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Alse, if we use this inequality to make the above proof explicit, we find
that P(§?) divides the least common multiple of P(x*) and

I1# ] #"
e phey

where

u = 4106N0rm{x2).
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Some distribution problems
concerning the divisors of integers
by
P, Exnds (Budapest) and R. R, HarL (Heslingon)

Introduction. In this paper we study the distribution (modl) of
logd, where d runs through the divisors of the positive integer . As nsual
wo denote the number of these divisors by =z(w).

The sequence {logm,m =1,2,3,...} is not uniformly distributed
(mod 1), nevertheless if we set ' '

Fol) == Moo,

Fod
. T(%) log d<a (mod 1)
then on o sequence of integers # of asymptotic density 1, we have that

Jal@)y—a
uniformly for

[ I I

It

Indeed, for each A < ¥, there is a sequence of density 1 on which -

1
su FulB)—Foloy —(f—0)| € 777 -
Ogaaﬁlﬁ:ﬁgll-ﬁ’ (.3) Il (# (T(n))a

This resuwlt was proved in a recent paper of Iall 2.

Tt follows from. this that for each fixed ae[0, 1), there is & sequence
of integers n of density 1 on which
min jlog d — af~+0,
i :
where || denotes the differemce hetween @ and the nearest integer to
it, and we consider the following problem. How fast can the left band
side tend to zero on & sequenece of density 1, or even on & sequence of
positive density? It turns out that this ‘question can be angwered very
precisely.
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In the case a = 0, the problem is only interesting if we disregard
the divisor 4 — 1 in caleulating the minimum above. This suggests that
for geveral e we distinguish two cases, whether we allow

(1} [logd — el =0

or Testrict our attention to the minimum positive value of the expression
on the left.

" Tet M denote the set of those ae[0, 1) for which there is an integer
m gatisfying

logm == a (mod 1).
Ag ¢ i transcendental there can be at most one such m, and we denote
it by m(a). Thus (1) can only hold if ae M and d = m(a), that is, n» must
be a multiple of m(a). We take account of this in our results which are
as follows.
Tororex 1. Let o end ¢ be real numbers, 0 a < 1. The integers

n having @ divisor d sabisfying '

0 < [logd—al| < o —loglogn—cVioglogn 4

have asympiotic densily

o0

L f e du,
Vor J

(2) '

moreover, if ae M and we allow equality on the lefi, the density is increased
1o

oo [

5 1
—— f e du — f e~ gy
Vox J ’m(a)l/Zn e

‘We can replace ¢ by a function of n tending fo -+ co or - oco, We
have : :
THEOREM 2. Lot f{n)—co 4s n—oco, and 0 < a < L. Almost all integers
- % have a divisor d such that

0 < HlOg'd*aH < 2---103‘Iﬂgﬁ+f(’ﬂ]1/10§loﬂ'ﬂ .
The sequence of integers n having o divisor d sabisfying
0 < i]logd—a” < 2—loglogn—f(ﬂ)1/loglog'ﬁ

has density zero, umless ae M and we allow equolity on the left; in this case
the density s 1/m(a).
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Next, we study the behaviour of

supmin logd — all.

dln

Thig ig very similar to the case where « is fixed, indeed we give the fol-
lowing result.

TamoREM 3. For any real number ¢, the sequence of integers n for which

sup min [log d— af| < g8 lorn—cvioxlozn
a dn
has asymplotic density

o9

1 f ,“;'. ) i
v | 6TV dy
]/211: p ’

and if ¢ is replaced by o function of n tending to 4 co or — ocay the density
is respectively aero or 1.

Before embarking on the proofs we would like to make a few remarks.
PFirst of all, it is well known. that

" (%) = 2103‘10[.: n4cvioglogn

on a sequence of asymptotic deﬂsity given by (2}, henece the least positive
value of _
logd—al, din .

behaves roughly like 1/z(n), corresponding to the simple hypothesis that

the fractional parts of logd ave almost equally spaced on the unit interval.
By the way, the present Theorem 2 gives the solution of one of the

problems in Hall’s paper: Theorem 2 [2] holds if and only if g <logZ2,

not, as the author guessed, if and only if p <1.

