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The transcendence of linear forms in w, o, 1, 9, 20, logy
by

Riciiarn Frawkry (Providence, R. 1)

E. Introduction. In u series of pupers, Baker [1], [2] and Coabes [37
have studied the transcendence of linear forms in the periods of elliptic
functions. In this paper I will prove a theorem of the same type. Let
p(#) be a Weilerstrags p-function with algebraic invariants g,, g, and
let wy, wa, 71, 1, be definéd us usual. Leb y be a non-zero algebraie number.

Tipormm. Assume plz) has compler multiplication. Then any non-
vanishing linear form in wy, wg, 1y, %y, 2mi, logy, with algebraic coefficients,
s transcendenial, _

The proof of thiz theorem is essentially the same as the proofs of
the theorems in the papers referred to above. There are minor changes
in the egtimates, and the only sericuy difference is in the treatment of
the determinant which appears at the end of the proof. For the present
problem we employ a result of Tijdeman [4] on the mumber of zercs of
exponential polynomials, Because of the similarity of this proof to the
others, many of the following results are stated without proof. The above
references contain proofs. '

II. Lemmas on elliptic functions. Let K be the number field generated
by guy ¢ over the rationals. Let » he an arbitrary integer > 1. Write
0, 01 03, ... for positive constants which depend only on ¢y, g5, N0V 00 5.

Lmwwa 1. Assume igz, d0s ave olgebraic integers. Then

P (/’hrul;&lgmg) (=5 4y, 4y «r:'n; Ay, Ay dntegers not both 0)

¢ an algebraic namber with the mowimum of the absolute values of its con-
Jugatos ot most clﬂ* FWMM the leading coefficient of dls m'm?,mal integral
polynomial divides n'®

Let K, be tho fwld obtained by sdjoining to K all of the numbers
P(w), p'{w), where o Jonotes (liw,-+Agm,)fn and Ay, 1, range from 0
to 5 --1 excluding Ay == A, w= 0. '
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TEvwA 2. The fidd I, has degree e;n® over K and contains &™I".
Luvva 3. Assume 3g,, kg, olgebraic integers. Lel vy, v, be indegers
with (v, 75, 2n) = 1. Then the number

. "M —|—’y217 Pyy vy

belongs to the fidd K,,, each of ils conjugaics hus absolute valwe at most
o, and the leading coeffivient in its minimal integral polynomial divides
(2m)™. -

TmnsiA 4. For any positive integer %, the j-th derivative of p(2)" can
be empressed s ' . .

Sup e’ (@) ()

where the summabion is over all non-negative integers 3, ¢, 4" with 2¢+ 3¢ +
4t =42k, and uw = u(t, 1,1, ], k) denotes a rational integer with
absolute value at most §1 ¢ T". '

Lmmma 5. Let f(z) be a function regular at a poimt z such that f''(2)

= —p'(2). Then for any positive integer i, the j-th derivative of f(z)* can -

be ewpressed as .
D uf @ @) p (@) (@
where the summation is over all non-negative integers =, ', 4, #,1" with
T-20 2B A =GB, T <Ry and u = u(n v, 4L, 4, k) de-
notes a rational integer with obsolute value at most jl e/~

Proof see Lemma 3 of [2].

II1. Proof of the theorem. We guppose there exist algebraic integers -

ay 70, ayy ag, @5, ¢y f1, B SUCH that _
2y 0y @1+ 0y @y + By - Pars + 02+ aulogy = gy

and will show that that assumption leads to a confradiction. We firsh
note that there is no loss of gemerality in assuming that }gs, 34, are
algebraic integers. Thiz is clear from the ¢bgervation that, for every
positive integer 4, the invariants associated with the p-function with
periods w,/a, wyfa are a'gy, atg, and the corzesponding values of g, 1
are @y, G,.

