’s_

ym 9 /fo)ﬂl«R "I 1{,3

a8 M-+ oo, fince 0 > 1 and |0] = |8 << 1. We have

S, 81 -~ g— 0 %y 8
(21) de'b[ 2 . a] - det“las Blar  Gas 9.’31] det[ 3 s].

B, R Qo Ples Qaa—afe] . T2 T
A ealeulation shows that ‘the second determinant on the right of (21)
is equal to - D3, where Dy, is the digcriminant of M and so is not zero.

ROWE LFURIU TN APDTOTVnainon cOnsianis, 1.4 Ll

If the first determinant on the right of (21) were zero, then ity first row
would be a multiple of s second row, so that the third row of the matrix
@ (g} would be a multiple of ity second row, contradicting (16). Henece
SRy — 8, By +# 0.

A little calculation shows that the complex numbers z which satisfy
(828} [(Byz+ Rg) = -+1 muet algo satisly l2{ = 1. The number 6°/6"
has absolute value 1 and obviously cannot be a root of unity, so the numbers

(07/0")™, m a negative integer, are dense on the circle |¢| = 1 in the complex
plane These facts in eonjunction with (20) and the fact that 8, By,— 8, B, 0
prove Lemma 2. '

Lemma 2 proves formula (4), becaunse f(x, y) is a definite form if
and only if ¥ is nontotally reat (for it is easily seen that the discriminant
of flz, y) iz equal to the discriminant Dy, of M), and for such forms
f(sa,y) we have gy = 41 and », = =L

We need some more notation for the proof of (6). A hasis 3, d,, 5,
for the dual module M* is dafined by

(22) So+0,10+0,8 =1, 8+ 10 +6:8 =0, 830" + 8,87 =0

50 'we have

alﬁfﬂ_an ? ,B ﬁ” . an__.ar

2 = - P
(23) % detd ' T A det 4 ' 2 det A,

where A s defined by (11). For each positive real number , define the
open square B, in the z—« plane by

.Br = {(mj [-'!):_ma.x(m], Iyl) < ’i"},.

The proof of (6) depends on the following lemma.

Lmvma 3. Suppose 1, ¢, f e o basis for o veal cubic number field F.
Let M denote the module with basis 1, a, § and let M™ denote its dual module.
Let Dy denote the discriminant of M. Then ey(a, f) = inf{r?: for some
§ #0 in M, the ewrve D3} flm, y) = N(8) intersecis B,}.

Proof. ThlS is & theorem of Adams ([1], Proposition 3, p. 10). The
basis whose existence is asserted in [1] {Lemma 1, pp. 8-9) is here taken
to be the dual basis, s¢ x, in that lemma is 1. This gives our lemma as
stated; note that it follows from (23) that the form Z{z, y) defined by
Adams ([1], p. 9) is the same as Dyy H{w, o), where f(x, y) is defined by (2).

The eurves f(x, ¥) = Dy N (8), 6 in ¥*, form a discrete set of nonin-
tersecting curves, which are all éllipses if #' is nontotally real. Since for
any real number ¢, f(sw, sy} = s¥f{x, y), it is clear that

inf{r: f(w,y) = --s intetzects B,} = sinf{r®: f(w, y) =

Iri particular, this holds if s = 7, where v is defined by (5). Therefore it
follows from (3) and Lemma 3 that (6) holds if we ean show:

-1 intergects B,}.
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LeMmA 4. Let gl y) denole any binary quadratic form. Then
(24)  inf{r2: g(m, y) = -L1 infersects B} ,
| = 1 /max(max g (s, 1)|, maxlg(L, 9)]).
|z} =1 tui<st
Proof. Suppese that the infimum on the left hand side of (24) occurs
for r = ry, and suppose that |gay, ye}| = 1, max(|x,l, ]yol) = Py,
Now let
My o= max |g(x, 1),

Jw =l

My =max |g(1, y)|
o<t

and suppose that the maxima oceur for v = z; and y = 1}1, respoctivoly.

'I‘hen1 = lg{@, M7, M7 and 1 = |g (M7, g M) |, 50 we must have

92 < min (MY M. In fact, equalﬂjy must hold; for if |y = #,, then

|g(1, Yoo V)| == vy << My, and similarly if |y,| = v, then v5* =< M,, This

proves (24).

Now (6) is proved by Mkmg g(z, %) = flz, y) in Lemma 4. This
completes the proof of Theorem I. Note that if 1, a, 8is an integral bagis
for ¥, then » =1 and Theorem 1 is the same as the noutotf\.lly real cagse
of [4], Theorem 1.