Proof of Theorem 1. The idea of the proof is that for most integers
n, we might expeet the minimum value of

fogd—al, &ln,

to be of the order of magnitude 1/v(n). Therefore numbers with a sui-
ficiently large number of prime factors should have divisor d satisfying

logd — af < _2m1oglogn—cmog.logw,

the remaining numbers should mot, unless they are multiples of m(a) -
in the case ae M. :
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- Accordingly we divide the integers » < @ into three main classes.
Clags 1, which has cardinality -

oo

& f —'u,2/2
o~ & du
Vam

contains those integers for which
»(n) = loglogz + ¢(logloga)® -+ 3 (loglog =)',

The last term on the right does not affect the asymptotic density of the
clags, being of smaller order than Yloglog®, and simply provides some

leeway in the analysis; we show that almost all these n have a divisor
d satisfying i
(3) 0 < lllogd—a[f < 2—1oglogm—c1/iBE-r)_g'£
the left hand inequality showing that 4 # m{a).

Clearly -almost all # < x exceed I/m, and there exists an a = a(c)
guch that for these =, -

loglogn + ¢ Vioglogn = logloga +¢ l/loglogm —a.
The second class contains integers = < @ with
() < locrlogm—|—o(locrlogm)”z——8(10g10gfv)”3

and we prove that the number of integers in this class W113h a divigor
4 sabisfying
(4) 0 < IIlOgd-— al| < zu—logloga;—.cl/logloga:

ig o (). Evidently the mulbiples of m(a) in Class 2 have density

1 S
_— e~ 2 gy,
m(a) Vor _»£

Clags 3 containg the remaining integers # < @ for which »(n) satisties
neither of the inequalities above; gince the maximum ocardinality of
a set of integers » < o with a fixed number of distinet prime factors is

@

% M

Vlogloga
and the range of values of »(n) within Clags 3 is at most 6(logloge)'?,
the number of members of the class is

o

< _(loglogm)ijﬁ = o(®@-
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We -remark that throughout the analysis which follows we ecould
replace o(x) wherever it appears by an explicit O-estimate, except atb
one point. This occurs in the treatment of Glass 2, where we use the fact
that for d = m(a),

Mogd —al # 0.

However, so far as we are aw:a,re,.‘no positive lower bonnd for the left
hand side is known, and this limits the precision of ouwr result.
‘We begin by considering the first class. Liet I = I(#) be the interval

(exp ((log IOgm)S) ’ Moz 103,,5)2)

and. suppose that » hag ¢ prime factors, p,, ..., p, lying in I(z). Then
we may assume that these prime factors are distinet, moreover that
if » i8 in the first olass,

logloga -+ ¢(loglog@)'* + 2 (loglogs)”* < ¢ < 2loglogs.

TFor the nwmber of exceptioﬁs to the firsf asgumption is

émzjg = o(z} .

wed

while the second follows from the fact that the normal number of distinet
prime factors of n outside I(x) is Sloglogloga. Suppose thab

[rlogp,] = b (modr), 1<i<t
and that we can find & set of ¢%, & = 0 or 1 for 1 <4<t such that

g hyt eyt el =h (modf)

where

_ b =max (1, [ra]).
Tvidently o

7 (e l0g Py +ologpy ...+ glogp,—a) = b (mod 7).
where :
h—ras b h—ra--1
and go if
4 = ppst... it

certainly :

din, [logd—al <tfr.
Moreover, the choice of % ensures that the s, are not all zero, and so

a > exp({logloga)®).
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Therefore d = m(a) if @ is sufficiently large. We lot » be the integer part
of

gloglog e (iom Tog 2)L/2-{loglog w3

and it follows that for sufficiently large a4, d satisiies (3). In order to
establish the existence of a suitable set &y, &4, ..., & we need the following
lemma, &d‘apted from Theorem 2 of Erdos and Rényi [1].

Lemma 1, Let G be an Abelian group of order v, and

tlog2 = logr --2loglogr.

Then for all but possibly o((:)) choices of the distinet elements g4, g4, ...,
g, of G, every element of G wmay be written in the form '

£10y et 8-

This result is wniform in v and i

We let 7 be the group of regidue classes (mod #) under addition, and
"note that r and ¢ satisty the requirement of the lemma. It will therefore
be sufficient to show that for almost all the integers n under consideration,
the corresponding classes h, are distinet and unexceptional in the sense
of the lemma. For this we need the following resulb. :

Lemwma 2. There emists an absolute constani § > 0 such that if H is
any sub-interval of [0, 1) and 1 is the length of H, then

3 5=l o)) o

<t
logpeH (modl) -

This follows easily from the “classical result
B
_ ————+O( -—2;51/T@)

and we suppress the details. Now suppose that.