We shall use the following notation. We denote by s the field

generated by _
(3) o (0L i< 4), B (1@3\2), oy Gs»
Py =M w;f2) (0<i<2, 1<j<2)

over the rationals, and we write 4 for the deg:ree of A" We write p{4, u, 2)
“for the uth derivative of the Ath power of p(2). By ¢, 0y, ¢, -.. wo shall
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signify positive numbers which depend only on w,, ®,, and the numbers
(3). JFinally, for any function F(z, 2,2, 2,) of the complex variables
21, %z %y %, B0A a0y non-negative intiegers my, my, my, m, we pub

Gt my-b gty
02 022 025 el
We denote by & a positive infeger and we define

L == Ly = Ly == Ly =0 Ly o= [B%], L, = [E538],  § == [BY2]

where, & usual, {#] denotes the integral part of 4. We agsume throughout
that &> ¢, where ¢ is chosen sufficiently large for the Va.lldlty of the
gubsequent arguments. Further, we define :

le,mg,ma,m,l(zl? Fay Ryy Bg) = B (21, @5, %y #4)-

T (21, 7a) 24, 2y) .
= Q@& F o ey + Fr L (wy2) + fal {wa2y) + @y 2iy + a,log ve,.
The proot now proceeds by a series of lemmas.
Lwvma 6. Let M, N be integers with N > M > 0, and lot wy (1<

< M, 1< < N) be integers with absolute values of most Uz1. Then there
are mtegefrs @iy ooy Uy, NO% oll O, with absolute values at most (N [)MHAN—20)
such that o
N .
- .
%%@WJWO (1%’11{; M)

Loed 7. There emist integers o(dgy ...
values ot most k" such that the fumction

dg Ly Ly Ly Iy

S SY Vol

Ag0 Al Gy g =0

y Ag)y not all zero, with absolute

D (21, 23y 2y 2y) = f(zuzz:za:zet) x

X P03 2: )19 (@50q)" ™80 4%
saigfios ’
(4) (pm],mmmq,m4 (8 N[" % ¥
Jor all 'mtegam g with 1< s
My WEh My 1 Tg | My -} My < o

Prool. This follows by & standard argument using Siegel’s lemma,
and by our choice of L, h.

Luwvma 8. Suppose Z = 6, and lot

ey 8R4 =0

<y and all non-negative integers ml, My, My,

(B) (2L, 2y By, 34) = Pz, zas Fgy By ”H (wj"f“Q)

Jm1 0y
where ,Q, runs over all periods of p(2) with

(6) |95] << ey | 2.
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., @) 48 regulor im the diselz| < Z (j =1,2,3, 4). For any
voy Ty With ey - -

Then @(24, -
2 with 2| < 34, and for any J non-regative integers my, .
4, <<k we have

&k rogLE?
(T) [Pan,..., m,,'(z’ B, 2, 8)| < LT

10k 12k

Proof. Thig is the same as Lemma § of [3] with &'°° replaced by k
Tt is necessary to assume, as one ean without loss of generality, that
|yl =5 L.

Leumi 9. Let @, 8,72 be numbers such thal 1 <@ <8 <2 -1, and
let My, ..., m, be integers such that mi+ ... +my< k. Suppose ¢,r, s are
integers, with g even, (r, ¢) =1, and .

(8) 1<g<Q, 1<s<8, 1<sr<yq
such that

¥ r
(9) Py sege tgeing S_FE’ o 8 q = !

L1y phy WILH ) o < ) my. Then either (9)
7= 1
holds when py = my (§ =1, 2,3, 4) or we have

Jor all non-negative inlegers p, .

(10)

(?ml.»mzxmaymg, (8 -+ -2, vy 8-F -;;) ‘ > (kS)"’gg(faAl*Lq,«S’)Qs ]

Proof. The hypotheses imply that when w, =m; (j =1, ...
number on the leit of {10) is given by W, W,d, where

W; =n{wj(8+%)—gj}ﬂ (i =1,2), |

24
r
..,S-‘I“—q- .