3. Totally real cubie fields. We shall require the followmg notation.

Let ay, oy, o, be a basis for a totally real subic number field, and let 3
be the module with basis a,, ay, a,. Define

my (M) = inf N(E and m_(M)= inf (N(£
Hip . 6om0 . Sin L, E50
H{g)=> N{E)<o
(these definitions were introduced by Adams [1], p. 1), and detine m (M)
and m_(M") analogously for the dual module M* of M.
Ii 1, a, # is & basis for o sotally real cubic number field, define the

binary quadmtie torm f(z, ¥) by (2). Define the sets U, U™, V, V! by
= {g: [0l <1 and flz,1)=2 0}, U™ ={y: gl <1 and f(1,y) =0}
and '
= {&w: |¢|=<1 and f(m 1)< 0},
Define the numbers fr and f by

V= {y: Jyl <1 and f(1, y) < 0}

fr = max (max f(e, 1), max (1, y))

laj i1 1)
zin U7 pin T7~1
and
Jr = max (max |f(z, 1), max |f(1, i)
=1 vt
zin 7 . winp—t

Now the result for totally real cubic fields can be stated as follows:

TumworeM 2. Suppose 1, a, § is a basis for o totally real cubic number
‘ fwld F. Let M dmote the module 'wv,tfa basis 1, a, f and let D, dencie the

3

QUIRE LA REIAREG (P RTOCTHILULLLGT, CURBLGTILE, 14 Ll

d@scnmwmm of .M Define the binary quadratio form flz, v) by (2). Then

(25) e (o, B) =1nin(m}iM)7 mfi;M))
and
(26) cy(a, B) =min(DMﬂ;“;u.k[ ), DMmf;(M ))

We begin the proof of Theorem 2 with (7); the reasoning that led .
o (7) in the nontotally real case still applies in the totally real case if
&+ oay~+fz 15 small. However, the equality

fle, —p) 1

we MAX (Y% 27) h Gf(aa ,8)’

where the supremum is taken over all pairs ¥,z such that 4oy f2

in M has abgolute value less than any preassigned arbitrarily small pos-

itive number and N (z+ay+ 82) = = (x defined by (1)), does not

hold in the totally real cage, in Ueneral hence formula (4) is not valid

for the totally real cage. Formula (27) (Whmh in the nontotally real case

is essentially another way of stating Lemma 2) has to be replaced by the
following result:

{27)

LevMa b. Suppose 1, a, § is a basis for o totally real cubic number
field F. Let M denoie the module with basis 1, a, 8. Define the binary guad-
ratic form f(z, y) by (2). If 'm,_,_(M) = Mm_ (M), then (27) holds. If m (M)
= m_ (M), then

f(zs —@!) .
@8) L., Syl
and ' '
(29) S ol

i)
lo,—y)<0 TAX (Y2, %)

where the supreme in (28) and (29) are taken over all pairs y, = such that
Flg, =) > 0 or f(z, —y) << 0, respeciively, and such that o+ ay-+fz> 0
in M has value less than any preassigned arbitrarily small positive number
and N (@ + oy -+ ) is m (M) or. —m_{ M)}, respectively.

Proof. We shall require some auxiliary results from my earlier paper
[8]. Firstly, by (9} of Lemma 1 we can find & number x> 0 in M with
norm my (M) and multiplicatively independent units 6, ¢ in the coefficient
ring of M such that wf™¢" is in M and N(uf™e") = +m (M) for all
infegers m and n. Furthermore, by [3], Lemma 9, P 176, we may assnme
without loss of generality that ¢ > 0 and '

(30) N@) =1, 6=1, [0]<1, [67]>0.
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Define for each integer pair m, n
(31) 0™ = 4 by 1 BCpn
and '
Mem(pn == Wy, T O e+ ﬁzm'n .
We note that ud™g" = 0 for all m,n.
If the matrix' 4 is defined by (11), then the matrix identity

E’bmﬁ] e [6””“99’“ _ Om(pﬂ]
Gmn- - fov}l(plr')?. — @man
holds. Expanding this identity gives

b e g 017?. "l! ,',. Ol‘m Jr'n. -J-']r‘ 6”m tm
(32) n i P+ ; o2

@mn f== 81 9?il(pn+8 ", Iﬂ_l .5 Optm Hﬂ;’

where the numbers 7, and §; are defined by (13) and (14). We also have

) T Do,
(33) f/mn ={ () bnm
Zn, i cmn_

for each integer pair m, #, where the matrix Q(u) is defined by (15), and
{16) holds a8 before. '
For any integer =, define wu(n) to be that value of m satisfying

Eiszq‘r(n)wmfgnu(ﬂ)qﬁun | _1! < liﬂlmﬂi’m/OH’m(/b”H _11 for sull integers m;

that is, w(n} is the value of m for which [6™¢@™/6"™"?| is nearest to 1.
Let E(n) dencte §™™Me™/e/™My ' Note that if N(p) = +1, then

H(n) = (067)"") (ge™" s positive for all dntegers m, but if N(p) = —1
then E(n) is positive if and only if n is even. Also, if ey (M) = m_ (M),
then N (p) = +1;forif N(p) = —1, then ¢ is a positive 1111113 with negative
nerm, and the existence of such & unit in the coefficient ving of M of course
implies m, (M) = m_(H).