U= GXP((loglogw)a), Y o= mlf(lcigloga:)‘l

8o that (w,») is the interval I(x), and let P(kh) denote the set of primes
p in I(x) satistying
[rlogp] = h(mody),

that i3, the fractional part of logp lies in the interval

sy -[2, 2]

-r
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of length I = 1/r. We dednce from Feramsa 2 thab

1 1 1
3 - ool e 2
vib P (loglogw) logw ¥

Bvidently the number of integers »n <« for which the corresponding
h; are not all distinet is

11V w
=y E ( _,) < - (loglogz)® = o(®).
. - o
0h<r ‘meP(h)

Next we estimate the number of integers n < ® corresponding to an excep-
tional set of residue classes hy, hy, ..., hy. Let t < 2logloge as we may
agsume any Py, Pa, ..., Py be any primes in I(x). The number of n << x
with precisely these prime factors in I{z) is equal to the number of in-
tegers not exceeding @/p,p;...p; with no prime factor in f(x). Notice
that if p 18 a prime in I(#) and loglogw > 3, certainly

o .
PiPa-e- Py

0 that a resuit of van Lint and Richert [4] derived by Selberg’s upper
bound method gives the estimate

S [ (l__)

) pel
for the number of such » < #. This estimate ma,y also he deduced from
2 theorem of Mall {3]. Hence for any hy, hy, ..., by the number of integers
n< @ with ¢ prime factors in I(m) sa.tisfying

P <

[rlogp,] = h; (mod )  for

o [ 2)[T( 32 (e o).

el Tl peP(y)

I1<i<t
is )

By Lemma 1, the number of exceptional sets 7., ..., by i

o) = ()

80 the number of n < » correspondmg 1o exeepuoml seta of regidue classes
of cardinality ¢ is
logu 1 log'v ))
0( Toge 1 log (logu ’

Lemma 1 is uniform in ¢, hence we may sum over ¢ and this is o(m).

5 — Acta Arithmetlea XXV 2
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Therefore almost all the integers in Class 1 have a divisor d satisfying
(3), that is, a divisor other than m(a) with the required property. Thus
it is immaterial in Olasz 1 whether we allow m(a) ag a divisor or not.

We now turn our attiention to the second class, and in the case ae M,
we begin with the remark that the multiples of m(e) in the class ha.ve
asymptotic density

[+

1 ap
| e e~ du .
m(a)V2x f

—o0

For they are numbers of the form nm(a), n< &/m(a), and since

a)) = v(n)+0(1)
they satisfy
(n) < logloga -+ e{loglogxy* — 3 (loglog w)"* -+ O (1)

< loglog (m_a(sa)_) +(e+o (1?) l/log log (mm'q:a)) .

This gives the density above. _
Next, we show that the number of members of the class with a divisor
d satisfying (4) is o(w). As in the treatment of Class 1, we set

% == exp((loglogm)s}

and we begin by showing that at most o () integers » < # have a divisor
d satisfying (4) whose greatest prime factor does not exceed . Evidently
it will be sufficient to weaken the condition on & to

(5) _ 0 < |logd—all < (logw)™™*
and to show that B

i |

= =)

where the dash denotes that every prime factor of d 1s lesg than or equa.l
to u, and that & satisfies (5). Let

H =exp ((loglogm)’) .

Then ‘
- 1 1 *logd 1 ( 1 )—1 ~ logp
s : ; = 1—=
a‘;zf d " logH d logﬂg P m;u p—1
log2u
=0 = .
(logH ) e
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Notice that for these large d’s 'we have not used (5). In the remaining
case d < H, we drop the condifion on the prime factors of 4. The sum
of the reciprocals of the &'y satisfying

(6) m—(loga)™* < Jogd—a <m -+ (loga) ™
is
(7) | < (loga)™ 467,

and since d < H we have _
m < (loglogm)™+ 0 (1). .
Next, since ¢ is ﬁrmsoen«iantal, exoept in the special cage ae M, d = m(a),
we have
logd -~ afl 0.

Let d(x) be the smallest positive integer such that

0 < [logd —aj] < (logar)~*2.
Then.

d(m)-%oo ag L-+ 00,

Ag we remarlzed earlier, we do not know how fast 4(s)— oo and this limita
the precision of our result. Let the integer mearest to logd{w) be m, ().
Then the ranges (6) with m < m,(n) are emphy, except the range cor-
regponding to m{a): we may assume i (a) << iy (v}, However, this range

~ containg only the one d, m(a) Itself, which does not satisty (5). Therefore
we sum (7) for m = my(w) and obbain

T oge)® T E = o).