Now £, = n,0,+n,w, for some integers n,, #y, and, as I(ws/w,) = 0,
it follows that

=3l
L o
Uy
exceeds e,, unless #, = 8 or ¢-+1 and »n, = 0; in the latter cases we have

the lower bound e¢,/@. Similar estimates hold for the factors of Wi
Hence |m, wy] > (¢1,/)°%, and it therefore suffices to prove either ¢ = 0 or

, 4) the

- ¥
D = Qjml,mz,ma,m (S + 'E:

= |ty

(s — -«Z—) wfng(wz/cbl) '

|B] > (k) 13+ IiSQ*
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A
o
—

We now define py = p(“(m ) ( < 2). Tt is plain

q
from (2) that :
(11) .f(3‘|“%7 TR Z) = ao('f" -+ ) Brér—pBrba

where, in the notation of Lemma 3,

51 == ‘E(SQ‘I“Vﬂ 07 %9.'):
We conclude from Lemma 3 that
]:p — wiﬂ’m’l CU;”IE(zﬁi)—’ns(log'l‘l’)—md’@'

&y = E{0, sg-7, }q).

is contained in the field generated by

9’21 gs: o (0 Q "‘: Q 4‘)7 /33‘ (1 QJ '\'{ 2): p(i)(wjlg‘f) (O
62niia’ .J,llq

<4<2,1<iK2),

over the rationals. By Liemma 2, this fleld has degree at most ¢,,¢?%, and
go, in particular, ¥ has degree at most ¢,,0% Further, if i3 clear from
Lemmas 1 and 3, and the equations p'(2) = p(e)*—g,p(?)—g; and
p" (&) = 6p' () —}g,, that we can find an integer ¢, such that %5 times
py and (11) are both algebraic integers with the maximum of their
abgolute values ali most ¢%6. Denoting by g the leading coefficient of the
minimal inbegral polynomial of ¢, it is clear from the explmlt expression
for ¥ that

(12) gﬂf iyS ch(m]_-:—m2+ms+m4» ) w

is an algebraic integer with the maximum of the abgolute va.lues of its
conjugates at most : _

(LL)" (Lg 1) 2ER 2 (1 | gty oy 1Y (00 )10 D) oo < (Rooaaler 2,
Hince ¥ has degree at most ¢;,Q% the assertion of the lemma follows on
noting that oither ¥ == 0 or the norm of (12) is at least 1.

Lrmma 10, Let J be an integer satisfying 0 < J < 110. Then

7 7
?}mhmg,ma.m., (‘9 + (1, vy 8 }‘ ”&) ==
Jor all infegers g, v, 8 with g oven, (r,q) =1,
1< g 280, 1<, 1gr<y

and all non-negative integers my, My, My, My WEH Mg - Moy + Mg -+ M k27,
Proof. The lemma is valid for J = 0 by Lemma 7. Wo suppose that
I is an integer with 0 < I < 110, and we assume that the lemma holds
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for J =0,. ;, 1. We proeeed o deduece its validify for J = I4-1. We
define

Q‘J = 2hJ.’87 SJ — (J!4)+1, TJ‘ e [k/?d‘f] (J =0,..., I)

and we assume that there are integers ¢', ', ¢', with ¢’ evem, (+', ¢') =1,

1< <G, 1SE<By,, 17 <,
and non-negative integers my, niy, g, m, with m, +m, +m3+m,1 Vi
satisfying

! a,,l'
mmi,mé,mé,m‘; (S, T e s+ “’,‘) # 0
4 4
’ and we shall derive & contradiction. Further, we assume that m,, m,,
My, M, 86 chosen minimally so that

' v . ¥
@Ml'ﬂﬂ’ﬂ‘asﬂq, $ +—q-,'7 reag 8 +'E’_ = ()

for all non-negative integers ay, ..., y; Wlth

&<2m

=1

Let Z == 108;,,; and let p(zy, 2., %, 2,) be the funetion defined in
Lemma 8 for this choice of Z. Let w(e) = Prnl magumnmy (%) % % 2). Then,
by our inductive hypothesis, we see that, for all integers g, », s, with
g even, (v, ¢) =1,