We first consider the case m, (M) st m_(M), s0 N(¢) = -1 and

B (n) > 0 for all n. We now take m = w(n)--j, where § is a fixed infeger
to be chosen later. It follows from (31), (32) and (33) that

34y Cewiin _ Sa(0[07YO (glgt ) g Sy B(n) (8/0) -8,
Rl t‘)/@” ke [—j ‘P/’(P”)M P"Rz ',1(% (0 /0”)5‘"}«123

¥ wn)--jn
where the numbers B; and 8, are defined by {19). Tt was proved in [3]
(Lemma 5 Corollary, p. 171), nsing (30), that ‘ :

lim wu(n)/n = —log|ep™|/log 66’2,

11t oo

AV HUE LSO IEWHEGIVG WP DR TIE G UTE GU RS LWILS,y L4 =y

Therefore if we let n—-|- oo or #-+ - oo with the sign chogen in guch a way
that w«(n)log8 -+ nlog|p|——oo, them ™" 0. Tt follows from (34)
that for any choice of j

. zun i, (%)( /e”)jl
35 ) (m)+J.m
(33) Vsy " RaB) (81675 B,

a8 |n|—oco in the app'rop’ria.te (positive or megative) direction.

We know S, R, — 8, K, +# 0 from the proof of Lemma 2. It is easﬂy
seen that H(n) satisfies
2 266"
36 s > B{1) > ————n
36 iTeet = P> T

for every n (see [3], formula (17), p. 170). Using the facts that 6'/8"" = 66
and that #(n) is dense in the interval defined by (36) (which follows
easily from Kronecker’s Diophantine approximation theorem), wo see
that for a suitable choice of j and n we can make B(n)(8'/0"")" arbitrarily
near to any positive real number. Thus {35) implies that as § and » vary,
the set of limit points of the values of ~Zotmy+d,nlYumyrin 18 Just the set
8 defined by

8 = { — (8@ + 8 R+ By): @ > 0},

Thus in order to prove (29) it suffices to show that the sef § is the same
as the set {x: f(o, 1) < 0} (note that in {7) we have

(o' ~ @)y + (8 ~B)2) (" —a)y + (87— §)2) = —f(, —1);

thus we must have f(z, —) < 0 in order to have N (x4 ay + f2) =M (M)

and o+ ay+ fz > 0). The first step in showing this is the observation
that :

: 8 ' : S
(37) .——2=$ and =% =8

{(the nuwbers r;, and s; are defined by (13) and {14}): A simple caloulation
shows that (21) and (37) hold if and only if the equalities
(38) T O Tas and o 7 Plloy a0 == fﬁ—l— )
Qo5 — Pla UPLE a2 BYar Yo T
areé true, whatever the choice of the g,
One way to prove (38) is as follows: Dlementzu y row and column
manipulations applied to (15) give

0 s, —|l0n Gu—oedn P T A YR MY T
(BN{0 &2 —r || g Go2—0fu Qaa“"ﬁ'@al =g —p s 1
Lo B 10 Gee—0fn Qo — ] H” — &y ryp
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and this matrix equality implies

85(Gaz — 051) — V3 (Gse— 0n1) = 84,
(40) 8o(Gaa— ) — e (lan— Bas) = —rapt’’s
83(gay— Bllor) —73(Qss — Bm)} = —rap’.

Usging the first and second equationg in (?10), we see that the first equality
in (38) holds if and only if '

(41) oot oy == gt -+ p -+ ey 4 Bar -

Similarly, vsing the second and third equations in (40}, wo see that the
second cquality in {38) holds it and only if (41) is true. Now u = gy, -+
4 agy; + figss Dy {15), so (41) veduces to gy + gua gz = g+ p' -+, which
is true since u i3 an eigenvalue of Q(x} by (15). This proves (37).

Let I denote the half-gren intersal witv eodyoiuty —8,/R, and
—83/R,, the latter being in I but the former not. Then the definition
of § implies

R Ry <0,

(42) 5 1(—00, + oo} except I if
B RiBy> 0.

I if

Now (39) gives

8 —_7 . a5 — : e ] 8, ! — ¥ " )
det[ 2 2} . det [!’Lz Qs Uos .3921j det { s M Pyt J
83

Wf’s Gsp— 0y Gy Atfm =8y u” rop'

so the middle determinant in (21) i8 equal to 1j/u’u’” > 0. Hence (21)
and (37} imply that B, By and ryr, have the game sign. Sinee — 8,/ry and
— 83/ry are the roots of

Jl, 1) = (rom 485} (rym-1-83) = 07

it follows from. (37) and (42) that § = {g: f < 0}. This proves {29).