2’ 1 (logloga)’ 1
datt

Tt remaing to comsider those integers in, the second class with & di-
visor d satigfying (4), but no such divisor all of whose prime factors are
less than or equal to . Wo refer to these integers as belonging to the
fourth class; and we have to show that their number is o{w).

We begin by excluding from the class numbers with no prime factor
oxceeding

W ez ml,'].oglogw.

It follows from the results of van Lint and Richert [4] and Tlall [3] quoted
above that the caxdinality of the exclnded set is

<o [] (1f~m)-m0()

w-L PR
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Thus if » is in. Class 4 we write
0 o=mp, Pp>w.
The number of such » for which m itself belongs to Class 4 is

© [ w xzlogloga 1
8 = — g —
(8) ’ Z H(m)< logo n%; m

N0
where the dash denotes that m belongs to the fourth class. In erder to
estimate the smm on the right, we write

m = qP1Pe--- Py

where 9., Pa, ..., p; are those prime factors of m which exceed u, written
in increasing order ‘We restrict onr .;uttenuon to those m for 'Whl(‘h they
are digtinet, that is

‘l!r<_pl <p2<,..<pg

the contribution of the exceptional m’s to (8) being

wsloglogw 1 ¢l =
< —— Z—%—;«Eloglogm = 0(%).

loga e
g U p T

Since m belongs to Olass 4, it has a divisor d which may be written

d = fpapp...pft, flg, e =0or 1 for L<i<t

satistying (4). By hypothesis, 4 must have a primé factor greater than
%, therefore there exists a j, 1 <j<? such that 5 = 1. Bub now the
fractional part of logp; is determined to lie within the wnion of 2''<(g)
. gub-intervals of [0, 1) each of length

{9} . ] = 9@t+1~{loglog z)--c(loglog @y

according to the ‘possible choices of f, s, (¢ #j, 1< i<1t). We refer to
Lemma 2, with v = a, and find that if 2" iy the sum over possible p,’s,

then .
2* _:_I'._ < gi+a~loglog w—e{log log x)Liz - (g)log ( IOgﬂG‘ ) ’.

Py logu
Hinee a = O(1), and _
' < loglogw + c(loglogm)® — 3 (loglog x)'
this is o
(q)2-«5(log'10g :11:)1}’a g (i‘ogw)
0g U
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Hence

ZW Z’l‘(‘ZZPl  Ps—aBPii - pz*

tety I=1

- N s(log log z)43
< 2 () 2 log! ( logm
a2

e

q {t—1)! logu

=ity

< B2 J(loglow)’/f‘[ [(1.,__;..) N 1
i

it

A Sz
—
=]
og
8
R

< t*z s{108108 0 (100 1) (log )

& 9 dgtogall (loga){loglogx)®.
Thereforo
wloglogw v’i
loge &£

The remaining integers in Olass 4 are of the form

= 0(®) .

noe=mp, P>W

where m itself does not helong to the fourth class. Tence » has a divisor
d, of the form fp, where f|m, satistying {4), and so the fractional part
of logp Hes in the union of z(m) sub-intervals of [0, 1), each of length 7, -
given by (9). We require

LeMMA 3. There eoxist absolute posilive constants A and g such that
if B is any subinterval of [0,1) and 1 4s the length of H, then

S ogy

\‘1 1< ."A.,,._y +0(ye” ﬁlflngw)
= gy
1031{1«.{:1(1110(11)
The proof i ag indicated in Lemma 2, § ‘bemg the same. We have
the following
COROLLARY. Setting y == w/m, where m < vfw, ond choosing w as abowve,
we have

Vo
L 1< mlogw

WEDRLM
log pedi (mad;1)

Wa are now ready to estimnate the cardinalivy of the set of integers

' " spocified above. Wotioe that

Loy . w(n) < logloge + o(loglogw)”:’—--.’:’»(Io,ﬁg;'logw)’“'a
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and we restrich our attention to those n for which

(11) 7(n) < oloriog wiolloglog 2 —2(loglog B)}/3 .

To estimate the number of exceptional » note that
r{n) < 2°@
where w(n) denotes the number of prime factors of #» counted according
to multiplicity. Hence if n satisfies (10) but not {11), then
w(n) —w(n) > (loglogm)" 2.
But

Do) —»(n) = 0(x)

T

g0 we have discounted at most

ol—2 ) =
(loglogz)*®} — o(@)
numbers. The remaining set of integers » in Class 4 has cardinality
menin WwLpaim

the inner sum being over p’s for which the fractional part of logp lies in
_the union of intervaly corresponding to m, the dash denoting that

7 (m) < Slo¥lokztelloglogayi—2(log log S

By the corollary to Lemma 3, this is

ol t z(m '
< logw‘zl (m) < m‘4‘(1°g1°“)1’§10g10gw =o(x).