& @y 1\‘?.5'\81; 1l<r<yg,
<

and each integer m satistying m< Ty, we ha.ve

0
18 wnfs+2) =0,
q

N ry L
for y,, (HE) is given by
My, My,
S X [ st
.h Ty P AN 4=y .n, 8 -
) f4==o5'1!.?2!.'fs!34! it atis Q’ ’ q

pAER )
and the péurtial derivatives vanish here becanse

My tJr ek m i < T

Now write
2y Sr q

e~ H”n(zms——)TIH

g=1 a=1 pr=l
geven {ryg)==1
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Then by {13), ¢ (2) F'(2) is regular in the disc 2] < 58;,,. Henee, denoting
by 6 and @ the upper bound of {w(z)| and the lower bound of |#(z)|, re-
spectively, on the cirele |3 == 58y, wo conclude from the maximum

modulus jprmclple that
'\ @
< |Ple+ —}|—=.
\‘ (8 ) Q)‘ z

14 ( r T’)
p\& -~
( ) 7
~erfuosy o

Now, by Lemma 8, we have
(15) 0 << B (108,4,)

Further, since for any # with |z = 58,

]

and sinee algo the nurober of sets g, r,-¢ which occur in the deflmtmn of

=2

’ ¥
R
q

F{z) iz at loast

8@ (2) 4 p(4) & ... (@) > @581,

where 7 denotes the largest even integer not exceeding @; and ¢ denotes
Euler’s function (¢f. [1], p. 188), we elearly have

¥ (s’ -+ —9:7) .
q

QF = 4-‘8’14117”_5/41 Br = SI_Hh—I"'L, Trp > ek, L< kA2,
it follows readily from (14), (15), (16) thatb

3
plo sl
P P

On the other hand, the hypotheses of Lemma 9 are satisfied with
@ =Qr, 8=8., ¢=4¢,

(16) 6 = 974

Ag .

an < g-eusispie,

8 =«=S',
oy Wm:i(l‘(.? < &),

" !
P o=y,

and, by wvirtne of our initial assumption, we have p(s' +¢'/g") % 0. We
conelude from Lemma 9 thab

?l
7 (8' - ~-7) s
q

But, as L=< kb7, Ly BT, I <110, we gee that the estimates (17)
and. (18) are contradictory for & sufficiently large. This completes the
proof of the lemma.

(18) (168 g 1)~ DAST4 00 1,
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IV. Completion of the proof. Let Py (z), 1< k< n e polynomials

of degree g, —1 respectively. Pub o = 3 g;. Let o, ..
=

maxlwki

., wy, be arbitrary
complex nunberd, and pub 4=

LEvwA 11. The namber of zeroes of the funciion

%1 Wiz
= 2 Py(e) e

=1

(19} F(2)

in an arbitrary ciroular disk of radius B wn the compler plane is at most
(20) S{a—1)+ 48R4,

Proof see [4], p. B8.
Now Lemma 10 implies

(21) S =

('Dml,mz,mg,ﬂu ('9 +%f7 -

for all integers & with 1 <
0< ml,. Gy L Puttmg

G(Z) = ®m],.‘.,m4(3) AR | z)
and noting that L --5"* < 2%, it is clear from Lemma 10 that
(22) CGus+ =0 (I<s<

The left gide of (21) can be written in the form

2 2 IR Z(""l) ( ) (Roy Ay 3 8) Qs Ay My —= gy ooy Mg i)

By=0 =0 a=0  pg=0 \H1

< L1, and all integers m., .
L+1, 0 m< B,

where #(Ag, A4, p; 8) denotes the function

apl—F-(ug+#;;,+#4, ity — g
g f (214 "V"a)% : “E“’—_ yH
0zt ... B _ Ba,

~ evalnated ab the point 2, = ... =g, =54, and

{4, Ayy ¥1y P2y 7s)

- I . -
N 7 : ' o,
-2 ---%e(zu,.--,mp(am, T oy 2 @ity

In particulazr, for m; = ... = m, = 0 we seo that

. I

Dy
23) D s+,

Ag=0 {y=0

cony 8 Y laptaetd) Q(Ag; A4, 0,0,0) =0

vy My with

icm

The tronscendonce of Wnear forms 205

for 1 <8< L+1. Furthermore, (22) implies that each of these zeroes
has multiplicity at least %'*. On the other hand, (23) ean be put in the
form of (19) with

Py, () Zf 3.