A proof analogous to the above, but beglnmng with a number g4 > 0
in M with norm —m_ (M), ésbablishes (28).

Now we consider the case . (M) = m_ (M); thus there is a positive
unit with norm —1 in M. If such a unit belongs to the coefficient ring
of M, then by (9) of Lemma 1 we can find a number x in M with norm
e (M) and multiplicatively indspendent units 6, ¢ in the coefficient ring
of M such that (30) holds, ¢ > 0, N(p) = —1, and u0™¢" iy in W with
N{(ud™e") = +m, (M) for all integers m and n. Now (35) is derived as
before, and we find that both F(n) and — E(n) are dense in the interval
defined by (36). Hence as j and » vary, the set of limit points of the values

0L B g Yy g 18 (— 00, - o0); therefore (27) holds. BEven if there
is no positive unit with norm —1 in the coefficient ring of M, (27) still

icm

“holds beeause max(fy, fr) = 1/¢ (a,
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£). This completes the proof of
Lemma 5. ‘

Now (25) follows immediately from Lemma 5 and (7) (with = replaced
in turn by m_ (M) and m_{H)). The proof of (26) depends on the following
lemmsa, which is very similar to Lemma 4:

Lumma 8. Let glz, y) denole any indefinite binary quadratic form.
Then ’

inf{r: glw,y) = +1 intersects B} = f5'
o
inf{r*: g{z,y) = =

Proof. The proof exactly parallels that of Lemina 4.

—1 infersects Br} =

Now (26} follows at once from Lemmas 3 'hnd 6. 'This completes the
proof of Theorem 2.

The following special case of Theoremr 2 ig of particular interest.

THroOREM 3. Suppose 1, a, B 48 an inteqral basis for o totally real cubic
number field F. Let M denote the module with basis 1, a, § and lel I denote
the discriminant of M and F. Suppose m, (M) = m_ (M) == 1. Define the
binary quadratic form f(z, y) by (2) and define o (o, 8) by (3). Then

¢1{e, B) = Gf(a, 8.
Let M* denote the dual module of M and let

v = min{[DN(8)]: 6 « 0 in M}

Then
Golet, ) = ek (a, B).

Preoof. The theorem is an immediate corollary of Theorem 2 if
m+(M*) = m_(M*) But the hypothesis #e, (M) =m_(M) = 1 implies
My (M"Y = m_(M*), Tor M is the set of all algebraic integers in F' and
50 M is equal to its coefficient ring. Since M and M™ have the same coeffi-
clent ring ([2], Bxercise 14, p. 94}, there iz a positive vmit of norm —1
in M*, and this implies m, (M) = m_{M").
Theorem 3 is just the totally real case of [4], Theorem 1, with the
needed. extea Lypothesis m (M) = m_ (M), Under this extra hypothesis
for the totally real case, the corollariéy of [4], p. 187, ave also valid.
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Multiplication par un entier
d’une fraction continue périodique

par

Huwri Commw (Talence)

§ 1. Iniroduction et notations. Soit # un nombre rationnel. I1 posséde
denx développements en fraction continue:

z = [agy ..., ay] = [tgy .., ty—1L, 11,

ot @; 1 pour ¢ > 1 et @, > 2. _

Nous poserons ¥ () = n; soit L(x) le nombre de termes de la fraction
continue représentant # de longueur impaire, et soit [[#]] cette fraction
continue. On a done L(x) = ¥(z)+1 —[—s{h"(w)f olt &(n) = {1-(—1)"‘)/2.
Remarquons pour la suite que ¥ et L sont des fonctions définies sur.
/7. |

Soit maintenant » un nombre quadratique, ¢’est-i-dire une racine
réelle non rationnelle d*une équation du second degré & coefficients entiers.
Le développement en fraction continue de x est périodique, eb on éerira:

@ = [DoyBrgovny by Gry ooy Gn]  8VEC Gy, b1 pour 4221

(byy ..+, by) esh la partie non périodique et (ai, ..., a,) 18 période.
Nous poserons P(x) =n; si on éorit
[a’h"-:a‘ﬂ] 2“/7}! [alr"':anmlj Sﬁlls
%

avee (a,y) =(8,8) =1; »,6=0, on a ad—;éy = (~1)* et la matrice

M == (;j g)e(}b2 (Z) sera appelée la matrice du nombre quadratique @,

o encore la matrice’ de la période (a,, ..., a,) ou de la fraction continue
[a'l: A @n]- ] ’
foit N > 1 un entier. Dans [4] M. Mendés France démontre que:

sup (¥ (Nu)[¥ (@)} = sup L(i/N)
26) [\B4 i)

et il trouve méme pius précisément la valeur de spup W Nx),
¥(z)=n .