" This completes our treatment of Class 4, and so of Clags 2. We have shown
thait the -agymptotic density of integers in the clags with a divisor d
satigfying o

0 < |logd —al| < 5-logloga—cVIog g »

is zero; but if ae M and we allow equality on the left, the density is in-
creased to '

-

~%

L
e

This completes the proof of Theorem 1, and we indicate the changes
ngeded to prove the first part of Theorem 3. It is plain that Theorem 2
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and the second part of Theorem 3, where ¢ is replaced by a function of
n, are simple corollaries.

We divide the integers n < o into three classes in the saine way as
before. The integers in Class 3 have zero density, moreover, those in Class
2 with : _

| supmin |log d — a|| < 27108 0F w—~¢vIoglog
a dln .
have zero density; it is sufficient to select a particular a, say ey ¢ M and
notice from the proof of Theorem 1 that the integers in Class 2 with.
a divisor d satisfying
logd - oy| < 24-'081os e ViogTors

have zero density. Flemce to complete the proof of the first statement
of Theorem 8 wo need to show that for almost all members of Class 1,

supmin flog d — al| < 2108108 a-cVloglog s
a din

Ag in the proof of Theorem 1, we suppose that # hag the prime factors
D1y Pay - -y 2o 10 I (@) and that

[rlogp,] == by (mods), L1<iKt.

An examination of Lemma 1 and the axgument preceding it shows that
unless the set of residue clagses h, are exeeptional, corresponding to
a subset of intégers of Class 1 of zero density, every residue class b (mod #)
ig repregentable in the form .

s hy 4 Exhy .o ek =h(modr), & =0 or 1.

Thus for ever'y a, there is a divisor d satisiying «

logd -~ all < t/r,
that is,
supmin [logd - ol < tjr,
a  din ) .
and with the values of ¢ and r given, fhis gives all that we require if o is
gulficlently large. :
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06 ognom KIacce GHMAPHLIX GuicBazparHuHLIX (opm

2. T. Apaumoon (Kucnosock)

Tyern B, -~ mBomectno fumapusrx opy CTEUEHY 4 = 8 ¢ [eihIMe
Koa(duumenTamH.

B reopmn mpenerasirenuit amcen GRBapHELIMH (OPMAME BRFKHOS 3HA-
YeHHe MMECT CHENYIOMAL TCopeMa, MO3BONAMAN HPHeRTHBHHIM MeTONOM
MCCIeN0BATL COOTBETCTBYIONINE YPABHEHMHA.

Tnormwa 1 (oM. [37, erp. 304). IHonomcun
= f(@,y) = aNm(w—ay),

gde o — yeaoe, fel,. Hazosem gopmy f u ancebpauneckoe wucao o ,UcKAI0-
yUmeabHbM®,  eCHl  CHWECTNGYCIM MAKAN  MYMEPAYUA  CONPAMCEHHBIT oy,
gy cony Ry Wno ’

Ay = Oy . Ctg"‘“‘aj . 1 51:

@y—a; oy o L—&
das mobvix 4,5 (4 554, 3K, j<n), 20e &1 (i =35, 4,...,n) — HeKo-
mopete kopuu uz I '
Bee pemenms mmodanroba ypasHeHmsd

#g

f(w,y)m.Apfl.,.p“ (@, y) =1,

B NEIBIX @, Y, 2y 3% 0, ...y % 2 0 PHOBIETBOPAIOT HEPABEHCTBY

max(lal, [y]) < Oyexpld ",

e ® == Dby 6 0 - 0Goe wieno, () -~ BRMMCIHMAN BEIINUIHA, HC Ba-
BUCHIARL oT A, P YCIOBHM, WIi0 [ He .eCTh ,meHmowATeIsRAR” HopMa.

Huace B, (B, < ) ,posroumrensunx” (opM BLefeR eme B pa-
Borax [L]w [2]; B [2], B-9A¢THOCIA MOKABANO OTCYTCTBHE TAKMX {opm npu
% 2= B. :

B cxyuse # == 4 BOIPOC 0 CYMECTBOBAHME ,MCHRIIOUMTETLHLIX
opy ocraBases OTHPHITHM, MBBECTEH OB JHINL EIMHCTBEHHBIH ITpHMEp
F(o, 4) = @b~ 202y g, yrAganELH B [2].