Agma0

oy 8 F1Y0q (g, 24,0, 0, 0)5,

and w;, m:.&,log'y. By Lemma 11, (23) should have no more than
(24) 8(Ly 4+ +1) -+ 4(L +5) L, logy |

zoroes in the circle |#] = L+ﬁ But for pufficiently lavge k, the number
(24) is clearly less tham L&Y%, go (23) is identically zero, and we conclude
thab '

q(Ag, A4, €4 €, 0) =0

(0L A< L, 0 A< Iy).

Now lot vy, v, 73 be any three integers with 0 < »y, ., #; < I, and suppose
that g(iy, Ay, v, ¥5, 75) == © for all integexs Aj, A, v1, v;, ¥, With

2”1<Z”

Fe=l

P I ’
0<m, v, < L

Then (21) with my = vy, My = vy, My = 2;, M, = 0 gives
Lg Ly
y 7(Agy Aoy 0, 8)G(Agy A4y ¥ay ¥ay vy) == 0

Ag= ;eru

(1= 8= L1,

and, as above, we conclude q(ly, Ay, 4, s, 1) =0 for 0l 1y, 4, < L. It
followy by induction thatb
@Ay, Agy 1y oy vg) =0 (0 < Aoy da s Ly 00wy, 99, < L.

Now choose Ay, 4¢ 80 that g4y, ..., 4;) % 0 for some iy, 4,, i;. We con-
clude that the determinant 4 of coefficients of the (L-1)® equabions

q(Agy Ay P15 ¥y vg) = 0 (Osgvl,1!2,ar3§5)
must vanish, But it is woll known (*) that

A’] w (/_]:LABAE’)L-\.;L,
whore '
Ay w= B0 BIp! (] o))+

-Aa :2!“-

(F = 1,2),
L1 (- D) HHED

Sinco p' (w;) # 0 (§ == 1, 2), it follows that 4 +# 0, which ig a contradiction,
Thus (2) cannot be valid, and the proof of the theorem is complete.

(*) Of, Lemmas 6 and 7 of [1].
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Scharfe untere Abschiitzung fiir die Anzahlfanktion
der B-Zwillinge

von

Kapr~HmiNg INprigorsr (Frankiurt am Main)

1. Einleitung. B8 sei # die Menge aller natirlichen Zahlen, die sich,
als Summe zweier Quadrate von ganzen Zahlen darstellen lassen. Die
Elemente vor # heillen B-Zahlen. Das Paar (%, n-+1) nennen wir B-Zwil-
ling, wenn sowchl ned als auch n-+le# ist. Nach G. Rieger [6] gilt fiir
die Anzabl (1) By(w) = [J{n < w: ned, n4Led} der B-Zwillinge unterhalb
x die obere Abschitzung
(1.1) By(w) < w{loge)™.

Beziiglich der Abschifzung von B,(x) nach unten igt bisher nur (vgl.
(2], 17) |
(1.2) By(@) = e(s)a(loga)~Cloet) (s> 0)

bekannt, wobei die Konstante c(z) nur von ¢ abhingt. In dieser Note
soll mit Hilfe des Selberg’schen Siebes eine Abschitzung von By(s) nach
unten gegeben weiden, welche (1.2} verbessert und die richtige Grifen-
ordnung von B,(x) angibt. Wir zeigen

Sarz. Fir die Aneahl der B-Zwillinge unierhald » gilt

(1.3) ' By (1) > w(lbgm)"l.

Der Boweis berubt auf zwei Lemnats, wolehe Abschitzungen von
Speziglfillon des linearen Siebes nach unten und des grofen Siebes nach
oben enthalten. o :

01y 0gy ... hezeichnen positive Kongbanben.

2. Hilfssdtze. Soi b(+) die charakteristische Funktion von &, 2;: =
{meN: plm, p primsp =1(4)} uwnd. D = {meN: plm, p prim=
p =3 (4)}. _ -

(* H{n: ...} bezeichnot die Anzahl dexr n mit den Eigenschaften...




